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The fractional variational iterationmethod is used to solve the fractional Cauchy problem. Some examples are given to elucidate the
solution procedure and reliability of the obtained results. The variational iteration algorithm leads to exact solutions in the present
study.

1. Introduction

Fractional problems have attracted many scholars’ attention
as the actual problems can be much better simulated by using
the fractional derivatives than by using traditional integral
derivatives [1–6].

In [7], the author gave a very lucid as well as elementary
discussion of the variational iterationmethod.Thevariational
iteration algorithm [7–14] is very simple, with results of high
precision (sometimes exact solutions can be obtained), and is
easy to understand and has been widely applied in various
nonlinear problems. In addition, many authors have made
a great effort to give sophisticated theoretical verification of
the variational iteration method; for example, Odibat [15],
Salkuyeh [16], and Tatari and Dehghan [17] proved that the
variational iteration algorithm leads to convergent results.
Due to its flexibility and ability to solve nonlinear equations
accurately and conveniently, the method has been modified
or improved to solve nonlinear problemsmore efficiently [18–
21]; furthermore the method has been extended to handle
fractional nonlinear models and the fractional variational
iteration method (FVIM) has been presented [22].

Many scholars have applied FVIM to solve linear or
nonlinear fractional order differential equations [23–28]. For
a relatively comprehensive survey on the concepts, theory,
and applications of themethod, readers are referred to review
articles [10, 29].

In [22] the improved VIM is called fractional variational
iteration method and the new Lagrange multiplier is deter-
mined by using the Laplace transformation. In this paper, we
use the fractional variational iteration method to discuss the
fractional-order partial differential equation in the form

𝑢
(𝛼)

𝑡 (𝑥, 𝑡) + 𝑎 (𝑥, 𝑡) 𝑢𝑥 (𝑥, 𝑡) = 𝜙 (𝑥) , 𝑥 ∈ 𝑅, 𝑡 > 0,

(1)

𝑢 (𝑥, 0) = 𝜓 (𝑥) , 𝑥 ∈ 𝑅. (2)

When 𝑎(𝑥, 𝑡) = 𝑎 is a constant and 𝜙(𝑥) = 0, (1) is a linear
equation called the fractional transport equation which can
describe many interesting phenomena such as the spread of
AIDS and the moving of wind. When 𝑎(𝑥, 𝑡) = 𝑢(𝑥, 𝑡), the
equation is called the nefractional inviscid Burgers’ equation
arising in a one-dimensional stream of particles or fluid
having zero viscosity. When 𝛼 = 1, (1) is the equation for
traditional Cauchy problem [30, 31].

2. The Fractional Variational Iteration Method

To discuss the fractional problems, two definitions are intro-
duced.
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Definition 1. The Caputo derivative is given as

𝐶

0𝐷

𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑚 − 𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝑚−𝛼−1

𝑓
(𝑚)

(𝜏) d𝜏,

𝑡 > 𝑎, 𝑚 − 1 < 𝛼 < 𝑚 ∈ 𝑍
+
.

(3)

Definition 2. TheRiemann-Liouville (R-L) integration of𝑓(𝑡)
is defined as

𝐼
𝛼

𝑎,𝑡𝑓 (𝑡) =
1

Γ (𝛼)

∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) d𝜏, 𝛼 > 0. (4)

To illustrate the basic concepts of the fractional varia-
tional iteration method, one considers the following general
nonlinear fractional system:

𝐶

0𝐷
𝛼

𝑡 𝑢 + 𝑅 [𝑢] + 𝑁 [𝑢] = 𝑓 (𝜏) , (5)

where 𝑅[𝑢] is a linear term and 𝑁[𝑢] is a nonlinear one and
𝑓(𝑡) is a known analytic function.

According to the fractional variational iteration method,
a correction functional can be constructed as follows:

𝑢𝑛+1 = 𝑢𝑛

+ ∫

𝑡

0

𝜆 (𝑡, 𝜏) [
𝐶

0𝐷

𝛼

𝑡
𝑢𝑛 + 𝑅 [𝑢𝑛] + 𝑁 [𝑢𝑛] − 𝑓 (𝜏)] d𝜏,

(6)

where 𝜆(𝑡, 𝜏) is a general Lagrange multiplier [7–12], which
can be identified optimally via the variational theory, the
subscript 𝑛 denotes the nth approximation, and 𝑅[𝑢𝑛] and
𝑁[𝑢𝑛] are considered as a restricted variation [7]; that is
𝛿𝑅[𝑢𝑛] = 0, 𝛿𝑁[𝑢𝑛] = 0.

Taking Laplace transform on the correction functional
equation established via the R-L integration,Wu and Baleanu
[22] present a new way to identify the Lagrange multiplier.
The Lagrange multiplier can be identified as

𝜆 (𝑡, 𝜏) =

(−1)
𝛼
(𝜏 − 𝑡)

𝛼−1

Γ (𝛼)

. (7)

The variational iteration formula (6) can be improved as

𝑢𝑛+1 = 𝑢𝑛 + ∫

𝑡

0

(−1)
𝛼
(𝜏 − 𝑡)

𝛼−1

Γ (𝛼)

[
𝐶

0𝐷

𝛼

𝑡
𝑢𝑛 + 𝑅 [𝑢𝑛]

+ 𝑁 [𝑢𝑛] − 𝑓 (𝜏) ] d𝜏.

(8)

The initial guess 𝑢0 can be freely chosen with possible
unknown constants; it can also be solved from its correspond-
ing linear homogeneous equation.

The above iteration formula (8) is also valid for differen-
tial equations when 𝛼 is an arbitrary positive integer.

The fractional variational iteration method can solve
effectively, easily, and accurately a large class of nonlinear
fractional problems with approximations converging rapidly
to the accurate solution.

3. Applications

Since our focus is on the ideas and basic principles, we
will consider only the simplest possible equations to clearly
illustrate the solution procedure. In particular, we will focus
on pure Cauchy problems. These problems are initial value
problems.

According to (8), we can construct a correction functional
to (1) which reads

𝑢𝑛+1 (𝑥, 𝑡) = 𝑢𝑛 (𝑥, 𝑡)

+ ∫

𝑡

0

(−1)
𝛼
(𝜏 − 𝑡)

𝛼−1

Γ (𝛼)

[
𝐶

0𝐷

𝛼

𝑡
𝑢𝑛 (𝑥, 𝜏)

+ 𝑎 (𝑥, 𝜏) 𝑢𝑥 (𝑥, 𝜏)

− 𝜙 (𝑥) ] d𝜏.

(9)

Example 3. Consider the fractional transport equation:

𝑢
(𝛼)

𝑡 (𝑥, 𝑡) + 𝑎𝑢𝑥 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝑅, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑥
2
, 𝑥 ∈ 𝑅.

(10)

According to the iteration formula (8), we can obtain

𝑢𝑛+1 = 𝑢𝑛 − ∫

𝑡

0

(𝜏 − 𝑡)
𝛼

Γ (𝛼)

[𝑢
(𝛼)

𝑛𝜏 (𝑥, 𝜏) + 𝑎𝑢𝑛𝑥 (𝑥, 𝑡)] d𝜏,

𝑥 ∈ 𝑅, 𝑡 > 0.

(11)

The initial iterative value is selected as𝑢0(𝑥, 0) = 𝑢(𝑥, 0) =
𝑥
2 from the given initial condition. Using (10), we obtain the

following successive approximations:

𝑢1 (𝑥, 𝑡) = 𝑥
2
− 2𝑎𝑥

𝑡
𝛼

Γ (𝛼 + 1)

𝑢2 (𝑥, 𝑡) = 𝑥
2
− 2𝑎𝑥

𝑡
𝛼

Γ (𝛼 + 1)

+ 2𝑎
2 𝑡

2𝛼

Γ (2𝛼 + 1)

𝑢3 (𝑥, 𝑡) = 𝑥
2
− 2𝑎𝑥

𝑡
𝛼

Γ (𝛼 + 1)

+ 2𝑎
2 𝑡

2𝛼

Γ (2𝛼 + 1)

...

𝑢𝑛 (𝑥, 𝑡) = 𝑥
2
− 2𝑎𝑥

𝑡
𝛼

Γ (𝛼 + 1)

+ 2𝑎
2 𝑡

2𝛼

Γ (2𝛼 + 1)

.

(12)

So the exact analytical solution is yielded as

𝑢 (𝑥, 𝑡) = 𝑥
2
− 2𝑎𝑥

𝑡
𝛼

Γ (𝛼 + 1)

+ 2𝑎
2 𝑡

2𝛼

Γ (2𝛼 + 1)

.

(13)

Example 4. Consider the fractional nonlinear Cauchy prob-
lem

𝑢
(𝛼)

𝑡 (𝑥, 𝑡) + 𝑥𝑢𝑥 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝑅, 𝑡 > 0

𝑢0 (𝑥, 0) = 𝑢 (𝑥, 0) = 𝑥
2
, 𝑥 ∈ 𝑅.

(14)
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According to the iteration formula (8), we can obtain

𝑢𝑛+1 = 𝑢𝑛 − ∫

𝑡

0

(𝜏 − 𝑡)
𝛼

Γ (𝛼)

[𝑢
(𝛼)

𝑡 (𝑥, 𝑡) + 𝑥𝑢𝑥 (𝑥, 𝑡)] d𝜉,

𝑥 ∈ 𝑅, 𝑡 > 0.

(15)

The initial iterative value is selected as𝑢0(𝑥, 0) = 𝑢(𝑥, 0) =
𝑥
2 from the given initial condition. Using (15), we obtain the

following successive approximations:

𝑢0 (𝑥, 𝑡) = 𝑥
2

𝑢1 (𝑥, 𝑡) = 𝑥
2
− 2𝑥
2 𝑡
𝛼

Γ (𝛼 + 1)

𝑢2 (𝑥, 𝑡) = 𝑥
2
− 2𝑥
2 𝑡
𝛼

Γ (𝛼 + 1)

+ 𝑥
2 (2𝑡

𝛼
)
2

Γ (2𝛼 + 1)

𝑢3 (𝑥, 𝑡) = 𝑥
2
− 2𝑥
2 𝑡
𝛼

Γ (𝛼 + 1)

+ 𝑥
2 (2𝑡

𝛼
)
2

Γ (2𝛼 + 1)

− 𝑥
2 (2𝑡

𝛼
)
3

Γ (3𝛼 + 1)

...

𝑢𝑛 (𝑥, 𝑡) = 𝑥
2
[1 −

2𝑡
𝛼

Γ (𝛼 + 1)

+

(2𝑡
𝛼
)
2

Γ (2𝛼 + 1)

−

(2𝑡
𝛼
)
3

Γ (3𝛼 + 1)

+

(2𝑡
𝛼
)
4

Γ (4𝛼 + 1)

−

(2𝑡
𝛼
)
5

Γ (5𝛼 + 1)

+ ⋅ ⋅ ⋅ ] .

(16)

The VIM admits the use of 𝑢 = lim𝑛→∞𝑢𝑛, which gives the
exact solution

𝑢 (𝑥, 𝑡) = 𝑥
2
𝐸𝛼 (−2𝑡

𝛼
) , (17)

where 𝐸𝛼 is Mittag-Leffler function

𝐸𝛼 (𝑧) =

∞

∑

𝑛=0

𝑧
𝑛

Γ (𝛼𝑛 + 1)

. (18)

Example 5. Consider the following nonhomogeneous frac-
tional Cauchy problem:

𝑢
(𝛼)

𝑡 (𝑥, 𝑡) + 𝑥𝑢𝑥 (𝑥, 𝑡) = 𝑥, 𝑥 ∈ 𝑅, 𝑡 > 0

𝑢 (𝑥, 0) = 𝑒
𝑥
, 𝑥 ∈ 𝑅.

(19)

According to the iteration formula (9), we can obtain

𝑢𝑛+1 = 𝑢𝑛 − ∫

𝑡

0

(𝜏 − 𝑡)
𝛼

Γ (𝛼)

[𝑢
(𝛼)

𝑡 (𝑥, 𝑡) + 𝑥𝑢𝑥 (𝑥, 𝑡) − 𝑥] d𝜉.

(20)

The following successive approximations are obtained by
using (20) with the selected initial value 𝑢0 = 𝑒

𝑥:

𝑢1 (𝑥, 𝑡) = 𝑒
𝑥
+ (𝑥 − 𝑒

𝑥
)

𝑡
𝛼

Γ (𝛼 + 1)

𝑢2 (𝑥, 𝑡) = 𝑥
2
+ (𝑥 − 𝑒

𝑥
)

𝑡
𝛼

Γ (𝛼 + 1)

+ (𝑒
𝑥
− 1)

𝑡
2𝛼

Γ (2𝛼 + 1)

𝑢3 (𝑥, 𝑡) = 𝑥
2
+ (𝑥 − 𝑒

𝑥
)

𝑡
𝛼

Γ (𝛼 + 1)

+ (𝑒
𝑥
− 1)

𝑡
2𝛼

Γ (2𝛼 + 1)

− 𝑒
𝑥 𝑡

3𝛼

Γ (3𝛼 + 1)

...

𝑢𝑛 (𝑥, 𝑡) = [𝑥 −
Γ (𝛼 + 1) 𝑡

𝛼

Γ (2𝛼 + 1)

]

𝑡
𝛼

Γ (𝛼 + 1)

+ 𝑒
𝑥
[1 −

𝑡
𝛼

Γ (𝛼 + 1)

+

𝑡
2𝛼

Γ (2𝛼 + 1)

−

𝑡
3𝛼

Γ (3𝛼 + 1)

+

𝑡
4𝛼

Γ (4𝛼 + 1)

−

𝑡
5𝛼

Γ (5𝛼 + 1)

+ ⋅ ⋅ ⋅ ] .

(21)

By using 𝑢 = lim𝑛→∞𝑢𝑛, the exact solution of the equation is
obtained as

𝑢 (𝑥, 𝑡) = [𝑥 −

Γ (𝛼 + 1) 𝑡
𝛼

Γ (2𝛼 + 1)

]

𝑡
𝛼

Γ (𝛼 + 1)

+ 𝑒
𝑥
𝐸𝛼 (−𝑡

𝛼
) .

(22)

Particularly when 𝛼 = 1, the result in (22) is 𝑢(𝑥, 𝑡) = (𝑥 −

(𝑡/2))𝑡 + 𝑒
𝑥−𝑡, which is the same as that in [30].

Example 6. Consider the fractional inviscid Burgers’ equa-
tion

𝑢
(𝛼)

𝑡 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) 𝑢𝑥 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝑅, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑥, 𝑥 ∈ 𝑅.

(23)

According to the iteration formula (8), we can obtain

𝑢𝑛+1 = 𝑢𝑛 − ∫

𝑡

0

(𝜏 − 𝑡)
𝛼

Γ (𝛼)

[𝑢
(𝛼)

𝑡 (𝑥, 𝜏) + 𝑢 (𝑥, 𝜏) 𝑢𝑥 (𝑥, 𝜏)] d𝜏.

(24)
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Startingwith initial approximation 𝑢0(𝑥, 0) = 𝑢(𝑥, 0) = 𝑥 and
proceeding in a similar way illustrated above, we obtain the
following successive approximations:

𝑢0 (𝑥, 𝑡) = 1 −

𝑡
𝛼

Γ (𝛼 + 1)

𝑢1 (𝑥, 𝑡) = 1−

𝑡
𝛼

Γ (𝛼 + 1)

+2

𝑡
2𝛼

Γ (2𝛼 + 1)

−

Γ (2𝛼 + 1) 𝑡
3𝛼

Γ (3𝛼 + 1) Γ
2
(𝛼 + 1)

𝑢2 (𝑥, 𝑡) = 1 −
𝑡
𝛼

Γ (𝛼 + 1)

+ 2

𝑡
2𝛼

Γ (2𝛼 + 1)

+ 𝑎3

𝑡
3𝛼

Γ (3𝛼 + 1)

+ 𝑎4

𝑡
4𝛼

Γ (4𝛼 + 1)

+ 𝑎5

𝑡
5𝛼

Γ (5𝛼 + 1)

+ 𝑎6

𝑡
6𝛼

Γ (6𝛼 + 1)

+ 𝑎7

𝑡
7𝛼

Γ (7𝛼 + 1)

... ,
(25)

where

𝑎3 = −

4

Γ (1 + 3𝛼)

−

Γ (1 + 2𝛼)

Γ
2
(1 + 𝛼) Γ (1 + 3𝛼)

𝑎4 =
2

𝛼Γ (4𝛼)

+

Γ (2𝛼)

𝛼
2
Γ
2
(𝛼) Γ (4𝛼)

+

3Γ (3𝛼)

2𝛼
2
Γ (𝛼) Γ (2𝛼) Γ (4𝛼)

𝑎5 = −

4Γ (1 + 4𝛼)

Γ
2
(1 + 2𝛼)

−

2Γ (1 + 2𝛼) Γ (1 + 4𝛼)

Γ
3
(1 + 𝛼) Γ (1 + 3𝛼)

𝑎6 =
4Γ (1 + 5𝛼)

Γ
2
(1 + 𝛼) Γ (1 + 3𝛼)

𝑎7 = −

Γ
2
(1 + 2𝛼) Γ (1 + 6𝛼)

Γ
4
(1 + 𝛼) Γ

2
(1 + 3𝛼)

.

(26)

Particularly for the case 𝛼 = 1, the result for 𝑢3 in (23) will be

𝑢3 = 𝑥(1 − 𝑡 + 𝑡
2
− 𝑡
3
+

2

3

𝑡
4
−

2

3

𝑡
5
+

1

9

𝑡
6
−

1

63

𝑡
7
) ,

(27)

which is the same as that in [30].

In order to show the convergence of the iteration solu-
tions, we introduce a function V𝑖(𝑥, 𝑡):

V𝑖 (𝑥, 𝑡) =
𝑢𝑖 (𝑥, 𝑡)

𝑥

. (28)

It can be seen that V𝑖 is a function of 𝑡. When 𝛼 = 1, the
accurate solution of (23) is 𝑢 = 𝑥/(1 + 𝑡); then V = 1/(1 + 𝑡).

Figures 1, 2, and 3 show the curves of V𝑖 (where 𝑖 means
the iteration times) changing with time 𝑡 when 𝛼 = 0.5, 1,
and 1.5. When 𝛼 = 1, the fifth iteration result V5 is almost the
same as the exact solution at 𝑡 ∈ [0, 1]. When 𝛼 = 1.5, the
iteration results converge fast and the fourth iteration result
V4 is almost the same as V5 at 𝑡 ∈ [0, 3].
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Figure 1: V𝑖(𝑡)’s curve changing with time 𝑡 when 𝛼 = 0.5.
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Figure 2: V𝑖(𝑡)’s curve changing with time 𝑡 when 𝛼 = 1.
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Figure 3: V𝑖(𝑡)’s curve changing with time 𝑡 when 𝛼 = 1.5.

4. Conclusions

The variational iteration method has been proved by many
authors to be a powerful mathematical tool for various kinds
of nonlinear problems.

In this paper, we extend the use of fractional variational
iteration method to fractional Cauchy problems and give the
numerical examples. Compared with the classical VIM, the
modified version method is powerful for solving differen-
tial equations with fractional derivatives. The higher order
approximate solutions of the Cauchy equation illustrate the
method’s efficiency and high accuracy.
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