
Research Article
Data Reduction with Quantization Constraints for
Decentralized Estimation in Wireless Sensor Networks

Yang Weng

College of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Correspondence should be addressed to Yang Weng; wengyang@scu.edu.cn

Received 22 August 2013; Revised 15 December 2013; Accepted 19 December 2013; Published 9 January 2014

Academic Editor: Shuli Sun

Copyright © 2014 Yang Weng. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The unknown vector estimation problem with bandwidth constrained wireless sensor network is considered. In such networks,
sensor nodesmake distributed observations on the unknown vector and collaborate with a fusion center to generate a final estimate.
Due to power and communication bandwidth limitations, each sensor nodemust compress its data and transmit to the fusion center.
In this paper, both centralized and decentralized estimation frameworks are developed.The closed-form solution for the centralized
estimation framework is proposed. The computational complexity of decentralized estimation problem is proven to be NP-hard
and a Gauss-Seidel algorithm to search for an optimal solution is also proposed. Simulation results show the good performance of
the proposed algorithms.

1. Introduction

The developments in microelectromechanical systems tech-
nology, wireless communications, and digital electronics have
enabled the deployment of low-cost wireless sensor networks
(WSNs) in large scale using small size sensor nodes [1]. In
such networks, the distributed sensors collaborate with a
fusion center to jointly estimate the unknown parameter. If
fusion center receives all measurement data from all sensors
directly and processes them in real time, the correspond-
ing processing of sensor data is known as the centralized
estimation, which has several serious drawbacks, including
poor survivability and reliability, heavy communications, and
computational burdens. Since all sensors have limited battery
power, their computation and communication capability are
severely limited; the decentralized estimation methods are
widely discussed in recent years [2–6]. In the decentralized
estimation framework, every sensor is also a subprocessor. It
first preprocesses the measurements in terms of a criterion
and then transmits its local compression data to the fusion
center. Upon receiving the sensor messages, the fusion center
combines them according to a fusion rule to generate the
final result. In such networks, less information is transmitted
leading to a significant power-saving advantage which is very
important in the case of WSNs.

To minimize the communication cost, only limited
amount of information is allowed to be transmitted through
networks; dimensionality reduction estimationmethods have
attracted considerable attentions [7–9]. The basic idea of the
dimensionality reduction estimation strategy is to prefilter
the high-dimensional observation vector by a linear transfor-
mation (matrix) to project the observation onto the subspace
spanned by basis vectors and filter the result with a low-rank
estimation. Indeed, dimensionality reduction estimation and
filtering are important for a wide range of signal processing
applications where data reduction, robustness against noise,
and high computational efficiency are desired.

Quantization has been viewed as a fundamental element
in saving bandwidth by reducing the amount of data to
represent a signal and well studied in digital signal processing
and control where a signal with continuous values is quan-
tized due to a finite word-length of microprocessor [10]. In
WSNs, quantization is also necessary to reduce the energy
consumption as communications consume the most energy
as the amount of energy consumed is related to the amount
of data transmitted. An interesting distributed estimation
approach based on the sign of innovation (SOI) has been
developed for dynamic stochastic systems in [11] where only
transmission of innovation of a single bit is required. A
general multiple-level quantized innovation Kalman filter for
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estimation of linear dynamic stochastic systems has been
presented in [12]. The solution to the optimal filter is given in
terms of a simple Riccati recursion as in the standard Kalman
filter. A random field estimation problem with quantized
measurements in sensor networks has been considered in
[13]. In the early work [14], the trade-off between dimension
reduction and quantization in minimummean squared error
estimation problem is investigated.

In this paper, different from the existing work, the
dimensionality reduction and quantization for local data
compression are considered in an integrated way. Data
reduction with quantization constraints estimation for an
unknown vector is formulated as an optimization problem.
Both centralized and decentralized estimation frameworks
are developed. The closed-form solution for the centralized
estimation framework is proposed. By using computational
complexity theory, the intractability of decentralized estima-
tion problem is established. A Gauss-Seidel type iteration
algorithm to search for an optimal solution is also proposed
for the decentralized estimation problem.

The rest of this paper is organized as follows. With given
communication bandwidth, the bits allocation problem has
been formulated as an optimization problem in Section 2.The
closed-form solution for the centralized estimation frame-
work is proposed in Section 3.The computational complexity
of decentralized estimation problem is proved to be NP-
hard and a Gauss-Seidel algorithm to search for an optimal
solution is also proposed in Section 4. Simulation results
are reported in Section 5 to show the performance of our
methods. Concluding remarks are given in Section 6.

2. Problem Formulation

Consider a sensor network deployed with 𝐿 sensor nodes.
Each sensor, say the 𝑖th sensor, can take observation 𝑦

𝑖
∈

R𝑛𝑖 which is correlated with an unknown random parameter
𝑥 ∈ R𝑚. The observations will be transmitted to a fusion
center to estimate the unknown parameter 𝑥 under some
certain criterion. In this paper, we consider the minimum
mean squared error (MMSE) criterion [15, 16].

Through a transform matrix 𝐾
𝑖
∈ R𝑟𝑖×𝑛𝑖 , 𝑟

𝑖
≤ 𝑛
𝑖
, each

sensor transforms the observation into a 𝑟
𝑖
× 1 vector 𝐾

𝑖
𝑦
𝑖
,

whereafter the transformed vector will be quantized into
several bits and transmited to the fusion center. In this paper,
we assume that there is no information exchange among
sensors. We also assume without loss of generality that the
unknown parameter 𝑥 and observations𝑦

𝑖
are zeromean.The

auto- and cross-covariance matrices 𝑅
𝑥𝑥
, 𝑅
𝑥𝑦𝑖
, 𝑅
𝑦𝑖𝑦𝑗

, ∀𝑖, 𝑗 ∈

{1, . . . , 𝐿} are available at the FC.The role of FC is to combine
the received quantization information

{𝑄 (𝐾
1
𝑦
1
) , 𝑄 (𝐾

2
𝑦
2
) , . . . , 𝑄 (𝐾

𝐿
𝑦
𝐿
)} , (1)

according to

𝑥 = 𝑓 (𝑄 (𝐾
1
𝑦
1
) , 𝑄 (𝐾

2
𝑦
2
) , . . . , 𝑄 (𝐾

𝐿
𝑦
𝐿
)) , (2)

where𝑓(⋅) is the fusion function and𝑄(⋅) is a given quantizer.
Our goal is to design the linear transforms {𝐾

1
, . . . , 𝐾

𝐿
} and

the fusion function 𝑓(⋅) such that the mean squared error
(MSE) is as small as possible under the constraint that the
total number of bits can be transmitted to FC. Throughout
this work, we will focus only on the linear design of fusion
function 𝑓(⋅) which can be represented in the form

𝑥 = 𝑓 (𝑄 (𝐾
1
𝑦
1
) , 𝑄 (𝐾

2
𝑦
2
) , . . . , 𝑄 (𝐾

𝐿
𝑦
𝐿
))

=

𝐿

∑

𝑖=1

𝐶
𝑖
𝑄 (𝐾
𝑖
𝑦
𝑖
) .

(3)

The given quantizer 𝑄(⋅) is considered as a minimum
squared error distortion quantizer [17]. We assume that the
quantizer input vector 𝑍 = (𝑧

1
, . . . , 𝑧

𝑟
)
𝑇 is a random vec-

tor with uncorrelated components. Each component has zero
mean and variance 𝜎

2

𝑖
. Under the Gaussian assumption,

the quantizer output 𝑄(𝑍) is treated as a noise source that
introduces independent white noise V as

𝑍 = 𝑄 (𝑍) + V, (4)

whose mean is zero and covariance is [17]

ΣVV = 𝐸 (VV𝑇)

= diag {𝛾2
1
, . . . , 𝛾

2

𝑟
}

= diag {𝜎2
1
2
−2𝐵1 , . . . , 𝜎

2

𝑟
2
−2𝐵𝑟} ,

(5)

where 𝛾2
𝑖
= 𝜎
2

𝑖
2
−2𝐵𝑖 is the squared error distortion for the 𝑖th

component and 𝐵
𝑖
is the bits used by the the 𝑖th component

𝑧
𝑖
.
Therefore, themean squared error at the fusion center can

be calculated as follows:

𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝑄 (𝐾
𝑖
𝑦
𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
(𝐾
𝑖
𝑦
𝑖
− V
𝑖
)
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2

+

𝐿
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2

+

𝐿

∑
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𝑚

∑
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𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝛾
2

𝑖𝑡

= 𝐸
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𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
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𝑖
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𝑖
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2

+

𝐿

∑
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𝑚

∑

𝑠=1
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∑
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𝑐
𝑖
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𝜎
2

𝑖𝑡
2
−2𝐵𝑖𝑡 ,

(6)

where 𝐾
𝑖
is the local linear transform operator, 𝐶

𝑖
= {𝑐
𝑖

𝑠𝑡
}
𝑚×𝑟𝑖

is the fusion operator at the fusion center and 𝐵
𝑖𝑡
is the

quantization bits for the tth elements of vector 𝐾
𝑖
𝑦
𝑖
. The

optimal estimation of random vector 𝑥 under individual sen-
sor bandwidth constraint can be formulated as follows:

minimize 𝐸 (‖𝑥 − 𝑥‖
2
)

subject to
𝐿

∑

𝑖=1

𝑟𝑖

∑

𝑡=1

𝐵
𝑖𝑡
≤ 𝐵, 𝐶

𝑖
∈ R
𝑚×𝑟𝑖 , 𝐾

𝑖
∈ R
𝑟𝑖×𝑛𝑖 .

(7)
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By appropriate pre- and postwhitening process if neces-
sary, we assume without loss of generality that the auto- and
cross-covariance matrices 𝑅

𝑥𝑥
, 𝑅
𝑥𝑦𝑖
, 𝑅
𝑦𝑖𝑦𝑗

, ∀ 𝑖, 𝑗 ∈ {1, . . . , 𝐿}

have full rank and the elements of observation vector taken
by each sensor are uncorrelated [18].

3. Centralized Data Reduction with
Quantization Constraints

In this section, we consider a simple centralized framework
where the entire data is available at a single sensor node
and the centralized case of optimization problem (7) can be
simplified as follows:

minimize 𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩𝑥 − 𝐾 (𝑟) 𝑦
󵄩󵄩󵄩󵄩

2
+

𝑟

∑

𝑖=1

𝜎
2

𝑖
2
−2𝐵𝑖

subject to
𝑟

∑

𝑖=1

𝐵
𝑖
≤ 𝐵, 𝐾 (𝑟) ∈ R

𝑚×𝑛
,

(8)

where𝐾(𝑟) is the approximationmatrix and B is the total bits
to be transmitted.

The optimal estimation without observation compression
in the MMSE sense is as follows:

𝑥 = 𝑅
𝑥𝑦
𝑅
−1

𝑦𝑦
𝑦 = 𝐾𝑦, (9)

with estimation error covariance matrix

𝑃 = 𝑅
𝑥𝑥

− 𝑅
𝑥𝑦
𝑅
−1

𝑦𝑦
𝑅
𝑦𝑥
, (10)

where 𝐾 is called optimal estimation matrix. We write for-
mula (9) as a linear model by introducing an estimation error
𝑒 as

𝑥 = 𝑥 + 𝑒 = 𝑅
𝑥𝑦
𝑅
−1

𝑦𝑦
𝑦 + 𝑒. (11)

We consider the problem that the optimal estimation
matrix 𝐾 is replaced by an approximating matrix 𝐾(𝑟) with
lower rank 𝑟 < 𝑛. With a given compressed dimension 𝑟, we
want to find an optimal𝐾(𝑟) such that the MMSE is as small
as possible. The linear model (11) is modified as

𝑥 = 𝑥 (𝑟) + 𝑒 (𝑟) = 𝐾 (𝑟) 𝑦 + 𝑒 (𝑟) . (12)

The estimation error covariance matrix can be calculated as
follows:

𝑃 (𝑟) = 𝐸 (𝑒 (𝑟) 𝑒(𝑟)
𝑇
)

= 𝐸 ((𝑒 + 𝐾𝑦 − 𝐾 (𝑟) 𝑦) (𝑒 + 𝐾𝑦 − 𝐾 (𝑟) 𝑦)
𝑇
)

= 𝑃 + (𝐾 − 𝐾 (𝑟)) 𝑅𝑦𝑦(𝐾 − 𝐾 (𝑟))
𝑇
.

(13)

Therefore, the approximationmatrix𝐾(𝑟) introduces an extra
variance term

𝜀
2
= tr [(𝐾 − 𝐾 (𝑟)) 𝑅𝑦𝑦(𝐾 − 𝐾 (𝑟))

𝑇
]

= tr [(𝐾𝑅1/2
𝑦𝑦

− 𝐾 (𝑟) 𝑅
1/2

𝑦𝑦
) (𝐾𝑅

1/2

𝑦𝑦
− 𝐾 (𝑟) 𝑅

1/2

𝑦𝑦
)
𝑇

] .

(14)

The matrix𝐾𝑅1/2
𝑦𝑦

= 𝑅
𝑥𝑦
𝑅
−1/2

𝑦𝑦
has an SVD of the form

𝐾𝑅
1/2

𝑦𝑦
= 𝑈Σ𝑉

𝑇
. (15)

By minimizing 𝜀
2, it is not hard to show that the best

approximation matrix is

𝐾 (𝑟) = 𝑈Σ (𝑟) 𝑉
𝑇
𝑅
1/2

𝑦𝑦
. (16)

The extra variance is then

𝜀
2
=

𝑚

∑

𝑖=𝑟+1

𝜆
2

𝑖
, (17)

where 𝜆
𝑟+1

, . . . , 𝜆
𝑚
are the smallest 𝑚 − 𝑟 singular values of

𝐾𝑅
1/2

𝑦𝑦
.

Therefore the optimization problem (18) is as follows:

minimize
𝑚

∑

𝑖=𝑟+1

𝜆
2

𝑖
+

𝑟

∑

𝑖=1

𝜎
2

𝑖
2
−2𝐵𝑖

subject to
𝑟

∑

𝑖=1

𝐵
𝑖
≤ 𝐵, 𝑟.

(18)

If 𝑟 is given, we can solve this optimization problem by a
Laplacian multiplier [19].

4. Decentralized Data Reduction with
Quantization Constraints

Let us now consider the estimation framework in a multisen-
sor setup, under a total available rate𝐵which has to be shared
among all sensors. In the decentralizedmanner, the 𝑖th sensor
transforms the observation 𝑦

𝑖
∈ R𝑛𝑖 into a 𝑟

𝑖
× 1 vector 𝐾

𝑖
𝑦
𝑖

through a transform matrix 𝐾
𝑖
∈ R𝑟𝑖×𝑛𝑖 , 𝑟

𝑖
≤ 𝑛
𝑖
, whereafter

the transformed vector will be quantized into several bits and
transmited to the fusion center. By the linear fusion rule at
the fusion center, the mean squared error at the fusion center
can be calculated as follows:

𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝑄 (𝐾
𝑖
𝑦
𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝑚

∑

𝑠=1

𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝜎
2

𝑖𝑡
2
−2𝐵𝑖𝑡 ,

(19)

where 𝐾
𝑖
is the local linear transform operator, 𝐶

𝑖
= {𝑐
𝑖

𝑠𝑡
}
𝑚×𝑟𝑖

is the fusion operator at the fusion center and 𝐵
𝑖𝑡
is the

quantization bits for the tth elements of vector 𝐾
𝑖
𝑦
𝑖
. There-

fore, the decentralized estimation of random vector 𝑥 under
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individual sensor bandwidth constraint can be formulated as
follows:

minimize 𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝑚

∑

𝑠=1

𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝜎
2

𝑖𝑡
2
−2𝐵𝑖𝑡

subject to
𝐿

∑

𝑖=1

𝑟𝑖

∑

𝑡=1

𝐵
𝑖𝑡
≤ 𝐵, 𝐶

𝑖
∈ R
𝑚×𝑟𝑖 , 𝐾

𝑖
∈ R
𝑟𝑖×𝑛𝑖 .

(20)

Theorem 1. The computational complexity of solving problem
(20) is NP-hard even in the case with absence of channel
distortions for quantization of each sensor.

Proof. We present the simplified formulations to analyze the
computation complexity of problem (7). Let the 𝐿 distributed
sensor nodes make observations on a common random
parameter vector 𝑥 ∈ R𝑚 according to

𝑦
𝑖
= 𝐻
𝑖
𝑥 + V
𝑖
, 𝑖 = 1, 2, . . . , 𝐿, (21)

where 𝐻
𝑖

∈ R𝑚𝑖×𝑚 is the observation matrix and V
𝑖

∈

R𝑚𝑖 is the additive noise which is zero mean and spatially
uncorrelated. According to [18], we can assume that the sen-
sor noises are uncorrelated with the input signal 𝑥. Without
loss of generality, we can assume that the unknown para-
meter vector 𝑥 has an autocovariance matrix 𝑅

𝑥𝑥
= 𝐼
𝑚
and

the noise covariance matrix is 𝑅V𝑖 = 𝐼
𝑚𝑖
.

The MSE at the FC can be calculated as follows:

𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝑄 (𝐾
𝑖
𝑦
𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝑚

∑

𝑠=1

𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝜎
2

𝑖𝑡
2
−2𝐵𝑖𝑡 .

(22)

In the absence of channel distortions, the MSE at the FC can
be simplified as

𝐸 (‖𝑥 − 𝑥‖
2
) = 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝑄 (𝐾
𝑖
𝑦
𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
(𝐾
𝑖
𝑦
𝑖
− V
𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝐸
󵄩󵄩󵄩󵄩𝐶𝑖V𝑖

󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

𝐿

∑

𝑖=1

𝑚

∑

𝑠=1

𝑟𝑖

∑

𝑡=1

𝑐
𝑖

𝑠𝑡
𝛾
2

𝑖𝑡

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
(𝐻
𝑖
𝑥 + V
𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝐸(𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
(𝐻
𝑖
𝑥 + V
𝑖
))

𝑇

× (𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
(𝐻
𝑖
𝑥 + V
𝑖
))

= Tr(𝐸(𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
(𝐻
𝑖
𝑥 + V
𝑖
))

× (𝑥 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
(𝐻
𝑖
𝑥 + V
𝑖
))

𝑇

)

= Tr[(𝐼
𝑚
−

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝐻
𝑖
)𝐸(𝑥𝑥

𝑇
)

× (𝐼
𝑚
−

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝐻
𝑖
)

𝑇

+

𝐿

∑

𝑖=1

(𝐶
𝑖
𝐾
𝑖
𝐸 (V
𝑖
V𝑇
𝑖
)𝐾
𝑇

𝑖
𝐶
𝑇

𝑖
)]

= Tr[

[

(𝐼
𝑚
−

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝐻
𝑖
)(𝐼
𝑚
−

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝐻
𝑖
)

𝑇

+

𝐿

∑

𝑖=1

(𝐶
𝑖
𝐾
𝑖
𝐾
𝑇

𝑖
𝐶
𝑇

𝑖
)]

]

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐼
𝑚
−

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝐻
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

+

𝐿

∑

𝑖=1

Tr (𝐶
𝑖
𝐾
𝑖
𝐾
𝑇

𝑖
𝐶
𝑇

𝑖
) ,

(23)

where the last step follows from the independence assump-
tions and the fact that the autocovariance of 𝑥 and V

𝑖
is

normalized to 𝐼
𝑚

and 𝐼
𝑚𝑖
, respectively; the notation Tr(⋅)

denotes the trace of a matrix, and the subscript 𝐹 denotes
the usual Frobenius norm of a matrix. Therefore, the optimal
linear DES design problem under individual sensor power
constraint can be formulated as follows:

minimize 𝐸‖𝑥 − 𝑥‖
2
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐼 −

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝐻
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

+

𝐿

∑

𝑖=1

Tr (𝐶
𝑖
𝐾
𝑖
𝐾
𝑇

𝑖
𝐶
𝑇

𝑖
)

subject to
𝐿

∑

𝑖=1

Tr (𝐾
𝑖
𝐾
𝑇

𝑖
) ≤ 𝑘, 𝐶

𝑖
∈ R
𝑚×𝑟𝑖 ,

𝐾
𝑖
∈ R
𝑟𝑖×𝑛𝑖 ,

(24)

where 𝑘 is the total rate constraint since the transmission
power for sensor 𝑖 to send 𝐾

𝑖
𝑦
𝑖
to fusion center is linearly

proportional to Tr(𝐾
𝑖
𝐾
𝑇

𝑖
).
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From (23), the MSE at the FC can be written as

𝐸 (‖𝑥 − 𝑥‖
2
)

= Tr[

[

(𝐼
𝑚
−

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝐻
𝑖
)(𝐼
𝑚
−

𝐿

∑

𝑖=1

𝐶
𝑖
𝐾
𝑖
𝐻
𝑖
)

𝑇

+

𝐿

∑

𝑖=1

(𝐶
𝑇

𝑖
𝐾
𝑇

𝑖
𝐾
𝑖
𝐶
𝑖
)]

]

.

(25)

Following the fact of matrix derivatives of traces [20],

𝜕

𝜕𝑋
Tr (𝑋𝐴) = 𝐴

𝑇
,

𝜕

𝜕𝑋
Tr (𝑋𝑇𝐵𝑋) = 𝐵𝑋 + 𝐵

𝑇
𝑋,

(26)

we can eliminate variables {𝐶
𝑖
} byminimizing𝐸‖𝑥 − 𝑥‖

2 with
respect to {𝐶

𝑖
}. As a result, the optimization problem (24) is

equivalent to

minimize Tr(𝐼 +
𝐿

∑

𝑖=1

𝐻
𝑇

𝑖
𝐾
𝑇

𝑖
(𝐾
𝑇

𝑖
𝐾
𝑖
)
−1

𝐾
𝑖
𝐻
𝑖
)

−1

subject to
𝐿

∑

𝑖=1

Tr (𝐾
𝑖
𝐾
𝑇

𝑖
) ≤ 𝑘, 𝐾

𝑖
∈ R
𝑟𝑖×𝑛𝑖 .

(27)

When𝐾
𝑖
is a vector, problem (27) is equivalent to “minimum

sum of squares” problem which is NP-complete [21].
Therefore, the computational complexity of solving prob-

lem (20) is NP-hard even in the case with absence of channel
distortions for quantization of each sensor.

Remark 2. The NP-completeness of optimization problem
(20) leads to the intractability of finding the globally optimal
solution in polynomial time. Instead of finding a globally
optimal solution, a locally optimal solution may be sufficient
in many applications. An effective heuristic algorithm should
be proposed to search for the optimal solution of optimiza-
tion problem (20).

An algorithm that could be used to search for the optimal
solution is the Gauss-Seidel type iteration algorithm which
may converge to a locally optimal solution and widely used in
estimation, detection, and classificationwith sensor networks
[22–27]. In this paper, a Gauss-Seidel type iteration algorithm
is proposed to search the optimal solution for that problem
sensor by sensor.

Suppose that all sensor nodes except node 𝑗 have fixed
transformation matrix 𝐾

𝑙
, 𝑙 ̸= 𝑗, 𝑙 = 1, . . . , 𝐿. The goal is

to determine the optimal 𝐾
𝑗
. From the perspective of a

selected node 𝑗, suppose that all other nodes have decided on
(arbitrary) suitable approximations of their observations, and
the question becomes to optimally choose the approximation
to be provided by terminal 𝑗, where we without loss of
generality set 𝑗 = 1. Observations taken by sensor node 1
are denoted by 𝑦

1
. The remaining observations which may

be thought of as being merged into one node are denoted by
𝑦
2
. In line with this, we can partition the covariance matrix

of the entire vector into four parts, according to

𝑅
𝑦
= (

𝑅
𝑦1

𝑅
𝑦1𝑦2

𝑅
𝑦2𝑦1

𝑅
𝑦2

) . (28)

Denoting 𝜉 = 𝑥 − 𝐶
1
𝐾
1
𝑦
1
, 𝜂 = 𝐾

2
𝑦
2
, the distortion by

dimension reduction is

𝐸‖𝑥 − 𝑥‖
2
= 𝐸

󵄩󵄩󵄩󵄩𝑥 − (𝐶
1
𝐾
1
𝑦
1
+ 𝐶
2
𝐾
2
𝑦
2
)
󵄩󵄩󵄩󵄩

2
= 𝐸

󵄩󵄩󵄩󵄩𝜉 − 𝐶
2
𝜂
󵄩󵄩󵄩󵄩

2
.

(29)

The optimal estimation matrix is

𝐶
2
= 𝑅
𝜉𝜂
𝑅
−1

𝜂

= 𝐸 [(𝑥 − 𝐶
1
𝐾
1
𝑦
1
) (𝐾
2
𝑦
2
)
𝑇
] (𝐸 (𝐾

2
𝑦
2
) (𝐾
2
𝑦
2
)
𝑇
)
−1

= (𝑅
𝑥𝑦2

𝐾
𝑇

2
− 𝐶
1
𝐾
1
𝑅
𝑦1𝑦2

𝐾
𝑇

2
) (𝐾
2
𝑅
𝑦2
𝐾
𝑇

2
)
−1

𝐾
2
𝑦
2
.

(30)

Take (30) into (29) as

𝐸‖𝑥 − 𝑥‖
2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝐶

1
𝐾
1
𝑦
1
− (𝑅
𝑥𝑦2

𝐾
𝑇

2
− 𝐶
1
𝐾
1
𝑅
𝑦1𝑦2

𝐾
𝑇

2
)

×(𝐾
2
𝑅
𝑦2
𝐾
𝑇

2
)
−1

𝐾
2
𝑦
2

󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜁 − 𝐶

1
𝐾
1
]󵄩󵄩󵄩󵄩
2
.

(31)

Denote

𝜁 = 𝑥 − 𝑅
𝑥𝑦2

𝐾
𝑇

2
(𝐾
2
𝑅
𝑦2
𝐾
𝑇

2
)
−1

𝐾
2
𝑦
2
,

] = 𝑦
1
− 𝑅
𝑦1𝑦2

𝐾
𝑇

2
(𝐾
2
𝑅
𝑦2
𝐾
𝑇

2
)
−1

𝐾
2
𝑦
2
.

(32)

Equation (31) is simplified as

𝐸‖𝑥 − 𝑥‖
2
=
󵄩󵄩󵄩󵄩𝜁 − 𝐶

1
𝐾
1
]󵄩󵄩󵄩󵄩
2
. (33)

Obviously, the optimal solution of sensor by sensor optimiza-
tion problem can be solved because the question has been
reduced to that in the centralized case. Based on the previous
analysis, it is easy to construct a Gauss-Seidel type iteration
algorithm to search for an optimal solution of optimization
problem (20). We omit it here.

5. Simulations

In this section, we implement several simulations to show the
performance of our proposed method. Both centralized and
decentralized estimation frameworks are considered.

5.1. Centralized Estimation Framework. In centralized esti-
mation framework, entire data is available at a single sensor
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Figure 1: Estimation performance for centralized estimation with
different bandwidth constraints.

and the observation data compression is needed in order to
reduce communication requirement. Consider a linearmodel

𝑦 = 𝐻𝑥 + 𝜀, 𝐻 ∈ R
𝑛×𝑚

, (34)

where 𝐻 ∈ R𝑛×𝑚 and 𝜀 is a white noise with covariance
matrix Σ

𝜀
= 𝜎
2
𝐼. In addition, 𝑥 and 𝜀 are uncorrelated. In

simulation, we set 𝑛 = 50, 𝑚 = 10, 𝜎2 = 1, and Σ
𝑥

=

𝑅𝑅
𝑇, where 𝑅 is drawn from a standard normal distribu-

tion. The estimation performance for centralized estimation
framework with different bandwidth constraints is shown
in Figure 1. The bottom solid line is the Cramer-Rao lower
bound (CRLB). The dimension reduction and quantization
lead to the gap between the centralized estimation curve and
CRLB.

We plot the estimation performance for different reduced
dimensions in Figure 2. Three cases of bandwidth constraint
are considered (𝐵 = 20, 25, 30). The bottom solid line is
the CRLB. The blue line with circle is the MSE for the
data only with dimension reduction. When quantization is
implemented after dimension reduction, the optimal strategy
allocates the bandwidth to the most important dimension.
Do not waste the bandwidth on the less important dimension
which would leads to bad performance.

The comparison of estimation performance for different
signal-to-noise ratios (SNR) is shown in Figure 4.The SNR is
defined as

SNR =

Tr (𝐻Σ
𝑦
𝐻
𝑇
)

𝑛𝜎2
. (35)

1 2 3 4 5 6 7 8 9 10
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Figure 2: Comparison of estimation performance with different
reduced dimensions.

5.2. Decentralized Estimation Framework. In decentralized
estimation framework, the distributed sensors collaborate
with a fusion center to jointly estimate the parameter 𝑠. Since
all sensors have limited battery power, their computation
and communication capability are severely limited. As a
result, local data compression is needed in order to reduce
communication requirement.

Let the 3 distributed sensor nodes make observations on
a common random parameter vector 𝑥 ∈ R𝑚 according to

𝑦
𝑖
= 𝐻
𝑖
𝑥 + V
𝑖
, 𝑖 = 1, 2, 3, (36)

where 𝐻
𝑖
∈ R𝑚𝑖×𝑚 is the observation matrix and V

𝑖
∈ R𝑚𝑖

is the additive noise which is zero mean and spatially unco-
rrelated. In addition, 𝑥 and V

𝑖
are uncorrelated. In simulation,

we set 𝑚
𝑖
= 15, 𝑚 = 10, 𝜎2 = 1, and Σ

𝑥
= 𝑅𝑅
𝑇, where 𝑅 is

drawn from a standard normal distribution.
The comparison of centralized and decentralized estima-

tion performance is shown in Figure 3. The bottom solid line
is the CRLB.The estimation for centralized and decentralized
framework are plotted in red dash line with circle and blue
dot line with square for different bandwidth constraints,
respectively. The decentralized estimation performance is
slightly worse than the centralized estimation since the
Gauss-Seidel method cannot guarantee the optimal solution
[22].

6. Conclusion

In this paper, we have considered a bandwidth constrained
sensor network in which a set of distributed sensors and
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Figure 3: Comparison of estimation performance with different
SNR.
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Figure 4: Comparison of estimation performance for centralized
and decentralized framework.

a fusion center collaborate to estimate an unknown vector.
With given communication bandwidth, the bits allocation
problem has been formulated as an optimization prob-
lem. Both centralized and decentralized estimation frame-
works have been developed. The closed-form solution for
the centralized estimation framework has been proposed.

The computational complexity of decentralized estimation
problem has been proved to be NP-hard and a Gauss-Seidel
type iteration algorithm to search for an optimal solution
has been also proposed. Simulation results show the good
performance of the proposed algorithms.
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