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This paper presents a novel adaptive linear and normalized combination (ALNC) method that can be used to combine the
component radial basis function networks (RBFNs) to implement better function approximation and regression tasks. The
optimization of the fusion weights is obtained by solving a constrained quadratic programming problem. According to the
instantaneous errors generated by the component RBFNs, the ALNC is able to perform the selective ensemble of multiple leaners
by adaptively adjusting the fusion weights from one instance to another. The results of the experiments on eight synthetic function
approximation and six benchmark regression data sets show that theALNCmethod can effectively help the ensemble systemachieve
a higher accuracy (measured in terms of mean-squared error) and the better fidelity (characterized by normalized correlation
coefficient) of approximation, in relation to the popular simple average, weighted average, and the Bagging methods.

1. Introduction

Function approximation has been used in a variety of
disciplines such as data mining, system identification, and
forecasting [1]. Given a finite data set, the essential task of
a function approximation problem is to interpret the appro-
priate relationship between multidimensional explanatory
variables and the corresponding responses. Function approx-
imation problems can be categorized into two major types
[2]. First, for known target functions, the approximation
theory investigates how to estimate the parameters of certain
functions or how to closely match a target function via a
particular class of rational functions with some desirable
properties (inexpensive computation, continuity, integral or
differential, limit values, etc.) [3]. Second, if the specific
expression of the target function is unknown, instead, only
a series of observations in the form of input-response pairs
are available. To perform such an approximation, several
numerical analysis techniques, for example, interpolation,
extrapolation, regression analysis, and curve fitting, could be
considered.

For two decades, artificial neural networks with the
inner neurons activated by radial basis functions have been

extensively applied in numerous practical applications [4–
6]. The radial basis function network (RBFN) works by
performing a nonlinear transformation from the inputs to a
high-dimensional hidden space and produces the response
through a linear output layer [7]. It has been justified
that any continuous function on a compact interval can
be interpolated toward an arbitrary accuracy by a well-
devised RBFN with a sufficiently large number of hidden
neurons [8, 9]. However, there still lacks a rigorous theoretical
framework that specifies the routine to determine an optimal
RBFN structure with the stated approximation properties.
Furthermore, when dealing with high-dimensional training
data, the RBFN approximation is subject to the risks of
overfitting and “curse of dimensionality” [10].

Recently, ensemble methods have been recommended
by the machine learning community [11–16]. Based on the
principle of “divide and conquer” [10], an ensemble system
combines a finite number of component neural networks
(CNNs) to provide a consensus decision, with the aim to
achieve some favorable performance (lower generalization
error or higher accuracy superior to any single learning
machine acting solely) [17].The schemes of ensemble systems
commonly follow the generative and nongenerative styles
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[18]. The generative ensembles employ the resampling or
filtering techniques to boost the training data with different
underlying distributions. On the other hand, the nongenera-
tive ensembles combine theCNNs trained from the same data
set by using appropriate decision fusion strategies [15, 19] or
combination rules [12, 14, 20].

The pioneering generative ensemble algorithms are
Boosting [21] andBagging (the acronym for “bootstrap aggre-
gating”) [22]. Boosting family algorithms repeatedly train a
particular weak-learning machine with different distributed
training data sets and then combine the local decisions.
Freund and Schapire [21] proposed the AdaBoost algorithm
in order to find a typicalmapping function or hypothesis with
a low error rate in relation to a given probability distribution
of the training data. In spite of the effectiveness, the Boosting
algorithms still have some drawbacks to implement regres-
sion tasks. First, the regression data have to be divided into
many classification sets such that the number of classification
instances becomes intensively larger in the boosted iterations.
Second, the cost function has to be modified from one
iteration to another, in order to adapt the boosted data
sets. Therefore, the Boosting algorithms are very sensitive to
noisy data and outliers [23]. The Bagging algorithm, on the
other hand, introduces the bootstrap resampling procedure
[24] into the neural network aggregation, with the purpose
to increase the diversity [22]. By averaging the CNNs, the
variance of Bagging ensemble would become much smaller
than any of the CNNs. However, according to remarks of
Breiman’s work [22], Bagging stable component learners in
an ensemble system can only slightly improve accuracy but
would lead to greater computation expense.

From the last decade, nongenerative ensemble methods
have also received broad attentions [20, 25–32]. Linear com-
binations are most frequently used in real world applications,
in virtue of the simplicity and modest computation expense.
Opitz and Maclin [33] suggested using the simple average
(SA) combination rule for regression and the majority vote
(MV) rule for classification. Ueda [20] used the optimal
linear weights to combine neural network classifiers to
improve classification performance. Fumera and Roli [25]
provided the theoretical analysis of linear combinations and
proposed a weighted average (WA) rule for multiple classifier
systems. However, the effectiveness of aforementioned linear
combination methods may be more or less affected by their
inherent flaws in design [32]. For example, the SA can only
work well when the component learners are with similar
error rates, because it treats all the component learners
equally. The linear weights derived by the WA method
are based on the assumption that the component learners
produce independent and identically distributed errors [34].
The theoretical superiority of the WA method is not yet
guaranteed in practice, because the weights estimation may
become rapidly skewedwith small-size or noisy data sets [25].
Tresp and Taniguchi [35] suggested using the inverse of the
variance depending on the input variables to generate the
nonconstant weights in the linear combination.The variance-
based weighting method is able to dynamically adjust the
fusion weights with respect to different distributions of
input variables. However, Ueda [20] pointed out that such

a method has some serious pitfalls in the minimization of
classification errors. On the other hand, the effectiveness of
linear combinationsmay also be affected by some CNNs with
poor performance. Zhou et al. [36] suggested that it may
be better to select some CNNs with reliable performance
over the training data to constitute an ensemble system. It
is true that the CNNs with poor performance may mislead
the ensemble system toward a higher accuracy, but it does
not imply that these CNNs are useless at all. For example,
a CNN may provide an excellent generalization for some
parts of the data set but failed for the other parts. Such a
phenomenon usually occurs due to overfitting; that is, the
neural network is overtrained with poor generalization. Now
there arises a question: can we retain a CNN in the ensemble
system only when it produces good approximation for some
parts of a function domain and discard it if it fails to attain
the desired generalization accuracy? In the present study,
we propose an adaptive linear and normalized combination
(ALNC) method that can effectively combine the CNNs with
the dynamic and normalized fusion weights, which can be
obtained by solving a constrained quadratic programming
problem.

2. Adaptive Linear and Normalized
Combination (ALNC)

Suppose that an ALNC ensemble system contains 𝐾 com-
ponent RBFN approximators in total (see Figure 1). The
𝑘th component RBFN produces the approximation output,
𝑓𝑘(x𝑛), 𝑘 = 1, . . . , 𝐾, in response to the 𝑛th input instance
vector x𝑛, 𝑛 = 1, . . . , 𝑁. The ALNC system provides the
ensemble approximation, 𝑓ALNC(x𝑛), by linearly combining
the component RBFNs with the adaptive (instance-varying)
normalized weights 𝑤𝑘(x𝑛), which can be formulated as

𝑓ALNC (x
𝑛
) =

𝐾

∑

𝑘=1

𝑤𝑘 (x
𝑛
) 𝑓𝑘 (x

𝑛
) . (1)

The fusion weights are subject to the nonnegativity and
normalization constraints [32, 37–40], which can be written
as

𝐾

∑

𝑘=1

𝑤𝑘 (x
𝑛
) = 1, 𝑤𝑘 (x

𝑛
) ≥ 0. (2)

Similar to most of the linear combination methods
reported in the literature, the aim of the ANLC ensemble
system is to provide the optimal solution of the nonnegative
and normalized weights. The difference between the approx-
imation of the 𝑘th component RBFN, 𝑓𝑘(x𝑛), and the target
function response, 𝑔(x𝑛), is measured with the squared error
as

𝑒
2

𝑘
(x𝑛) = [𝑔 (x𝑛) − 𝑓𝑘 (x

𝑛
)]
2
. (3)

Then, the squared error of the ALNC ensemble approxima-
tion, 𝑒ALNC(x𝑛), is estimated in a similar way.

Since the nonnegative weights are normalized in the
ALNC ensemble, the target function response 𝑔(x𝑛) can be
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Independent variables xn

Adaptive linear and normalized combination (ALNC)

Radial basis Radial basis Radial basis
function network 1 function network k function network K

Figure 1: Illustration of adaptive linear and normalized combination (ALNC) of radial basis function networks for function approximation.

split and combined with the weighting multipliers, 𝑤𝑘(x𝑛);
that is, 𝑔(x𝑛) = ∑

𝐾

𝑘=1
𝑤𝑘(x𝑛)𝑔(x𝑛). Thus, the approximation

error term of the ALNC ensemble system, 𝑒ALNC(x𝑛), is
derived as follows:

𝑒
2

ALNC (x
𝑛
) = [𝑔(x𝑛) −

𝐾

∑

𝑘=1

𝑤𝑘(x
𝑛
)𝑓𝑘(x
𝑛
)]

2

= [

𝐾

∑

𝑘=1

𝑤𝑘(x
𝑛
)𝑔(x𝑛) −

𝐾
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𝑘=1

𝑤𝑘(x
𝑛
)𝑓𝑘(x
𝑛
)]

2

= {

𝐾

∑

𝑘=1

𝑤𝑘 (x
𝑛
) [𝑔 (x𝑛) − 𝑓𝑘 (x

𝑛
)]}

×

{

{

{

𝐾
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𝑛
) [𝑔 (x𝑛) − 𝑓𝑗 (x
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}

}

}

=

𝐾
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𝐾
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𝑛
) 𝑤𝑗 (x
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× [𝑔 (x𝑛) − 𝑓𝑘 (x
𝑛
)] [𝑔 (x𝑛) − 𝑓𝑗 (x

𝑛
)]

=

𝐾

∑

𝑘=1

𝐾

∑

𝑗=1

𝑤𝑘 (x
𝑛
) 𝑤𝑗 (x

𝑛
) 𝑒𝑘 (x

𝑛
) 𝑒𝑗 (x

𝑛
) .

(4)
By virtue of (2) and (4), the minimization of the ALNC

ensemble error on the 𝑛th input data is equivalent to the con-
strained quadratic programming (CQP) problem specified as
follows:

minimize 𝑒
2

ALNC (x
𝑛
) =

𝐾

∑

𝑘=1

𝐾

∑

𝑗=1

𝑤𝑘(x
𝑛
)𝑤𝑗 (x

𝑛
)𝑒𝑘(x
𝑛
) 𝑒𝑗(x
𝑛
) ,

subject to
𝐾

∑

𝑘=1

𝑤𝑘 (x
𝑛
) = 1, 𝑤𝑘 (x

𝑛
) ≥ 0.

(5)

Wemay use the Lagrangemultiplier method [41] to solve this
CQP problem by defining the cost function as

𝐶 (𝑤1 (x
𝑛
) , . . . , 𝑤𝐾 (x

𝑛
) , 𝜆 (x𝑛))

=

𝐾

∑

𝑘=1

𝐾

∑

𝑗=1

𝑤𝑘 (x
𝑛
) 𝑤𝑗 (x

𝑛
) 𝑒𝑘 (x

𝑛
) 𝑒𝑗 (x

𝑛
)

− 𝜆 (x𝑛) [
𝐾

∑

𝑘=1

𝑤𝑘 (x
𝑛
) − 1] ,

(6)

where the nonnegative coefficient 𝜆(x𝑛) denotes the Lagrange
multiplier, the value of which varies from one input data
vector to another.

According to the weak Lagrangian principle [41], the
optimum solution, {w∗(x𝑛), 𝜆∗(x𝑛)}, is the stationary point
of the cost function given in (6) and satisfies the following
unique equations [40]:

𝜕𝐶 (𝑤1 (x𝑛) , . . . , 𝑤𝐾 (x𝑛) , 𝜆 (x𝑛))
𝜕𝑤𝑘 (x𝑛)

= 2

𝐾

∑

𝑗=1

𝑤𝑗 (x
𝑛
) 𝑒𝑘 (x

𝑛
) 𝑒𝑗 (x

𝑛
) − 𝜆 (x𝑛) = 0,

𝜕𝐶 (𝑤1 (x𝑛) , . . . , 𝑤𝐾 (x𝑛) , 𝜆 (x𝑛))
𝜕𝜆 (x𝑛)

=

𝐾

∑

𝑘=1

𝑤𝑘 (x
𝑛
) − 1 = 0.

(7)

Then, the optimal solution of the ALNC weights, 𝑤∗
𝑘
(x𝑛),

can be derived by solving the CQP problem as

𝑤
∗

𝑘
(x𝑛) =

∑
𝐾

𝑗=1
𝑒
−1

𝑘
(x𝑛) 𝑒−1

𝑗
(x𝑛)

∑
𝐾

𝑖=1
∑
𝐾

𝑗=1
𝑒
−1

𝑖
(x𝑛) 𝑒−1
𝑗
(x𝑛)

, 𝑘 = 1, . . . , 𝐾. (8)

Note that the optimal fusion weights are determined by the
errors of component RBFNs, when the RBFN parameters are
specified and the target function response is given.
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Figure 2: Plots of the approximations for the two-dimensional functions: (a) Zigzag, (b) Rhythm, (c) SinCos, and (d) ExpSin. Target function
curve (solid line), simple average (SA) approximation (dash-dot line), weighted average (WA) approximation (dotted line), and adaptive linear
and normalized combination (ALNC) approximation (dashed line).

Concerning the error termof theALNCensemble system,
substituting (8) into (4) yields

𝑒
2

ALNC (x
𝑛
) =

𝐾

∑

𝑘=1

𝐾

∑
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𝑤𝑘 (x
𝑛
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𝑛
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𝑒
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𝑖
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(9)

It is clear that 𝑒2
𝑘
(x𝑛) and 𝑒2ALNC(f

𝑛
) are both nonnegative; that

is, 𝑒2
𝑘
(x𝑛) ≥ 0 and ∑

𝐾

𝑖=1
∑
𝐾

𝑗=1
𝑒
−1

𝑖
(x𝑛)𝑒−1
𝑗
(x𝑛) ≥ 0. To compare

the ALNC ensemble error with a component RBFN error, we
may compute the division operator as

𝑒
2

𝑘
(x𝑛)

𝑒
2

ALNC (x𝑛)
= 1 +

𝐾

∑

𝑖=1
𝑖 ̸= 𝑘

𝐾

∑

𝑗=1

𝑗 ̸= 𝑘

𝑒
2

𝑘
(x𝑛)

𝑒𝑖 (x𝑛) 𝑒𝑗 (x𝑛)
≥ 1. (10)

According to (10), it can be inferred that the ALNC ensemble
system, with the optimal fusion weights, is more likely to
outperform any of its component RBFNs.

3. Experiments

3.1. Data Description. The data sets tested in our experi-
ments are twofold. The first eight data sets are synthetic
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Figure 3: Plots of the approximations for 3-DMexican Hat: (a) target function, (b) simple average (SA) approximation, (c) weighted average
(WA) approximation, and (d) adaptive linear and normalized combination (ALNC) approximation.

functions without noise, among which the Zigzag, Rhythm,
SinCos, and ExpSin are two-dimensional functions and the
3-D Mexican Hat, Gabor, SwingCos, and Exponential are
multivariate functions with two independent variables. The
details of particular function expressions, domains, and the
size of samples, with regard to these eight synthetic sets, are
specified in Table 1, in which U[𝑎, 𝑏] indicates a uniform
distribution over the interval from 𝑎 to 𝑏.

The other six benchmark multivariate regression sets
listed in Table 2 were obtained from the University of Cali-
fornia at Irvine (UCI) machine learning repository [42] and
Carnegie Mellon University (CMU) StatLib library (available
online at http://lib.stat.cmu.edu/datasets/), respectively.

Abalone. The task is to predict the age of abalone from seven
physical measurements (the nominal attribute “sex” in the
original UCI data set was not included in the set of input
attributes in our experiments).

Housing. The Housing data set, which contains 2 integers
and 11 continuous attributes, describes the housing values in
suburbs of Boston.

Auto-MPG. This data set concerns city-cycle fuel consump-
tion in miles per gallon. From the original data set, the
string attribute “car name” (unique for each instance) and
six instances with missing values were removed in our
experiments.

Stock.The data set describes daily stock prices of 10 aerospace
companies from January 1988 throughOctober 1991.The task
is to predict the stock price of the first company from the
other nine.

Bolt. This is a relatively small data set retrieved from a trial
on the effects of machine adjustments on the time to count
bolts (a type of automotive accessory). The task is to predict
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Figure 4: Plots of the approximations for Gabor: (a) target function, (b) simple average (SA) approximation, (c) weighted average (WA)
approximation, and (d) adaptive linear and normalized combination (ALNC) approximation.

Table 1: Description of the synthetic data sets for function approximation.

Function name Target function expression Distribution of
independent variables Size of samples

Zigzag 𝑔 (𝑥) = sin𝑥2 − 0.25𝑥 𝑥 ∼ 𝑈[0, 3] 3000

Rhythm 𝑔 (𝑥) = [
mod (𝑥, 11) − 5

8
]

3

𝑥 ∼ 𝑈[0, 20] 1000

SinCos 𝑔 (𝑥) = 𝑥 sin𝑥 cos𝑥 𝑥 ∼ 𝑈[0, 2𝜋] 2000

ExpSin 𝑔 (𝑥) = 2𝑥
2
+ exp [𝜋

𝑥
] sin (2𝜋𝑥) 𝑥 ∼ 𝑈[1, 3] 4000

3-D Mexican Hat 𝑔 (𝑥1, 𝑥2) =

sin√𝑥
2

1
+ 𝑥
2

2

√𝑥
2

1
+ 𝑥
2

2

𝑥1 ∼ 𝑈[−5, 5]

𝑥
2
∼ 𝑈[−5, 5]

2500

Gabor 𝑔 (𝑥1, 𝑥2) =
𝜋

2
exp [−2 (𝑥2

1
+ 𝑥
2

2
)] cos 2𝜋 (𝑥1 + 𝑥2)

𝑥1 ∼ 𝑈[0, 1]

𝑥2 ∼ 𝑈[0, 1]
2500

SwingCos 𝑔 (𝑥1, 𝑥2) = 𝑥1 + 𝑥2 + cos 2𝜋𝑥1 + cos 2𝜋𝑥2
𝑥1 ∼ 𝑈[−1, 1]

𝑥2 ∼ 𝑈[−1, 1]
2500

Exponential 𝑔 (𝑥1, 𝑥2) = 𝑥1 exp [− (𝑥
2

1
+ 𝑥
2

2
)]

𝑥1 ∼ 𝑈[−2, 2]

𝑥2 ∼ 𝑈[−2, 2]
2500
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Figure 5: Plots of the approximations for SwingCos: (a) target function, (b) simple average (SA) approximation, (c) weighted average (WA)
approximation, and (d) adaptive linear and normalized combination (ALNC) approximation.

Table 2: Description of the regression data sets.

Data set name Number of
attributes Size of instances Data source

Abalone 7 4177 UCI
Housing 13 506 UCI
Auto-MPG 7 392 UCI
Stock 9 950 StatLib
Bolt 7 40 StatLib
CPS-85-Wages 10 534 StatLib

the correct time to count 20 bolts from 7 attributes associated
with the machine adjustment settings.

CPS-85-Wages. The CPS-85-Wages data were obtained from
the Current Population Survey (CPS) of 534 people. Such a
survey provides the information on wages and other aspects
of the workers, including years of education, region of resi-
dence, gender, years of work experience, union membership,
age, race, occupational status, sector, and marital status.

3.2. Settings of Component Radial Basis Function Networks.
The details of the component RBFNs involved in the ALNC
ensemble system are presented as follows.The number of the
sensory neurons in the input layer is equal to the dimensions
of independent variables. The radial basis function kernel
function is defined as

𝜑 (x, c𝑙) = exp(−log
𝑒

2
x − c𝑙



2

𝜎2
) , (11)

where c𝑙 denotes the center vector for the 𝑙th hidden neuron
and 𝜎 is the spread parameter that determines the width of
the area in the input space to which each hidden neuron
responds. The output layer is linear, and the responses of
the component RBFNs are sent to the succeeding linear
combination.We employed a total of 30 component RBFNs to
approximate the synthetic functions. The first 10 component
RBFNs had the same spread parameter of 1.0, and the number
of hidden neurons increased from 1 to 10, for each neural
network. Regarding the second 10 component RBFNs (with
the spread of 2.0) and the remaining 10 component RBNFs
(with the spread of 3.0), their hidden neuron numbers were
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Figure 6: Plots of the approximations for Exponential: (a) target function, (b) simple average (SA) approximation, (c) weighted average (WA)
approximation, and (d) adaptive linear and normalized combination (ALNC) approximation.

incremental from 11 to 20 and from 21 to 30, respectively. In
the regression experiments, the ensemble system combined
three component RBNFs. The number of hidden neurons
was equal to the dimensions of the input independent
variables, and the spread parameter varied from 1.0 to 3.0
for each network. Each component RBFN was trained with
the orthogonal least-squares algorithm [43], which offers a
systematic method for center selection and it significantly
reduces the complexity of the RBFN.

3.3. Other Experiment Settings. For the purpose of approxi-
mation performance comparison, we also implemented the
popular SA and WA combination rules on the synthetic data
sets and the Bagging algorithm on the benchmark regression
data sets. In the regression experiments, the ALNC method
used the same bootstrap resampling procedure as the Bagging
for fair comparison purpose. The ALNC ensemble with such
a data preprocessing procedure is presented as Bootstrap-
ALNC hereafter.

The computer programs were performed on a laptop with
aCPUprocessor of 1.86GHz speed and 1.5 GBRAMmemory.
Each experiment was repeatedly carried out for 50 times to

provide the results in statistical sense. In order to compare the
computational efficiency, we also recorded the computation
time consumption (CTC) inmilliseconds (ms) of each fusion
method.

3.4. Quantitative Performance Evaluation Criteria. The ap-
proximation accuracy in our experiments was measured in
terms of mean-squared error (MSE); that is,

MSE =
1

𝑁

𝑁

∑

𝑛=1

[𝑔(x𝑛) − 𝑓(x𝑛)]2 = 1

𝑁

𝑁

∑

𝑛=1

𝑒
2
(x𝑛) , (12)

where 𝑓(x𝑛) denotes the approximation of the component
RBFNs, the Bagging, or Bootstrap-ALNC.

The similarity between the approximator output and the
target function, referred to as the approximation fidelity, was
computed with the normalized correlation coefficient (NCC)
as

NCC =
∑
𝑁

𝑛=1
𝑔 (x𝑛) 𝑓 (x𝑛)

√∑
𝑁

𝑛=1
𝑔2 (x𝑛) ∑𝑁

𝑛=1
𝑓2 (x𝑛)

× 100%. (13)
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4. Results

Figure 2 illustrates the approximation curves provided by
the SA, WA, and ALNC methods, with regard to the syn-
thetic two-dimensional functions. Comparedwith the output
curves of the SA, the curves produced by the WA and
ALNC methods are closer to the target functions in the
input range from 1.8 to 2.5 for the Zigzag function, from
7 to 13 for the Rhythm function, from 1.8 to 3.2 for the
SinCos function, and from 1.5 to 2 for the ExpSin function,
respectively. Three ensemble methods provide different 3-D
surface approximation results, with respect to the functions
of 3-D Mexican Hat (see Figure 3), Gabor (see Figure 4),
SwingCos (see Figure 5), and Exponential (see Figure 6),
respectively.

Concerning the 3-D Mexican Hat, the peak area approx-
imated by the SA method, as depicted in Figure 3(b), is
slightly skewed versus the target function in Figure 3(a),
whereas such skewness does not appear in the results of the
WA and ALNC methods. For the Gabor, the output surface
shape of the SA fusion is severely distorted, as shown in
Figure 4(b).The surfaces produced by theWA fusion, plotted
in Figure 4(c), and the ALNCmethod, plotted in Figure 4(d),
are much better than those of the SA method. In addition,
the WA fusion surface is even smoother than the ALNC
output surface. From Figures 5(b) and 5(c), we may observe
that the output surface of the SA or WA fusion fails to
match the SwingCos function such that several local crests
and troughs in the approximated surface central region are
missing. On the contrary, the ALNCmethod is able to predict
the locations of these local crests and troughs, although its
numerical estimate is not very precise. According to Figure 6,
the surface regions around the crest and trough predicted by
the SA and WA fusion methods are fluctuating, whereas the
ALNC provides an approximation surface relatively closer to
the Exponential target function in Figure 6(d).

The quantitative results on the synthetic data sets listed
in Table 3 indicate that the MSE and NCC values obtained
with all three ensemble methods are remarkably better than
those of the component RBFNs on average, especially for
the Zigzag, SinCos, ExpSin, and Gabor data sets. Even when
approximating the SinCos function, the WA and ALNC
both perfectly achieve almost zero error and 100% output
fidelity. In addition, the ALNC consistently outperforms the
SA fusion and is also superior to the WA method in most
experiments (see the best performance results highlighted in
Table 3).

Considering the benchmark regression data sets, Figure 7
and Table 4 show that the MSEs produced by the Bootstrap-
ALNC in all six experiments are consistently lower than
those of the prevailing Bagging or a single RBFN on aver-
age, especially the Bootstrap-ALNC reductions versus the
Bagging the MSE values of 8.59% (2.8209/32.8325), 6.7%
(28.5683/426.5834), and 17.54% (3.8174/21.7593) on the Stock,
Bolt, and CPS-85-Wages data sets, respectively. The NCC
improvements of the Bootstrap-ALNC over the Bagging are
also noticeable in Figure 8 and Table 4. Such results indicate
that the proposed ALNC method, along with the bootstrap

resampling procedure, is competent to solve practical regres-
sion problems.

TheCTC parameter indicates howmuch a fusionmethod
would occupy the CPU computing resources, which involves
the total elapsed time of the training of component RBFNs
and the optimization of fusion weights. Thus, we only list
the CTC values of the fusion methods in Tables 3 and 4.
By comparing the CTC results on different data sets, we
may find that the ALNC method consumed the least CPU
execution time for almost all the function approximation
and regression data sets, whereas the WA method occupied
the most CPU resources. The WA fusion method would
require some additional CPU execution time because it has to
estimate the error distributions of the componentRBFNs.The
ALNC method can directly compute the fusion weights with
the instantaneous errors of the component RBFNs to improve
the efficiency. FromTable 3, the CTC values of the SAmethod
on the ExpSin and SwingCos data sets are smaller than those
of the ALNC method. But it is worth noting that the ALNC
fusion produces much better ExpSin approximation curve
(see Figure 2) and SwingCos surface (see Figure 5) than the
SA method.

5. Discussion

The performance evaluation results measured by the MSE
and NCC parameters have demonstrated the effectiveness
of the proposed ALNC method for function approximation
and regression. It is worth noting that the MSE values could
be influenced by the dependent variable scales; for example,
the MSE results on the Bolt data set (Bagging: 426.5834;
Bootstrap-ALNC: 398.0151) are much larger than those on
the Abalone data set (Bagging: 4.6753; Bootstrap-ALNC:
4.4646); however, the performance improvement trends (the
ALNC versus the SA or WA, the Bootstrap-ALNC versus the
Bagging) are evident. Such amelioration effects of function
approximation and regression are reflected qualitatively in
the geometric patterns of the two-dimensional function
curves in Figure 2 and three-dimensional surface plots in
Figures 3–6. On the other hand, although some criticisms
on the MSE criterion exist in the literature [44], this metric
still has several excellent properties such as simplicity, valid
Euclidean distance measure, and energy of the data errors,
which makes the MSE widely used as a favorable metric in
optimization, statistics, and data analysis.

From Table 3, it can be observed that the Bagging
ensemble can only slightly improve the performance of the
componentRBFNs.The robustness of theRBFN is considered
as the primary cause of such a phenomenon. According to
the remarks of Breiman’s work [22] “Bagging stable learners
is not a good idea,” because the robustness of the stable
learners leads to more computational complexity but with
little performance amelioration rewards.

The simple average (SA) and weighted average (WA)
fusion strategies combine the component learners with the
fixed or predefined fusion weights. In the meantime, they
neglect that in some situations individual learners may be
able to produce good approximations for some particular
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Figure 7: Bar graphics of the regression mean-squared errors produced by the component radial basis function networks (RBFNs), the
Bagging, and the Bootstrap-ALNC on the data set: (a) Abalone, (b) Housing, (c) Auto-MPG, (d) Stock, (e) Bolt, and (f) CPS-85-Wages.
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Figure 8: Bar graphics of the regression normalized correlation coefficients (in percentage) produced by the component radial basis function
networks (RBFNs), the Bagging, and the Bootstrap-ALNC on the data set: (a) Abalone, (b) Housing, (c) Auto-MPG, (d) Stock, (e) Bolt, and
(f) CPS-85-Wages.
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Table 3: Results of function approximation experiments in terms of mean-squared error (MSE), normalized correlation coefficient (NCC),
and computation time consumption (CTC in ms).

Function name Evaluation RBFN SA WA ALNC

Zigzag
MSE 0.0295 ± 0.0735 0.0062 ± 0.0164 0.0007 ± 0.0049 0.0004 ± 0.0011

NCC (%) 96.3055 ± 9.6683 99.4763 ± 9.3546 99.9250 ± 6.3702 99.9571 ± 4.2214
CTC (ms) 7.42 ± 1.89 8.84 ± 0.92 7.28 ± 0.95

Rhythm
MSE 0.0029 ± 0.0010 0.0024 ± 0.0013 0.0023 ± 0.0012 0.0020 ± 0.0009

NCC (%) 87.5134 ± 5.0192 89.7075 ± 3.2103 90.1384 ± 2.8523 91.5593 ± 1.8064
CTC (ms) 8.71 ± 1.12 9.33 ± 1.74 8.54 ± 1.03

SinCos
MSE 0.0634 ± 0.2023 0.0055 ± 0.0047 0.0000 ± 0.0002 0.0000 ± 0.0002

NCC (%) 97.7722 ± 7.2694 99.9010 ± 5.3231 100.0000 ± 2.0012 100.0000 ± 2.0012
CTC (ms) 9.01 ± 1.24 9.24 ± 1.01 8.52 ± 1.36

ExpSin
MSE 2.6070 ± 5.9641 0.5745 ± 0.2563 0.2246 ± 0.1094 0.1793 ± 0.0521

NCC (%) 98.9156 ± 2.5046 99.7826 ± 1.3005 99.9097 ± 0.7421 99.9992 ± 0.5096
CTC (ms) 8.42 ± 1.88 9.12 ± 3.65 9.07 ± 2.09

3-D Mexican Hat
MSE 0.0056 ± 0.0092 0.0016 ± 0.0022 0.0001 ± 0.0003 0.0001 ± 0.0003

NCC (%) 96.7638 ± 5.4163 99.2510 ± 2.3316 99.9973 ± 0.05433 99.9992 ± 0.0097
CTC (ms) 12.67 ± 1.04 13.69 ± 1.06 11.15 ± 0.98

Gabor
MSE 0.0526 ± 0.0591 0.0284 ± 0.0087 0.0044 ± 0.0027 0.0030 ± 0.0015

NCC (%) 85.9035 ± 19.5016 94.5788 ± 12.0816 99.1086 ± 7.3341 99.4828 ± 4.2035
CTC (ms) 12.41 ± 1.35 12.97 ± 1.39 11.79 ± 1.19

SwingCos
MSE 0.6108 ± 0.2585 0.4614 ± 0.2448 0.3663 ± 0.1802 0.2018 ± 0.0097

NCC (%) 79.6648 ± 9.7284 86.2856 ± 7.0205 89.2254 ± 6.6522 94.3319 ± 4.3316
CTC (ms) 11.38 ± 0.74 13.03 ± 0.89 11.65 ± 0.81

Exponential
MSE 0.0016 ± 0.0022 0.0007 ± 0.0003 0.0004 ± 0.0001 0.0001 ± 0.0001

NCC (%) 96.3979 ± 5.2557 98.5697 ± 3.4681 99.2090 ± 1.0506 99.7315 ± 0.6233
CTC (ms) 12.46 ± 1.52 13.18 ± 2.13 11.53 ± 1.08

Table 4: Regression results in terms of mean-squared error (MSE), normalized correlation coefficient (NCC), and computation time
consumption (CTC in ms).

Data set name Evaluation RBFN Bagging Bootstrap-ALNC

Abalone
MSE 4.7755 ± 0.0298 4.6753 ± 0.0167 4.4646 ± 0.0098

NCC (%) 97.7867 ± 0.0139 97.8340 ± 0.0102 97.9335 ± 0.0075
CTC (ms) 11.22 ± 3.51 9.78 ± 0.85

Housing
MSE 70.9045 ± 1.1676 69.3435 ± 0.6351 67.1779 ± 0.4001

NCC (%) 93.8500 ± 0.0944 93.9970 ± 0.0704 94.1718 ± 0.0568
CTC (ms) 8.62 ± 1.33 7.11 ± 0.88

Auto-MPG
MSE 56.1797 ± 0.2687 55.9879 ± 0.1305 55.8517 ± 0.1038

NCC (%) 95.3166 ± 0.0228 95.3338 ± 0.0201 95.3422 ± 0.0185
CTC (ms) 6.33 ± 0.71 5.65 ± 0.57

Stock
MSE 35.8967 ± 4.9799 32.8325 ± 3.7468 30.0116 ± 2.5311

NCC (%) 99.2006 ± 0.1122 99.2685 ± 0.0942 99.3332 ± 0.0886
CTC (ms) 8.31 ± 1.05 7.28 ± 0.86

Bolt
MSE 449.5107 ± 37.2104 426.5834 ± 28.1695 398.0151 ± 19.3207

NCC (%) 87.6304 ± 0.9843 88.4725 ± 0.8702 89.0087 ± 0.7596
CTC (ms) 4.32 ± 0.58 3.48 ± 0.22

CPS-85-Wages
MSE 23.5167 ± 0.8882 21.7593 ± 0.6251 17.9419 ± 0.3058

NCC (%) 88.4300 ± 0.4704 89.3703 ± 0.4107 91.3259 ± 0.3622
CTC (ms) 7.78 ± 1.24 6.95 ± 1.06
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portions of the data set but incompetent for the rest of the
data. The ALNC method is an instance-varying technique
that concentrates its ensemble capability more on the local
data points. This method can adaptively adjust the fusion
weights, which explores the highest potential of the com-
ponent learners toward precise approximations from one
input instance to another. Thus, the function approximation
or regression task over the entire data set can be split into
several subtasks, in which the fusion strategy can seek for
the most competent local learners. Nevertheless, despite
its effectiveness, the ALNC method has some limitations.
Because the ALNC method is still a supervised learning
technique, the ALNC method is only limited to be suited
for the function approximation and regression applications,
rather than solving prediction or forecast problems, in which
the desired references are not available to optimize the fusion
parameters.

6. Conclusion

The adaptive linear and normalized combination (ALNC)
is able to adaptively combine the component learners with
the optimized fusion weights by solving the constrained
quadratic programming problem. Depending on the perfor-
mance of component learners on a specific input instance,
the ALNC can exclusively select the best component learner
or discard the worse one in the ensemble so as to provide
the best approximation result. The property of instance-
varying fusion weights allows the ALNC method to focus
more on local approximation, although it sometimes leads
to a slightly wrinkled approximated surface output. In
general, the experimental results of low error rate and
high fidelity percentage on the synthetic and benchmark
data sets demonstrated the effectiveness and prominent
advantages of the proposed ALNC method. Furthermore,
the ALNC method is also promising for practical appli-
cations in the fields of pattern recognition, although it is
known that the mean-squared error is not a very suitable
performance measure for classification problems [45]. The
future work could be directed toward an extended ensemble
learning algorithm in accordance with other performance
evaluation criteria, for the design of multiple classifier
systems.
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