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A class of delayed cellular neural networks (DCNNs) with impulses on time scales is considered. By using the topological degree
theory, and the time scale calculus theory some sufficient conditions are derived to ensure the existence, uniqueness, and global
exponential stability of equilibria for this class of neural networks. Finally, a numerical example illustrates the feasibility of our
results and also shows that the continuous-time neural network and the discrete-time analogue have the same dynamical behaviors.
The results of this paper are completely new and complementary to the previously known results.

1. Introduction

Chua and Yang [1] proposed a novel class of information-
processing systems called cellular neural networks (CNNs)
in 1988. The CNNs can be applied in signal processing and
can also be used to solve some image processing and pattern
recognition problems [2]. Since time delays are unavoidable
due to finite switching speeds of the amplifiers, delayed
cellular neural networks (DCNNs) have been widely studied
and successfully applied to pattern recognition, associative
memories, and signal processing and optimization, especially
in image processing. The dynamic behavior of the networks
plays an important role in such applications [3–8].Therefore,
there are many works on the stability of equilibrium point of
delayed cellular neural networks (DCNNs) [5–13].

Most neural networks can be classified into two types:
continuous or discrete. However, many real-world systems
and natural processes cannot be categorized into one of
them. They display characteristics of both continuous and
discrete styles. For instance, some biological neural networks
in biology, bursting rhythmmodels in pathology, and optimal
control models in economics are characterized by abrupt
changes of state.These are the familiar impulsive phenomena.
Other examples can also be found in information science,

electronics, automatic control systems, computer network-
ing, artificial intelligence, robotics, telecommunications, and
so forth. Such a kind of phenomena, in which sudden
and sharp changes often occur in a continuous process,
cannot be well described by pure continuous or pure discrete
models. Therefore, it is important and, in effect, necessary
to study a new type of neural networks—impulsive neural
networks—as an appropriate description of these phenom-
ena of abrupt qualitative dynamical changes of essentially
continuous systems. The fundamental theory of impulsive
differential equations has been developed in [14]. Since delays
and impulses can affect the dynamical behaviors of the
system, it is necessary to investigate both delay and impulsive
effects on the stability of neural networks. For more details,
one can refer to [10, 13, 15–23].

The theory of time scale was initiated by Hilger in
1988, which has recently received a lot of attention [24–
26]. The field of dynamic equations on time scale contains
links and extends the classical theory of differential and
difference equations. It is well known that both continuous
and discrete systems are very important in implementation
and applications (see [27–30]). But it is troublesome to study
the stability for continuous and discrete systems, respectively.
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Therefore, it is significant to study that on time scales which
can unify the continuous and discrete situations [21, 31–40].

Motivated by above, in this paper, we are concerned with
the following impulsive DCNN on time scales:
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𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (
𝑡))

+
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,

𝑡 ∈ T
+

0
, 𝑡 ̸= 𝑡

𝑘
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𝑥
𝑖
(𝑡
+

𝑘
) = 𝑥
𝑖
(𝑡
−

𝑘
) + 𝑃
𝑖
(𝑥
𝑖
(𝑡
−

𝑘
)) ,

𝑘 = 1, 2, . . . , 𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑛 corresponds to the numbers of units in a neural
network;𝑥

𝑖
(𝑡) corresponds to the state of the 𝑖th unit at time 𝑡;

𝑓
𝑗
(𝑥
𝑗
(𝑡)) denotes the output of the 𝑗th unit at time 𝑡. T+

0
is the

T-interval {𝑡 ∈ T , 𝑡 ≥ 0}, and T denotes a time scale, which
is an arbitrary nonempty closed subset of the real number R
and with bounded graininess 𝜇. For the simplicity, we assume
that 0 ∈ T and T is unbounded above; that is, sup T = +∞.
Further, 𝑏

𝑖𝑗
, 𝑐
𝑖𝑗
, 𝑎
𝑖
, and 𝐼

𝑖
are constants. 𝑏

𝑖𝑗
, 𝑐
𝑖𝑗
denote the

strength of the 𝑗th unit at time 𝑡 and 𝜁
𝑖𝑗
(𝑡, 𝑥
𝑗
(𝑡)), respectively.

𝐼
𝑖
denotes the external bias on the 𝑖th unit and 𝑎

𝑖
represents

the rate with which the 𝑖th unit will reset its potential to the
resting state in isolationwhendisconnected from the network
and external inputs. 𝑡

𝑘
, 𝑘 = 1, 2, . . . are the moments of

impulsive perturbations and satisfy 0 = 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅

and lim
𝑘→∞

= ∞, 𝜇(𝑡
𝑘
) = 0 (see Definition 3). 𝑃

𝑖
(𝑥
𝑖
(𝑡
𝑘
))

represents the abrupt change of the state 𝑥
𝑖
(𝑡) at the impulsive

moment 𝑡
𝑘
. To the best of our knowledge, this is first paper to

study DCNNs with impulses on time scales.
Throughout this paper, we assume that𝑥

𝑖
(𝑡
𝑘
) ≡ 𝑥
𝑖
(𝑡
−

𝑘
) and

(H1) functions 𝜁
𝑖𝑗
satisfy 𝜁

𝑖𝑗
: T × R → T for all 𝑡 ∈ T ,

𝑖, 𝑗 = 1, 2, . . . , 𝑛;
(H2) 𝑓

𝑗
∈ 𝐶(R,R) (𝑖 = 1, 2, . . . , 𝑛) and there exists a

positive number 𝐹
𝑖
such that |𝑓

𝑖
(𝑥)−𝑓

𝑖
(𝑦)| ≤ 𝐹

𝑖
|𝑥−𝑦|

for all 𝑥, 𝑦 ∈ R, 𝑖 = 1, 2, . . . , 𝑛.

Remark 1. The neural network (1) is a system of differential
equations with state-dependent deviating arguments and
from (H1), one can see that deviating arguments in (1) may
be delayed type, advanced type, or mixed type.

Our main purpose of this paper is to study the existence
and global exponential stability of the equilibria of (1) by
using the topological degree theory and the time scale
calculus theory. The results of this paper are completely new
and complementary to the previously known results.

The organization of this paper is as follows. In the
next section, some notations, definitions, and lemmas are
presented. Section 3 addresses the existence and uniqueness
of equilibria of system (1) by using the method of topological
degree theory. In Section 4, we give the criteria of global
exponential stability of the equilibrium point of system (1).
In Section 5, an example is also provided to illustrate the
effectiveness of the main results in Sections 3 and 4.

2. Notations and Preliminaries

In this section, we will first recall some basic definitions and
lemmas which will be useful for the proof of ourmain results.

Definition 2 (see [33, 34]). A time scale T is arbitrary
nonempty closed subset of the real set R with the topology
and ordering inherited from R.

Definition 3 (see [33, 34]). On any time scale T , we define the
forward and backward jump operators by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} , 𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} .

(2)

A point 𝑡 is said to be left-dense if 𝑡 > inf T and𝜌(𝑡) = 𝑡, right-
dense if 𝑡 < sup T and 𝜎(𝑡) = 𝑡, left-scattered if 𝜌(𝑡) < 𝑡, and
right-scattered if𝜎(𝑡) > 𝑡.The graininess function𝜇 for a time
scale T is defined by 𝜇(𝑡) := 𝜎(𝑡) − 𝑡. If T has a left-scattered
maximum 𝑚, then we defined T𝑘 to be T \ {𝑚}. Otherwise,
T𝑘 = T .

Definition 4 (see [33, 34]). For a function 𝑓 : T → R (the
range R of 𝑓may be actually replaced by Banach space), the
(delta) derivative is defined by

𝑓
Δ
=

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑡)

𝜎 (𝑡) − 𝑡

(3)

if 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered. If 𝑡 is not right-
scattered, then the derivative is defined by

𝑓
Δ
= lim
𝑠→ 𝑡,𝑠∈T

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠)

𝜎 (𝑡) − 𝑠

= lim
𝑠→ 𝑡,𝑠∈T

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠

, (4)

provided this limit exists.

Lemma 5 (see [33, 34]). If 𝑓, 𝑔 are differential at 𝑡 ∈ T , one
has

(1) 𝑓(𝜎(𝑡)) = 𝑓(𝑡) + 𝜇(𝑡)𝑓
Δ
(𝑡);

(2) (𝑓𝑔)Δ(𝑡) = 𝑓
Δ
(𝑡)𝑔(𝑡) + 𝑓(𝜎(𝑡))𝑔

Δ
(𝑡).

Definition 6 (see [33, 34]). A function 𝐹 : T𝑘 → R is called
a delta-antiderivative of 𝑓 : T → R provided 𝐹Δ = 𝑓 holds
for all 𝑡 ∈ T𝑘. In this case, we define the integral of 𝑓 by

∫

𝑡

𝑎

𝑓 (𝑠) Δ𝑠 = 𝐹 (𝑡) − 𝐹 (𝑎) for 𝑡 ∈ T , (5)

and we have the following formula:

∫

𝜎(𝑡)

𝑡

𝑓 (𝑠) Δ𝑠 = 𝜇 (𝑡) 𝑓 (𝑡) for 𝑡 ∈ T
𝑘
. (6)

Definition 7 (see [33, 34]). A function 𝑓 : T → R is
called right-dense continuous (rd-continuous) provided it is
continuous at right-dense points of T and the left-sided limit
exists (finite) at left-dense point of T .The set of all right-dense
continuous functions on T is defined by 𝐶rd = 𝐶rd(T) =

𝐶rd(T ,R). If 𝑓 is continuous at each right-dense point and
each left-dense point, then𝑓 is said to be continuous function
on T . We define 𝐶(𝐽,R) = {𝑓(𝑡) is continuous on 𝐽}.
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Lemma 8 (see [33, 34]). If 𝑎, 𝑏 ∈ T , 𝛼, 𝛽 ∈ R and 𝑓, 𝑔 ∈

𝐶(T ,R), then one has

(1) ∫𝑏
𝑎
[𝛼𝑓(𝑡) + 𝛽𝑔(𝑡)]Δ𝑡 = 𝛼 ∫

𝑏

𝑎
𝑓(𝑡)Δ𝑡 + 𝛽∫

𝑏

𝑎
𝑔(𝑡)Δ𝑡;

(2) if 𝑓(𝑡) ≥ 0 for all 𝑎 ≤ 𝑡 < 𝑏, then ∫𝑏
𝑎
𝑓(𝑡)Δ𝑡 ≥ 0;

(3) if |𝑓(𝑡)| ≤ 𝑔(𝑡) on [𝑎, 𝑏) := {𝑡 ∈ T : 𝑎 ≤ 𝑡 < 𝑏}, then
| ∫

𝑏

𝑎
𝑓(𝑡)Δ𝑡| ≤ ∫

𝑏

𝑎
𝑔(𝑡)Δ𝑡.

Definition 9 (see [33, 34]). A function 𝑝 : T → R is called
regressive if 1 + 𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T . If 𝑝 is regressive
function, then the generalized exponential function 𝑒

𝑝
is

defined by

𝑒
𝑝 (
𝑡, 𝑠) = exp{∫

𝑡

𝑠

𝜉
𝜇(𝜏) (

𝑟 (𝜏)) Δ𝜏} , for 𝑠, 𝑡 ∈ T , (7)

with the cylinder transformation

𝜉
ℎ (
𝑧) =

{

{

{

log (1 + ℎ𝑧)
ℎ

, if ℎ ̸= 0,

𝑧, if ℎ = 0.

(8)

Let 𝑝, 𝑞 : T → R be two regressive functions; we define

𝑝 ⊕ 𝑞 := 𝑝 + 𝑞 + 𝜇𝑝𝑞, ⊖𝑝 := −

𝑝

1 + 𝜇𝑝

,

𝑝 ⊖ 𝑞 := 𝑝 ⊕ (⊖𝑞) .

(9)

Then, the generalized exponential function has the following
properties.

Lemma 10 (see [33, 34]). Assume that 𝑝, 𝑞 : T → R are two
regressive functions; then

(1) 𝑒
0
(𝑡, 𝑠) ≡ 1 and 𝑒

𝑝
(𝑡, 𝑡) ≡ 1;

(2) 𝑒
𝑝
(𝜎(𝑡), 𝑠) = (1 + 𝜇(𝑡)𝑝(𝑡))𝑒

𝑝
(𝑡, 𝑠);

(3) 𝑒
𝑝
(𝑡, 𝜎(𝑠)) = 𝑒

𝑝
(𝑡, 𝑠)/(1 + 𝜇(𝑠)𝑝(𝑠));

(4) 1/𝑒
𝑝
(𝑡, 𝑠) = 𝑒

⊖𝑝
(𝑡, 𝑠);

(5) 𝑒
𝑝
(𝑡, 𝑠) = 1/𝑒

𝑝
(𝑠, 𝑡) = 𝑒

⊖𝑝
(𝑠, 𝑡);

(6) 𝑒
𝑝
(𝑡, 𝑠)𝑒
𝑝
(𝑠, 𝑟) = 𝑒

𝑝
(𝑡, 𝑟);

(7) 𝑒
𝑝
(𝑡, 𝑠)𝑒
𝑞
(𝑡, 𝑠) = 𝑒

𝑝⊕𝑞
(𝑡, 𝑠);

(8) 𝑒
𝑝
(𝑡, 𝑠)/𝑒

𝑞
(𝑡, 𝑠) = 𝑒

𝑝⊖𝑞
(𝑡, 𝑠).

Definition 11. A point 𝑥∗ = (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇
∈ R𝑛 is called

an equilibrium point of model (1) if 𝑥(𝑡) = 𝑥
∗ is a solution of

(1).

Throughout this paper, we always assume that the impul-
sive jump vector 𝑃 satisfies

𝑃 (𝑥
∗
) = (𝑃

1
(𝑥
∗

1
) , 𝑃
2
(𝑥
∗

2
) , . . . , 𝑃

𝑛
(𝑥
∗

𝑛
))
𝑇
= 0. (10)

That is, if 𝑥∗ is an equilibrium point of the following non-
impulsive system:

𝑥
Δ

𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝜁
𝑖𝑗
(𝑡, 𝑥
𝑗 (
𝑡)))) + 𝐼𝑖

,

𝑖 = 1, 2, . . . , 𝑛,

(11)

then it is also the equilibrium point of impulsive system (1).

Definition 12 (see [41]). A real matrix 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

is said to
be a nonsingular𝑀-matrix if 𝑑

𝑖𝑗
≤ 0 (𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗),

and all successive principal minors of𝐷 are positive.

Lemma 13 (see [41]). Let 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

with 𝑑
𝑖𝑗
≤ 0 (𝑖, 𝑗 =

1, 2, . . . , 𝑛, 𝑖 ̸= 𝑗); then𝐷 is a nonsingular𝑀-matrix if and only
if the diagonal elements of 𝐷 are all positive and there exists a
positive vector 𝑑 such that 𝐷𝑑 > 0 or𝐷𝑇𝑑 > 0.

3. Existence and Uniqueness of
Equilibrium Point

In this section, we will discuss the existence and uniqueness
of equilibria of the DCNN with impulses on time scales and
give their proofs.

Theorem 14. Under assumptions (H1) and (H2), if the follow-
ing condition is satisfied

(H) 𝑎
𝑖
− ∑
𝑛

𝑗=1
𝐹
𝑗
(|𝑏
𝑖𝑗
| + |𝑐
𝑖𝑗
|) > 0, 𝑖 = 1, 2, . . . , 𝑛,

then there is exactly one equilibrium point of model (1).

Remark 15. From Lemma 13, we can easily prove that (H)
holds implying that the following condition is true:

(H0) there exists a vector 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
)
𝑇
> 0 such that

𝑎
𝑖
𝜉
𝑖
− 𝐹
𝑖

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝜉
𝑗
> 0, 𝑖 = 1, 2, . . . , 𝑛. (12)

For convenience, we set 𝐴 = diag(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), 𝐵 =

(|𝑏
𝑖𝑗
|)
𝑛×𝑛

, 𝐶 = (|𝑐
𝑖𝑗
|)
𝑛×𝑛

, and 𝐹 = diag(𝐹
1
, 𝐹
2
, . . . , 𝐹

𝑛
). Let

𝜂 = (1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)
𝑇, 𝐷 = 𝐴 − (𝐵 + 𝐶)𝐹. From assumption (H),

we have
𝐷𝜂 = [𝐴 − (𝐵 + 𝐶) 𝐹] 𝜂

=

(

(

(

(

(

(

(

(

𝑎
1
−

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

𝑎
2
−

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

...

𝑎
𝑛
−

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑛𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑛𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

)

)

)

)

)

)

)

)

> 0,

(13)
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which implies that𝐷 is a nonsingular𝑀-matrix. So we know
that 𝐷𝑇 is a nonsingular 𝑀-matrix. Hence, there exists a
vector 𝜉 = (𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
)
𝑇
> 0 such that

𝐷
𝑇
𝜉 = [𝐴

𝑇
− 𝐹
𝑇
(𝐵
𝑇
+ 𝐶
𝑇
)] 𝜉

=

(

(

(

(

(

(

(

(

𝑎
1
𝜉
1
− 𝐹
1

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑗1

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑗1

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝜉
𝑗

𝑎
2
𝜉
2
− 𝐹
2

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑗2

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑗2

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝜉
𝑗

...

𝑎
𝑛
𝜉
𝑛
− 𝐹
𝑛

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑗𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑗𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝜉
𝑗

)

)

)

)

)

)

)

)

> 0.

(14)

It follows that (H0) holds.
Now, we prove our theorem.

Proof. Let 𝑥∗ = (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇 be an equilibrium point of

system (1); then, we have

− 𝑎
𝑖
𝑥
∗

𝑖
+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
∗

𝑗
) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
∗

𝑗
) + 𝐼
𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑛.

(15)

We denote ℎ (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
)
𝑇, where

ℎ
𝑖
= 𝑎
𝑖
𝑥
𝑖
−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
) −

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
) − 𝐼
𝑖
,

𝑖 = 1, 2, . . . , 𝑛.

(16)

Obviously, the equilibrium points of model (1) are solutions
of system

ℎ
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑛. (17)

Define the following homotopic mapping:

𝐻(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝜆ℎ (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)

+ (1 − 𝜆) (𝑥1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
,

(18)

where 𝜆 ∈ [0, 1]. Let 𝐻
𝑘
(𝑘 = 1, 2, . . . , 𝑛) denote the 𝑘th

component of𝐻(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
); then, we can get

󵄨
󵄨
󵄨
󵄨
𝐻
𝑖

󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(1 − 𝜆) 𝑥𝑖
+ 𝜆𝑎
𝑖
𝑥
𝑖
− 𝜆

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
)

−𝜆

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
) − 𝜆𝐼

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥ (1 − 𝜆)
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
+ 𝜆𝑎
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

− 𝜆

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑥
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝜆

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑥
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝜆

󵄨
󵄨
󵄨
󵄨
𝐼
𝑖

󵄨
󵄨
󵄨
󵄨

≥ 𝜆𝑎
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
− 𝜆

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑥
𝑗
) − 𝑓
𝑗 (
0)

󵄨
󵄨
󵄨
󵄨
󵄨

− 𝜆

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗 (
0)

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝜆

󵄨
󵄨
󵄨
󵄨
𝐼
𝑖

󵄨
󵄨
󵄨
󵄨

≥ 𝜆𝑎
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
− 𝜆

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

− 𝜆

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗 (
0)

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝜆

󵄨
󵄨
󵄨
󵄨
𝐼
𝑖

󵄨
󵄨
󵄨
󵄨
.

(19)

It follows that
𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝐻
𝑖

󵄨
󵄨
󵄨
󵄨
≥

𝑛

∑

𝑖=1

[

[

𝜆𝑎
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
− 𝜆

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

− 𝜆

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗 (
0)

󵄨
󵄨
󵄨
󵄨
󵄨
− 𝜆

󵄨
󵄨
󵄨
󵄨
𝐼
𝑖

󵄨
󵄨
󵄨
󵄨
]

]

≥ 𝜆

𝑛

∑

𝑖=1

[

[

𝑎
𝑖
−

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)
]

]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

− 𝜆

𝑛

∑

𝑖=1

[

[

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗 (
0)

󵄨
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐼
𝑖

󵄨
󵄨
󵄨
󵄨
]

]

.

(20)

Let

𝜃 = min
1≤𝑖≤𝑛

{

{

{

𝑎
𝑖
−

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

}

}

}

,

𝛾 = max
1≤𝑖≤𝑛

{(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗 (
0)

󵄨
󵄨
󵄨
󵄨
󵄨
} ,

‖𝑥‖1
=

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
.

(21)

From the assumption of the theorem, we can easily see that
𝜃 > 0. Let

Ω = {𝑥 | ‖𝑥‖1
≤

𝑛 (𝛾 + 1)

𝜃

} . (22)

Then, for any 𝑥 ∈ 𝜕Ω, we have
𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝐻
𝑖

󵄨
󵄨
󵄨
󵄨
≥ 𝜆𝜃

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
− 𝜆𝑛𝛾

= 𝜆𝜃

𝑛 (𝛾 + 1)

𝜃

− 𝜆𝑛𝛾

> 0, 𝜆 ∈ (0, 1] .

(23)

As 𝜆 = 0, we have

𝐻(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

̸= 0, 𝑥 ∈ 𝜕Ω.

(24)



Mathematical Problems in Engineering 5

Hence, all the above conclusions mean that

𝐻(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ̸= 0, for any 𝑥 ∈ 𝜕Ω, 𝜆 ∈ [0, 1] .

(25)

From the homotopy invariance theorem, we obtain

deg (ℎ, Ω, 0) = deg (𝐻,Ω, 0) = deg (𝐼, Ω, 0) = 1, (26)

where 𝐼 is the identity operator. By topological degree theory,
we can easily know that system (11) has at least one solution
inΩ. That means model (1) has at least an equilibrium point.

In order to prove the uniqueness of the equilibriumpoint,
let 𝑥∗ = (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇 and 𝑦∗ = (𝑦

∗

1
, 𝑦
∗

2
, . . . , 𝑦

∗

𝑛
)
𝑇 be two

equilibrium points of system (1). So, we have

− 𝑎
𝑖
𝑥
∗

𝑖
+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
∗

𝑗
) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
∗

𝑗
) + 𝐼
𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑛,

− 𝑎
𝑖
𝑦
∗

𝑖
+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
∗

𝑗
) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑦
∗

𝑗
) + 𝐼
𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑛.

(27)

Then,

𝑎
𝑖
(𝑥
∗

𝑖
− 𝑦
∗

𝑖
) =

𝑛

∑

𝑗=1

(𝑏
𝑖𝑗
+ 𝑐
𝑖𝑗
) [𝑓
𝑗
(𝑥
∗

𝑗
) − 𝑓
𝑗
(𝑦
∗

𝑗
)] ,

𝑖 = 1, 2, . . . , 𝑛.

(28)

By using assumption (H2), we get

𝑎
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
− 𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
≤

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑗
− 𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑖 = 1, 2, . . . , 𝑛.

(29)

It follows that

𝑎
𝑖
𝜉
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
− 𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
≤ 𝜉
𝑖

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑗
− 𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑖 = 1, 2, . . . , 𝑛.

(30)

Hence,
𝑛

∑

𝑖=1

𝑎
𝑖
𝜉
𝑖

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
− 𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
≤

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑗
− 𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜉
𝑖
𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑗
− 𝑦
∗

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

=

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜉
𝑗
𝐹
𝑖
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
− 𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨

=

𝑛

∑

𝑖=1

[

[

𝐹
𝑖

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝜉
𝑗
]

]

󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
− 𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
.

(31)

So, we get

𝑛

∑

𝑖=1

(𝑎
𝑖
𝜉
𝑖
− 𝐹
𝑖

𝑛

∑

𝑗=1

(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑗𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
) 𝜉
𝑗
)
󵄨
󵄨
󵄨
󵄨
𝑥
∗

𝑖
− 𝑦
∗

𝑖

󵄨
󵄨
󵄨
󵄨
≤ 0. (32)

From the assumption (H0), we get𝑥∗
𝑖
= 𝑦
∗

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

Therefore, system (1) has one unique equilibrium point. The
proof is complete.

4. Global Exponential Stability of the
Equilibrium Point

In this section, we consider the following DCNN systemwith
impulses of the type

𝑥
Δ

𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
)) + 𝐼

𝑖
, 𝑡 ∈ T

+

0
, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝑃
𝑖
(𝑥
𝑖
(𝑡
𝑘
))

= −𝛾
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
) − 𝑥
∗

𝑖
) ,

𝑘 = 1, 2, . . . , 𝑖 = 1, 2, . . . , 𝑛,

(33)

where 𝑎
𝑖
, 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, 𝐼
𝑖
, and 𝑓

𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) are defined as

those in (1) and 𝜏
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) are positive constants

which satisfy 𝑡 − 𝜏
𝑖𝑗
∈ T for all 𝑡 ∈ T , 𝑖, 𝑗 = 1, 2, . . . , 𝑛. Let

𝜏 = max
1≤𝑖,𝑗≤𝑛

(𝜏
𝑖𝑗
). Then, the initial conditions associated

with (33) are of the form

𝑥
𝑖 (
𝑠) = 𝜙

𝑖 (
𝑠) , 𝑠 ∈ [−𝜏, 0] ∩ T , (34)

where 𝜙
𝑖
∈ 𝐶rd([−𝜏, 0] ∩ T ,R), 𝑖 = 1, 2, . . . , 𝑛 are rd-con-

tinuous.

Definition 16. Let 𝑥∗ = (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇 be an equilibrium

point of (33) with initial value 𝜙∗ = (𝜑
∗

1
, 𝜑
∗

2
, . . . , 𝜑

∗

𝑛
)
𝑇. If

there exists a positive constant 𝜆 with −𝜆 ∈ R+ such that
for 𝑡
0
∈ [−𝜏, 0]T , there exists𝑀 > 1 such that for an arbitrary

solution 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇 of (33) with initial

value 𝜙(𝑠) = (𝜙
1
(𝑠), 𝜙
2
(𝑠), . . . , 𝜙

𝑛
(𝑠))
𝑇 satisfies

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∗󵄨
󵄨
󵄨
󵄨1
≤ 𝑀

󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
𝑒
−𝜆
(𝑡, 𝑡
0
) ,

𝑡 ∈ [−𝜏,∞)T , 𝑡 ≥ 𝑡
0
,

(35)

where |𝑥(𝑡) − 𝑥
∗
|
1
= max

1≤𝑖≤𝑛
{|𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
|}, ‖𝜙 − 𝜙

∗
‖ =

max
1≤𝑖≤𝑛

sup
𝑠∈[−𝜏,0]T

{|𝜑
𝑖
(𝑠) − 𝜑

∗

𝑖
|}.Then the equilibrium point

𝑥
∗ is said to be exponentially stable.

Now, we study the global exponential stability of the
unique equilibrium to (33) on time scales by using Lyapunov
method. We have the following.

Theorem 17. Let (H2) and (H) hold. Suppose further that

(H
3
) 0 < 𝛾

𝑖𝑘
< 2, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . .
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Then, the equilibrium 𝑥
∗
= (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇 of system (33) is

globally exponentially stable.

Remark 18. We denote the T-interval [𝑎, 𝑏]T as [𝑎, 𝑏]T := {𝑡 ∈

T | 𝑎 ≤ 𝑡 ≤ 𝑏}.

Now, we proveTheorem 17.

Proof. Let 𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑖 = 1, 2, . . . , 𝑛). Then, we can

rewrite (33) as

𝑦
Δ

𝑖
(𝑡) = −𝑎

𝑖
𝑦
𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
[𝑓
𝑗
(𝑦
𝑗 (
𝑡) + 𝑥

∗

𝑗
) − 𝑓
𝑗
(𝑥
∗

𝑗
)]

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
[𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝜏
𝑖𝑗
) + 𝑥
∗

𝑗
) − 𝑓
𝑗
(𝑥
∗

𝑗
)] ,

𝑡 ̸= 𝑡
𝑘
, 𝑡 ∈ T

+

0
,

𝑦
𝑖
(𝑡
+

𝑘
) = 𝑦
𝑖
(𝑡
𝑘
) − 𝛾
𝑖𝑘
𝑦
𝑖
(𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . .

(36)

Multiplying both sides of the first equation of (4.2) by
𝑒
−𝑎𝑖
(𝑡, 𝜎(𝑠)) and integrating on [𝑡

0
, 𝑡]T , where 𝑡0 ∈ [−𝜏, 0]T ,

we get

𝑦
𝑖 (
𝑡) = 𝑦

𝑖
(𝑡
0
) 𝑒
−𝑎𝑖

(𝑡, 𝑡
0
)

+ ∫

𝑡

𝑡0

𝑒
−𝑎𝑖

(𝑡, 𝜎 (𝑠))

×

{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
[𝑓
𝑗
(𝑦
𝑗 (
𝑠) + 𝑥

∗

𝑗
) − 𝑓
𝑗
(𝑥
∗

𝑗
)]

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
[𝑓
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
) + 𝑥
∗

𝑗
)

− 𝑓
𝑗
(𝑥
∗

𝑗
)]

}

}

}

Δ𝑠, 𝑖 = 1, 2, . . . , 𝑛.

(37)

For positive constant 𝛼 < min
1≤𝑖≤𝑛

𝑎
𝑖
with −𝛼 ∈ R+, we have

𝑒
⊖𝛼
(𝑡, 𝑡
0
) > 1, where 𝑡 ∈ [−𝜏, 𝑡

0
]T . Take

𝑀 > max
1≤𝑖≤𝑛

{

{

{

𝑎
𝑖

𝑎
𝑖
− ∑
𝑚

𝑗=1
𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
)

}

}

}

. (38)

In view of (H), we have𝑀 > 1. Hence, it is obvious that
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨1
≤ 𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
, ∀𝑡 ∈ [−𝜏, 𝑡

0
]
T
. (39)

We claim that
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨1
≤ 𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
, ∀𝑡 ∈ (𝑡

0
, 𝑡
1
]
T
. (40)

To prove this claim, we show that for any 𝑝 > 1, the following
inequality holds

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨1
< 𝑝𝑀𝑒

⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
, ∀𝑡 ∈ (𝑡

0
, 𝑡
1
]
T
. (41)

Byway of contradiction, assume that (41) does not hold.Then,
there exist 𝜌 ∈ (𝑡

0
, 𝑡
1
]T and 𝑖

0
∈ {1, 2, . . . , 𝑛} such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖0
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝑝𝑀𝑒

⊖𝛼
(𝜌, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖0
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑝𝑀𝑒

⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
, 𝑡 ∈ (𝑡

0
, 𝜌)

T
,

󵄨
󵄨
󵄨
󵄨
𝑦
𝑙 (
𝑡)
󵄨
󵄨
󵄨
󵄨
< 𝑝𝑀𝑒

⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
, for 𝑙 ̸= 𝑖

0
,

𝑡 ∈ (𝑡
0
, 𝜌]

T
, 𝑙 = 1, 2, . . . , 𝑛.

(42)

Therefore, there must be a constant 𝛿
1
≥ 1 such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖0
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
= 𝛿
1
𝑝𝑀𝑒
⊖𝛼
(𝜌, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑖0
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝛿
1
𝑝𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
, 𝑡 ∈ (𝑡

0
, 𝜌)

T
,

󵄨
󵄨
󵄨
󵄨
𝑢
𝑙 (
𝑡)
󵄨
󵄨
󵄨
󵄨
< 𝛿
1
𝑝𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
, for 𝑙 ̸= 𝑖

0
,

𝑡 ∈ (𝑡
0
, 𝜌]

T
, 𝑙 = 1, 2, . . . , 𝑛.

(43)

Note that, in view of (37), we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖0
(𝜌)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑖0
(𝑡
0
) 𝑒
−𝑎𝑖0

(𝜌, 𝑡
0
)

+ ∫

𝜌

𝑡0

𝑒
−𝑎𝑖0

(𝜌, 𝜎 (𝑠))

×

{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖0𝑗
[𝑓
𝑗
(𝑦
𝑗 (
𝑠) + 𝑥

∗

𝑗
) − 𝑓
𝑗
(𝑥
∗

𝑗
)]

+

𝑛

∑

𝑗=1

𝑐
𝑖0𝑗
[𝑓
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
) + 𝑥
∗

𝑗
)

− 𝑓
𝑗
(𝑥
∗

𝑗
)]

}

}

}

Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑒
−𝑎𝑖0

(𝜌, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩

+ ∫

𝜌

𝑡0

𝑒
−𝑎𝑖0

(𝜌, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗 (
𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑠 − 𝜏

𝑖0𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
)Δ𝑠

≤ 𝑒
−𝑎𝑖0

(𝜌, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩

+ ∫

𝜌

𝑡0

𝑒
−𝑎𝑖0

(𝜌, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
𝛿
1
𝑝𝑀𝑒
⊖𝛼
(𝑠, 𝑡
0
)

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
𝛿
1
𝑝𝑀𝑒
⊖𝛼
(𝑠 − 𝜏

𝑖0𝑗
, 𝑡
0
))Δ𝑠
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=
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
𝑒
⊖𝛼
(𝜌, 𝑡
0
) 𝑒
−𝑎𝑖0
⊕𝛼
(𝜌, 𝑡
0
)

+ 𝛿
1
𝑝𝑀𝑒
⊖𝛼
(𝜌, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩

× ∫

𝜌

𝑡0

𝑒
−𝑎𝑖0
⊕𝛼
(𝜌, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
𝑒
⊖𝛼
(𝜌, 𝜎 (𝑠))

+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
𝑒
⊖𝛼
(𝜎 (𝑠) , 𝑠 − 𝜏𝑖0𝑗

))Δ𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
𝑒
⊖𝛼
(𝜌, 𝑡
0
) 𝑒
−𝑎𝑖0
+𝛼
(𝜌, 𝑡
0
)

+ 𝛿
1
𝑝𝑀𝑒
⊖𝛼
(𝜌, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩

× ∫

𝜌

𝑡0

𝑒
−𝑎𝑖0

(𝜌, 𝜎 (𝑠))

× (

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
)Δ𝑠

≤
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
𝑒
⊖𝛼
(𝜌, 𝑡
0
)

+ 𝛿
1
𝑝𝑀𝑒
⊖𝛼
(𝜌, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩

1

−𝑎
𝑖0

× ∫

𝜌

𝑡0

(−𝑎
𝑖0
) 𝑒
−𝑎𝑖0

(𝜌, 𝜎 (𝑠)) Δ𝑠

× (

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
)

=
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
𝑒
⊖𝛼
(𝜌, 𝑡
0
)

−

1

𝑎
𝑖0

𝛿
1
𝑝𝑀𝑒
⊖(−𝛼)

(𝜌, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩

× (𝑒
−𝑎𝑖0

(𝜌, 𝑡
0
) − 1)(

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
+

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑗
)

< 𝛿
1
𝑝𝑀

󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
𝑒
⊖𝛼
(𝜌, 𝑡
0
)

× (

1

𝛿
1
𝑝𝑀

+

1

𝑎
𝑖0

𝑚

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
))

< 𝛿
1
𝑝𝑀

󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
𝑒
⊖𝛼
(𝜌, 𝑡
0
)

× (

1

𝑀

+

1

𝑎
𝑖0

𝑚

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
𝑖0𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
))

< 𝛿
1
𝑝𝑀𝑒
⊖𝛼
(𝜌, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
.

(44)

Thus, we get a contradiction. Hence, (41) holds. Let 𝑝 →

1; then (40) holds. From (40), we have that |𝑦
𝑖
(𝑡
1
)| ≤

𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)‖𝜙 − 𝜙

∗
‖, 𝑖 = 1, 2, . . . , 𝑛. Since |𝑦

𝑖
(𝑡
+

1
)| = |1 −

𝛾
𝑖1
||𝑦
𝑖
(𝑡
1
)| < |𝑦

𝑖
(𝑡
1
)|, 𝑖 = 1, 2, . . . , 𝑛, it follows that

󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑡
+

1
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
,

∀𝑡 ∈ [−𝜏, 𝑡
1
]
T
, 𝑖 = 1, 2, . . . , 𝑛.

(45)

Thus, for 𝑡 ∈ [𝑡
1
, 𝑡
2
]T , wemay repeat the above procedure and

obtain
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
,

∀𝑡 ∈ [𝑡
1
, 𝑡
2
]
T
, 𝑖 = 1, 2, . . . , 𝑛.

(46)

Similarly, we have
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖 (
𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)
󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
,

∀𝑡 ∈ [−𝜏,∞)T , 𝑖 = 1, 2, . . . , 𝑛.

(47)

Take −𝜆 = ⊖𝛼; then 𝜆 > 0 and −𝜆 ∈ R+. Hence, we have that
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨1
≤ 𝑀

󵄩
󵄩
󵄩
󵄩
𝜙 − 𝜙
∗󵄩
󵄩
󵄩
󵄩
𝑒
−𝜆
(𝑡, 𝑡
0
) ,

𝑡 ∈ [−𝜏,∞)T , 𝑡 ≥ 𝑡
0
,

(48)

which means that the equilibrium point 𝑥∗ of (33) is expo-
nentially stable. This completes the proof.

Remark 19. If the time scale T = R, then 𝜇(𝑡) = 0 and system
(33) becomes the following model:

d𝑥
𝑖 (
𝑡)

d𝑡
= −𝑎
𝑖
𝑥
𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
)) + 𝐼

𝑖
, 𝑡 ̸= 𝑡

𝑘
,

𝑥
𝑖
(𝑡
+

𝑘
) = 𝑥
𝑖
(𝑡
𝑘
) − 𝛾
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
) − 𝑥
∗

𝑖
) ,

𝑘 = 1, 2, . . . , 𝑖 = 1, 2, . . . , 𝑛.

(49)

From Theorem 17, we can immediately derive the following
result.

Corollary 20. Suppose that system (49) satisfies condition
(H2) and (H), and the following assumptions hold:

(1) −𝑎
𝑖
+ ∑
𝑛

𝑗=1
𝐹
𝑗
(|𝑏
𝑖𝑗
| + |𝑐
𝑖𝑗
|) < 0;

(2) 0 < 𝛾
𝑖𝑘
< 2.

Then, the equilibrium of system (49) is globally exponentially
stable.

Remark 21. In [42], by utilizing the time scale calculus theory,
topological degree theory, and Hölder’s inequality on time
scales, authors studied the existence and the global exponen-
tial stability of equilibrium point to a class of impulsive BAM
neural networks with distributed delays on time scales. But,
results obtained in [42] cannot be applied to (1). Also, for
establishing the global exponential stability of equilibrium
point to (1), our method used in this paper is totally different
from that used in [42].



8 Mathematical Problems in Engineering

5. An Example

In this section, an example is given to show the effectiveness
of the result obtained in the previous section. Because the
condition (4.2) is not dependent on the impulses, we just need
to check it with the nonimpulsive system.

Consider the following simple DCNN on time scale T :

𝑥
Δ

𝑖
(𝑡) = −𝑎

𝑖
𝑥
𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
)) + 𝐼

𝑖
, 𝑡 ∈ T

+

0
,

(50)

where (𝑎
1
, 𝑎
2
)
𝑇
= (1, 1)

𝑇, 𝐼
𝑖
= 2, 𝜏
𝑖𝑗
= 2 (𝑖, 𝑗 = 1, 2),

(

𝑏
11

𝑏
12

𝑏
21

𝑏
22

) = (

0.01 0.01

0.01 0.01
) , (

𝑐
11

𝑐
12

𝑐
21

𝑐
22

) = (

0.02 0.03

0.03 0.02
) .

(51)

Taking 𝑓
1
(𝑥) = 𝑓

2
(𝑥) = (1/2)(|𝑥 + 1| + |𝑥 − 1|), we can easily

see that 𝐹
1
= 𝐹
2
= 1.

Let T = ⋃
∞

𝑘=0
[2𝑘, 2𝑘 + 1], then for 𝑡 ∈ T , 𝑡 ̸= 2𝑘 + 1 (𝑘 =

0, 1, 2, . . .), we have 𝜇(𝑡) = 0, and for 𝑡 = 2𝑘 + 1 (𝑘 =

0, 1, 2, . . .), we have 𝜇(𝑡) = 1.
We have that

𝑎
1
−

2

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
1𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
) = 0.93 > 0,

𝑎
2
−

2

∑

𝑗=1

𝐹
𝑗
(

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏
2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
2𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
) = 0.93 > 0,

(52)

which imply that the assumption (H) of Theorem 14 holds.
Thus, it follows fromTheorems 14 and 17 that system (50) has
a unique equilibrium point which is globally exponentially
stable (see Figure 1).

Since 𝜇(𝑡) ≡ 0 for 𝑡 ∈ T = R and 𝜇(𝑡) ≡ 1 for 𝑡 ∈

T = Z, from the discussion above one can easily see that for
T = R or T = Z, (50) always has a unique equilibrium point
which is globally exponentially stable. That is, the following
continuous-time system

𝑥
󸀠

𝑖
(𝑡) = − 𝑎

𝑖
𝑥
𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
)) + 𝐼

𝑖
, 𝑡 ∈ R

+

(53)

and its discrete-time analogue

Δ𝑥
𝑖 (
𝑡) = − 𝑎

𝑖
𝑥
𝑖 (
𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (
𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
)) + 𝐼

𝑖
, 𝑡 ∈ Z

+

(54)

have the same dynamical properties, where 𝑎
𝑖
, 𝐼
𝑖
, 𝜏
𝑖𝑗
, and 𝑓

𝑗

are the same as those in (50) (see Figures 2 and 3).
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Figure 1: Transient responses of states 𝑥
1
, 𝑥
2
in Example when T =

⋃
∞

𝑘=1
[2𝑘, 2𝑘 + 1].
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Figure 2: Transient responses of states 𝑥
1
, 𝑥
2
in Example when T =

R.

6. Conclusion

Using the topological degree theory and the time scale
calculus theory, some sufficient conditions are obtained to
ensure the existence and the global exponential stability of
equilibria for DCNNs neural networks with impulses on time
scales. This is the first time to apply the time scale calculus
theory to unify the study of the stability of the equilibrium
for DCNNs with impulses on time scales under the same
framework. The results obtained in this paper possess highly
important significance and are easily checked in practice.
In addition, the method in this paper may be applied to
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Figure 3: Transient responses of states 𝑥
1
, 𝑥
2
in Example when T =

Z.

some other systems such as the BAM and Cohen-Grossberg
systems with impulses and so on.
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