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Finite mixture model (FMM) approach is a research focus in multitarget tracking field. The clutter was treated as uniform
distribution previously. Aiming at severe bias caused by unknown and complex clutter, a multitarget tracking algorithm based
on clutter model estimation is put forward in this paper. Multitarget likelihood function is established with FMM. In this frame,
the algorithms of expectation maximum (EM) and Markov Chain Monte Carlo (MCMC) are both consulted in FMM parameters
estimation. Furthermore, target number and multitarget states can be estimated precisely after the clutter model fitted. Association
between target andmeasurement can be avoided. Simulation proved that the proposed algorithmhas a good performance in dealing
with unknown and complex clutter.

1. Introduction

Multiple target tracking (MTT), for its important theoretical
significance and widely applied engineering background,
is a research focus in tracking field in recent years [1–3].
In MTT problems, measurement set of sensors contains
not only the measurements from target, but also massive
clutters from interference caused by meteorological phe-
nomena, electromagnetism environment, and false target. In
addition, measurements from target and clutter cannot be
distinguished usually. How to estimate target number and
multitarget states using these mixture measurements is the
key.

Until now, MTT solutions could be concluded in two
classes. The first is data association solutions, such as the
nearest neighbor (NN) method [4], the joint probabilis-
tic data association (JPDA) method [5], and the multiple
hypothesis tracking (MHT) method [6]. In this class, cor-
responding relationship between target and measurement
should be established before target number and multitarget
states estimate. While the second solution dealing with MTT
problems is randomfinite sets (RFS)method based solutions,

such as the probability hypothesis density (PHD)filter [7] and
the cardinalized probability hypothesis density (CPHD) filter
[8]. Target state set can be updated with measurement set
directly. MTT in frame of RFS does not need data association
consequently.

ThementionedMTT solutions are all based on the known
clutter model. For randomness of clutter, its distribution
model usually includes clutter number and clutter position. If
there is not so many interference factors in surveillance area,
clutter number could be considered to obey Poisson distribu-
tion, while clutter position obeys uniform distribution. But in
many actual scenes, especially ground and sea level surveil-
lance, even battlefield surveillance, the clutter model appears
to be unknown and more complex as results of complicated
landform, jamming station, and unidentified interference
source such as electronic countermeasure systems. In this
case, assumptions of Poisson and uniform distribution which
the clutter model satisfied will lead to severe bias estimated
by the filter.

A novel MTT algorithm based on clutter model estima-
tion is put forward in the light of the problems mentioned
above. In this algorithm, multitarget likelihood function is
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established with finite mixture model (FMM) [9], whose
parameters can be estimated by the algorithms of expectation
maximum (EM) and Markov Chain Monte Carlo (MCMC).
Furthermore, target number and multitarget states can be
estimated as well as the clutter model fitted. Similarly with
the RFS based solution, association between target and
measurement can be avoided in this algorithm. Compared
with the MTT solution without clutter model fitting, it can
be proved from a simulation that the algorithm proposed in
this paper is more efficient.

2. Problem Description

2.1. Target Motion Model. Suppose that the sensor was mon-
itoring a fixed region. For situation of spontaneous birth,
spawned by existent targets and extinction, the number of
target detected over the surveillance region varies with time.
Supposing that 𝑡𝑘 is the number of existing targets at time 𝑘,
we model the motion of the multitarget system as
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denotes the variance matrix of process noise.

2.2. Measurement Model. The measurement set received by
sensor at time 𝑘 could be represented as 𝑍𝑘 = {z1𝑘, . . . , z

𝑛𝑘

𝑘
},

where 𝑛𝑘 denotes the number of measurement at time 𝑘.
Sensor measurements are generally regarded as a mixture of
target-originated measurement and clutter-originated mea-
surement. Measurements from different targets and clutters
are statistically independent in this paper without additional
illustration.

2.2.1. Target-Originated Measurement. Supposing that mea-
surement 𝑗 is originated from target 𝑖,

z𝑗
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) + 𝜐
𝑗
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, z𝑗
𝑘
∈ 𝑍𝑘, (2)

where h𝑘(⋅) denotes the measurement function of sensor and
𝜐
𝑗

𝑘
denotes the measurement noise vector, obeying Gaussian

distribution 𝜐𝑗
𝑘
∼ N(0, 𝑅𝑘) as well, where 𝑅𝑘 denotes the

variance matrix of measurement noise.

2.2.2. Clutter Model. Assume that at time 𝑘 F𝑐,𝑘 denotes the
model of clutter position distribution, and measurement 𝑗 is
originated from clutter, then

z𝑗
𝑘
∼ F𝑐,𝑘, z𝑗

𝑘
∈ 𝑍𝑘, (3)

whereF𝑐,𝑘 is unknown and varies with time.
So far as mentioned above, at time 𝑘, the information

needed to be estimated includes the distribution model of

clutter position F𝑐,𝑘, target number 𝑡𝑘, and multitarget state
set 𝑋𝑘. In addition, the number model of clutter need not be
estimated, because this algorithm is adapted to any variation
of the clutter number.

3. Multitarget Likelihood Function
Based on FMM

Given the measurement set 𝑍𝑘 and condition of indepen-
dence, the multitarget likelihood function at time 𝑘 can be
described by FMM [9, 10] as

L𝑘 (𝑍𝑘;𝜓𝑘) =
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Finite mixture model is considered an effective method
dealing with multitarget tracking problem, especially under
complex unknown clutter environment. Distribution model
of target-originated measurement and clutter measurement
could be described as a superposition of some normative
distribution. Taking complex clutter, for example, it can be
considered as a superposition of uniform and finite Gaussian
models. By estimating the parameters of these potential
models, we can get the multitarget state ultimately.

Formula (4) could be explained as follows:
F𝑐,𝑘(⋅;𝜓𝑐,𝑘) denotes the distribution model of clutter

position at time 𝑘. Considering the complexity of clutter dis-
tribution model, multiple Gaussian models and one uniform
model will be used to fit this clutter model:
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𝑐,𝑘

denotes the weights of clutter
model, and 𝜃𝑖
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= (𝜇
𝑖

𝑐,𝑘
, Σ
𝑖

𝑐,𝑘
), composed of the mean vector

and the covariance matrix, denotes the parameters of clutter
model.

F𝑡,𝑘(⋅;𝜓𝑡,𝑘) denotes the distribution model of target-
originated measurement position at time 𝑘. Assuming that
the number of existing targets in surveillance region is 𝑡𝑘,
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which means that the number of models is equal to the
number of targets. 𝜋𝑖

𝑡,𝑘
denotes the weights of target model,
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from a single target, and 𝜃𝑖
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denotes the relevant parameters.
Letting 𝑔𝑘 = 𝑔𝑐,𝑘 + 𝑔𝑡,𝑘, all parameters to be esti-
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where 𝜋𝑖
𝑘
𝑛𝑘 is the number of targets at time 𝑘.
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EM and MCMC are the approaches most widely con-
sulted in FMM parameters estimation. Until now, EM
approach is considered a standard algorithm, but it is sen-
sitive to initial value. The iteration will converge to some
local extremum caused by worse initialization. Meanwhile
the convergence rate will be affected. Comparatively, MCMC
belongs to a stochastic algorithm, which is insensitive to
initial value. In addition, for some complex situation,MCMC
algorithmwill lead a better global Convergence. In fact, if the
Markov chain is long enough, MCMC approach can obtain
massive information of posterior distribution, so local extre-
mum could be avoided. Above all, robustness of MCMC is
better than EM, nevertheless, computational complexity of
MCMC is larger than EM. Now we will present these two ap-
proaches, respectively, in Sections 4 and 5.

4. FMM Parameters
Estimation by EM Approach

4.1. Parameters Initialization. Parameters in FMM should be
well initialized as much as possible before estimation in EM
algorithm. Initializations of clutter model and target-origi-
nated measurement model were discussed, respectively.

4.1.1. Initialization of Clutter Model. Considering that the
clutter model could vary with time, the initialization process
at time 𝑘 is listed as follows.

Inheritance of the value estimated at time 𝑡𝑘−1 is
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Then add some clutter points randomly; the number of
the clutter points is 𝑔0. The initialization average 𝜇𝑖
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be got from these chosen points in surveillance region S. The
covariance matrix could be initialized as Σ𝑖

𝑐,𝑘
(0) = 𝜎

2
𝐼, 𝑖 =

𝑔𝑐,𝑘−1 + 1, . . . , 𝑔𝑐,𝑘−1 + 𝑔0, where

𝜎
2
=
1

10𝑑
trace( 1

𝑛𝑘

𝑛𝑘

∑

𝑗=1

(z𝑗
𝑘
− z𝑘) (z

𝑗

𝑘
− z𝑘)
𝑇

) , (9)

where z𝑘 = ∑
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𝑗=1
z𝑗
𝑘
/𝑛𝑘 denotes the average of measurement

data.
Consequently, the number of clutter models in initializa-

tion process 𝑔𝑐,𝑘(0) = 𝑔𝑐,𝑘−1 + 𝑔0. In order to ensure the
parameters of clutter models converging to the true value, the
value of 𝑔0 should be bigger than the number in reality.

4.1.2. Initialization of Target-Originated Measurement Model.
At time 𝑘, targets totally are composed of survival targets and
spontaneous birth targets and spawned by existent targets. So
the number of target models in initialization process is

𝑔𝑡,𝑘 (0) = 𝑔𝑠,𝑘 (0) + 𝑔𝑏,𝑘 (0) + 𝑔𝑝,𝑘 (0) , (10)

where 𝑔𝑠,𝑘(0) denotes the number of survival targets, 𝑔𝑏,𝑘(0)
denotes the number of spontaneous birth targets, and 𝑔𝑝,𝑘(0)
denotes the number of spawned by existent targets.

The initialization of target-originatedmeasurementmod-
el at time 𝑘 can be represented as
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distribution, as shown in (2), so 𝑓𝑖
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Furthermore, measurement model initialization of survival
targets is
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Let 𝑔𝑠,𝑘(0) = 𝑔𝑡,𝑘−1.
The initialization average 𝜇𝑖
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same withmeasurement noise of the sensor, Σ𝑖
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(b) To Spontaneous Birth Targets. As is mentioned in [11–
13], assume that the initial position model obeys Gaussian
distribution either; that is,
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(c) To Spawned by Existent Targets. Supposing that each
original target can create 𝑝𝑘 new targets at most, model
initialization can be represented as [11–13]
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Theweights ofmodels could be briefly treated as the same

in initialization process:
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4.2. Estimation of FMM Parameters

4.2.1. EM Approach. As FMM Parameters Estimation with
EM approach, the loss variables can be treated as element
labeling 𝐸𝑘 = {e1𝑘, . . . , e
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originated from 𝑖th element of the FMM or not. So the
complete dataset at time 𝑘 is 𝑌𝑘 = {𝑍𝑘, 𝐸𝑘}, and logarithm
likelihood function of the complete data is

logC𝑘 (𝑌𝑘;𝜓𝑘) =
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When the number of models 𝑔𝑘 is known, EM algorithm
can be iterated by E-step and M-step. But the number of
models is unknown in this paper. Some criteria will be
used for number estimation, such as minimum message
length (MML) criterion and Bayesian information criterion
(BIC) [10, 14]. Here in this paper, for the number of models
in initialization being more than reality, the technology of
model merging and pruning could be inserted into each step
of iteration in EM algorithm. In this way, the number of
FMM can be estimated. This method is more intuitive than
those based on criteria. Now, this modified EM algorithm is
described as follows:

(a) E-Step. Conditional expectations of C𝑘(𝑌𝑘;𝜓𝑘) will be
iterated. The expectations of loss data 𝑒𝑖𝑗
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where 𝜏𝑖𝑗
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According to the formula above, the conditional expecta-
tions of logC𝑘(𝑌𝑘;𝜓𝑘) is
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In fact, the loss variable has reflected the association
relationship between themeasurement and target, that is, why
association process can be avoided in this algorithm.

(b) M-Step.The value of 𝜓
𝑘
will be estimated throught global
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0, the weights of all models will be reestimated as

𝜋
𝑖

𝑘
(𝑡) =

1

𝑛𝑘

𝑛𝑘

∑

𝑗=1

𝜏
𝑖𝑗

𝑘
(𝑡) . (20)

Estimation for the average of FMM is

𝜇
𝑖

𝑘
(𝑡) =

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡) z𝑗
𝑘

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)

, 𝑖 = 1, . . . , 𝑔𝑘 (𝑡) . (21)

Considering the estimation for the covariance of FMM,
because the covariance of target-originated measurement
model is known or initialized, only covariance of clutter
model needs to be estimated here:

Σ
𝑖

𝑐,𝑘
(𝑡) =

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡) (z𝑗
𝑘
− 𝜇
𝑖

𝑐,𝑘
(𝑡)) (z𝑗

𝑘
− 𝜇
𝑖

𝑐,𝑘
(𝑡))
𝑇

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)

, (22)

where 𝑖 = 1, . . . , 𝑔𝑐,𝑘(𝑡).

4.3. Component Management Step. The component manage-
ment step of model is completed by the technology of model
merging and pruning [12].

Notification. Models between clutter and target-originated
measurement cannot merge each other.

To clutter model, the process of merging and pruning is
listed as follows:

(a) Merging Step. Given the merging threshold 𝑈, let the set
𝐼𝑘 = {1, . . . , 𝑔𝑐,𝑘(𝑡)}, 𝑙 = 0, circulate
𝑙 = 𝑙 + 1, 𝑗 = argmax

𝑖∈𝐼𝑘
𝜋
𝑖

𝑐,𝑘
; take a model 𝑖 ∈ 𝐼𝑘, for

example,
if 𝑑𝑖𝑗
𝑘
(𝑡) ≤ 𝑈, where

𝑑
𝑖𝑗

𝑘
(𝑡) = (𝜇

𝑖

𝑐,𝑘
(𝑡) − 𝜇

𝑗

𝑐,𝑘
(𝑡))
𝑇

(Σ
𝑗

𝑐,𝑘
(𝑡))
−1

(𝜇
𝑖

𝑐,𝑘
(𝑡) − 𝜇

𝑗

𝑐,𝑘
(𝑡)) .

(23)

Then let 𝑖 ∈ 𝐿𝑘, and merge the models in set 𝐿𝑘, with the
following merging formula:

�̃�
𝑙

𝑐,𝑘
(𝑡 + 1) = ∑

𝑖∈𝐿𝑘

𝜋
𝑖

𝑐,𝑘
(𝑡) ,

�̃�
𝑙

𝑐,𝑘
(𝑡 + 1) =

1

�̃�
𝑙

𝑐,𝑘
(𝑡 + 1)

∑

𝑖∈𝐿𝑘

𝜋
𝑖

𝑐,𝑘
(𝑡)𝜇
𝑖

𝑐,𝑘
(𝑡 + 1) ,

Σ̃
𝑙

𝑐,𝑘
(𝑡 + 1) =

1

�̃�
𝑙

𝑐,𝑘
(𝑡 + 1)

× ∑

𝑖∈𝐿𝑘

𝜋
𝑖

𝑐,𝑘
(𝑡) (Σ

𝑖

𝑐,𝑘
(𝑡) + �̃�

𝑙

𝑐,𝑘
(𝑡 + 1) − 𝜇

𝑖

𝑐,𝑘
(𝑡))

× (�̃�
𝑙

𝑐,𝑘
(𝑡 + 1) − 𝜇

𝑖

𝑐,𝑘
(𝑡))
𝑇

.

(24)

Let 𝐼𝑘,𝑡+1 = 𝐼𝑘,𝑡 − 𝐿𝑘,𝑡; repeat this process until the set
𝐼𝑘 = Φ; the merging ends.

(b) Pruning Step. If the weight 𝑛𝑘�̃�𝑐,𝑘 < 𝐷𝑐(𝑖 = 1, . . . , 𝑙),
where𝐷𝑐 denotes the pruning threshold of clutter model, the
corresponding model should be pruned.

Then let 𝑙 = 𝑙−1. Finally we can get the clutter model after
merging and pruning, with the target number 𝑔𝑐,𝑘(𝑡 + 1) = 𝑙.

To target-originated measurement model, the process of
merging and pruning is similar to the clutter model above.
But the difference is that a target can not generate more
measurements except one, the pruning gate𝐷𝑡 should be set
far less than𝐷𝑐 in clutter model.
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Iteration among the three steps above circulates until
L𝑘(𝑌𝑘;𝜓𝑘(𝑡 + 1)) −L𝑘(𝑌𝑘;𝜓𝑘(𝑡)) is under the convergence
threshold 𝜀 of EM or MCMC algorithm. Then we can get
�̂�
𝑘
, the estimation of parameter value in FMM at the time

𝑘. Furthermore, the estimation of clutter model F̂𝑐,𝑘(⋅; �̂�𝑐,𝑘),
target number 𝑔𝑡,𝑘 and average value of target-originated
measurement model �̂�𝑖

𝑡,𝑘
(𝑖 = 1, . . . , 𝑔𝑡,𝑘) are all obtained.

FMM Parameters Estimation by EM approach over
Section 4 could be described by Algorithm 1.

5. FMM Parameters Estimation by
MCMC Approach

MCMC is an approach which obtains a Markov chain sam-
pling fromposterior distribution.We can extract information
of posterior distribution through this Markov chain. Gibbs
samplingmethod is one ofMCMCapproach. In order to solve
the uncertainty of element number in mixture distribution,
merging and pruning technology was consulted after each
sampling step instead of RJMCMCmethod [15].

5.1. Posterior Distribution of FMM. Parameters to be esti-
mated consist of the weight ofmodels𝜋𝑗, the element labeling
𝑒𝑖,𝑗, variance 𝜎

2

𝑗
, and average value 𝜇

𝑗
. In order to get

posterior distribution in Bayesian frame, prior distribution of
these parameters is necessary [10].

Let the weight of models 𝜋𝑗 obey Dirichelet distribution:

(𝜋1, ⋅ ⋅ ⋅ 𝜋𝑚) ∼ D (𝑎1 + 𝑙1, ⋅ ⋅ ⋅ 𝑎𝑚 + 𝑙𝑚) , (25)

where 𝑎𝑗 > 0 is constant and 𝑙𝑗 is the number of measure-
ments which belong to model 𝑗.

The element labeling 𝑒𝑖,𝑗 could be estimated by Bayes
formula:

𝑒𝑖,𝑗 =

𝜋𝑗𝑓 (y𝑖 | 𝜃𝑗)

∑
𝑘

𝑗=1
𝜋𝑗𝑓 (y𝑖 | 𝜃𝑗)

, 𝑙𝑗 =

𝑛

∑

𝑖=1

𝑒𝑖,𝑗. (26)

Let variance 𝜎2
𝑗
obey Wishart distribution:

𝜎
2

𝑗
∼Wishart(𝛼0 +

𝑙𝑗

𝑀0

, 𝛽0 +

𝜅
2

𝑗

𝑁0

)

𝜅
2

𝑗
=

∑
𝑛

𝑖=1
(y𝑖 − 𝜇𝑖) (y𝑖 − 𝜇𝑖)

𝑇
⋅ 𝑒𝑖,𝑗

∑
𝑛

𝑖=1
𝑒𝑖,𝑗

,

(27)

where 𝛼0 and 𝛽0 are positive constant,𝑀0 and𝑁0 are positive
number.

The average value 𝜇
𝑗
obey Gaussian distribution:

𝜇
𝑗
∼N (𝜉𝑗,𝜎

2

𝑗
) , (28)

where 𝜉𝑗 = ∑
𝑛

𝑖=1
y𝑖 ⋅ 𝑒𝑖,𝑗/∑

𝑛

𝑖=1
𝑒𝑖,𝑗.

5.2. Parameters Initialization. Easier than those of EM ap-
proach, in MCMC approach, initial values can be randomly
selected in parameter space. While the number of models
should be larger than expected value.

5.2.1. Gibbs Sampling Method. Circulate

𝑒
(𝑡)

𝑖,𝑗
=

𝜋
𝑗

𝑖
𝑝 (y𝑖 | 𝜃 (𝑡 − 1))

∑
𝑘max
𝑗=1
𝜋
𝑗

𝑖
𝑝 (y𝑖 | 𝜃 (𝑡 − 1))

, 𝑙
(𝑡)

𝑗
=

𝑛

∑

𝑖=1

𝑒
(𝑡)

𝑖,𝑗
,

𝜇
(𝑡)

𝑗
=

𝑛

∑

𝑖=1

y𝑖 ⋅ 𝑒
(𝑡)

𝑖,𝑗

𝑙
(𝑡)

𝑗

,

𝜉
(𝑡)

𝑗
=

𝑛

∑

𝑖=1

(y𝑖 − 𝜇
(𝑡)

𝑗
) ⋅ 𝑒
(𝑡)

𝑖,𝑗
,

𝜅
(𝑡)

𝑗

2

=

∑
𝑛

𝑖=1
(y𝑖 − 𝜇

(𝑡)

𝑗
) (y𝑖 − 𝜇

(𝑡)

𝑗
)
𝑇

⋅ 𝑒
(𝑡)

𝑖,𝑗

∑
𝑛

𝑖=1
𝑒
(𝑡)

𝑖,𝑗

,

𝜎
(𝑡)

𝑗

2

∼Wishart(𝛼0 +
𝑙
(𝑡)

𝑗

𝑀0

, 𝛽0 +

𝜅
(𝑡)
2

𝑗

𝑁0

) ,

𝜇
(𝑡)

𝑗
∼N (𝜉

(𝑡)

𝑗
,𝜎
(𝑡)
2

𝑗
) ,

(𝜋
(𝑡)

1
, . . . , 𝜋

(𝑡)

𝑚
) ∼ D (𝑎1 + 𝑙

(𝑡)

1
, . . . , 𝑎𝑚 + 𝑙

(𝑡)

𝑚
) .

(29)

5.3. Management ofModel Number. Choosing proper thresh-
olds 𝜆𝜋, 𝜆𝜇, and 𝜆𝜎, use merging and pruning technology for
reference from EM approach. In this way, algorithm becomes
more concise ignoring jumping in parameter space.

6. Multitarget State Estimation

6.1. EquivalentMeasurement of Target. Therealmeasurement
originated from target is hardly obtained because of the
effect from clutter in MTT. In many circumstances, the real
measurement is always replaced by equivalent measurement
of target. Taking JPDA algorithm for example, the equivalent
measurement could be obtained by probability weighted
moments from actual measurement in the gate. To the
algorithm proposed in this paper, association probability
of target and measurement is represented by so-called loss
variable, so average value of target-originated measurement
model, that is, �̂�𝑖

𝑡,𝑘
(𝑖 = 1, . . . , 𝑔𝑡,𝑘), represents the equivalent

measurement of target 𝑖, with variance 𝑅𝑘 still. And the so-
called gate is extended to the global surveillance region.

6.2. Multitarget State Estimation. Suppose that the state and
measurement functions are both of the linear systems. That
is,

𝑓
𝑖

𝑘
(x𝑖
𝑘
) = 𝐹
𝑖

𝑘
, ℎ
𝑖

𝑘
(x𝑖
𝑘
) = 𝐻

𝑖

𝑘
(x𝑖
𝑘
) , 𝑖 = 1, . . . , 𝑡𝑘. (30)

By substitution of the equivalent measurement �̂�𝑖
𝑡,𝑘

into
Kalman filter, state estimation of target 𝑖 is acquired. The
algorithm of Kalman filter is
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Input: the convergence threshold 𝜀, the estimation of clutter model parameters at time 𝑡𝑘−1,
𝜇
𝑖

𝑐, 𝑘
(0) = �̂�

𝑖

𝑐,𝑘−1
, Σ

𝑖

𝑐,𝑘
(0) = Σ̂

𝑖

𝑐,𝑘−1
, 𝑖 = 1, . . . , 𝑔

𝑐,𝑘−1
.

Initialization step:
(A) Initialization of Clutter Model:

sample some clutter points randomlyP𝑘 = {𝑝
𝑖

𝑘
}
𝑔0

𝑖=1
, the number of the clutter points is 𝑔0,

For 𝑖 = 𝑔𝑐,𝑘−1 + 1, . . . , 𝑔𝑐,𝑘−1 + 𝑔0, do,
𝜇
𝑖

𝑐,𝑘
(0) = 𝑝𝑘, Σ

𝑖

𝑐,𝑘
(0) = 𝜎

2
𝐼 , 𝑖 = 𝑔𝑐,𝑘−1 + 1, . . . , 𝑔𝑐,𝑘−1 + 𝑔0

where 𝜎2 = (1/10𝑑) trace((1/𝑛𝑘) ∑
𝑛𝑘

𝑗=1
(𝑧
𝑗

𝑘
− 𝑧𝑘)(𝑧

𝑗

𝑘
− 𝑧𝑘)
𝑇
)

end for 𝑖. 𝑔𝑐,𝑘(0) = 𝑔𝑐,𝑘−1 + 𝑔0.
(B) Initialization of Target-Originated Measurement Model:

To survival targets, 𝑔𝑠,𝑘(0) = 𝑔𝑡,𝑘−1, for 𝑖 = 1, . . . , 𝑔𝑠,𝑘(0), do
𝜇
𝑖

𝑠,𝑘
(0) = ℎ𝑘(𝑥

𝑖

𝑘|𝑘−1
), Σ

𝑖

𝑠,𝑘
(0) = 𝑅𝑘, (𝑖 = 1, . . . , 𝑔𝑠,𝑘(0))

F𝑠,𝑘 (⋅;𝜓𝑠,𝑘 (0)) = ∑
𝑔𝑠,𝑘(0)

𝑖=1
𝜋
𝑖

𝑠,𝑘
(0)N(⋅;𝜇𝑖

𝑠,𝑘
(0), Σ

𝑖

𝑐,𝑘
(0)). end for 𝑖.

To Spontaneous Birth Targets, 𝑔𝑏,𝑘(0), 𝜇
𝑖

𝑏,𝑘
(0), Σ

𝑖

𝑏,𝑘
(0) will be set according to prior

information, for 𝑖 = 1, . . . , 𝑔
𝑏,𝑘
(0), do

F𝑏,𝑘 (⋅;𝜓𝑏,𝑘 (0)) = ∑
𝑔𝑏,𝑘(0)

𝑖=1
𝜋
𝑖

𝑏,𝑘
(0)N(⋅;𝜇𝑖

𝑏,𝑘
(0), Σ

𝑖

𝑏,𝑘
(0)). end for 𝑖.

To Spawned by Existent Targets, 𝑔𝑝,𝑘(0) = 𝑝𝑘𝑔𝑠,𝑘(0), for 𝑖 = 1, . . . , 𝑔𝑠,𝑘(0), 𝑗 = 1, . . . , 𝑝𝑘, do

𝜇
𝑖,𝑗

𝑝,𝑘
(0) = ℎ𝑘(𝑥

𝑖

𝑘|𝑘−1
) + 𝑑
𝑗

𝑝.𝑘
,F𝑝,𝑘(⋅;𝜓𝑝,𝑘(0)) =

𝑝𝑘

∑

𝑗=1

𝑔𝑝,𝑘(0)

∑

𝑖=1

𝜋
𝑖𝑗

𝑝,𝑘
(0)N(⋅;𝜇

𝑖𝑗

𝑝,𝑘
(0), Σ

𝑖𝑗

𝑝,𝑘
(0)).

end for 𝑗; end for 𝑖.
𝑔
𝑡,𝑘
(0) = 𝑔

𝑠,𝑘
(0) + 𝑔

𝑏,𝑘
(0) + 𝑔

𝑝,𝑘
(0). 𝑔

𝑘 (0) = 𝑔𝑐,𝑘 (0) + 𝑔𝑡,𝑘 (0) 𝜋
𝑖

𝑘
(0) = 1/𝑔

𝑘
(0). Set 𝑡 := 0.

Repeat:
Expectation-step: calculate the conditional expectation of missing-data 𝐸𝑘 = {𝑒

1

𝑘
, . . . , 𝑒

𝑛𝑘

𝑘
}

For 𝑖 = 1, . . . , 𝑔𝑘, 𝑗 = 1, . . . , 𝑛𝑘, do
𝐸𝜓𝑘(𝑡)

[𝑒
𝑖𝑗

𝑘
; 𝑍𝑘] = 𝜏

𝑖𝑗

𝑘
(𝑡) = (𝜋

𝑖

𝑘
(𝑡)𝑓
𝑖

𝑘
(𝑧
𝑗

𝑘
; 𝜃
𝑖

𝑘
(𝑡))) / (∑

𝑔𝑘(𝑡)

𝑖=1
𝜋
𝑖

𝑘
(𝑡)𝑓
𝑖

𝑘
(𝑧
𝑗

𝑘
; 𝜃
𝑖

𝑘
(𝑡))). end for 𝑗; end for 𝑖.

calculate the conditional expectation of complete-data log likelihood givenP𝑘 and 𝜓𝑘(𝑡)

𝑄(𝜓
𝑘
;𝜓
𝑘
(𝑡)) = 𝐸𝜓𝑘(𝑡)

{logC𝑘(𝑌𝑘;𝜓𝑘)

𝑍𝑘} =

𝑔𝑘

∑

𝑖=1

𝑛𝑘

∑

𝑗=1

𝜏
𝑖𝑗

𝑘
(𝑡) {log 𝜋𝑖

𝑘
(𝑡) + log𝑓𝑖

𝑘
(𝑧
𝑗

𝑘
; 𝜃
𝑖

𝑘
(𝑡))}

Maximization-step: require the global maximization of 𝑄(𝜓
𝑘
;𝜓
𝑘
(𝑡)) with respect to 𝜓

𝑘
over the

parameter space to give the updated estimate �̂�
𝑘
(𝑡) = arg max𝜓𝑘𝑄(𝜓𝑘;𝜓𝑘(𝑡)).

for 𝑖 = 1, . . . , 𝑔𝑘, 𝑗 = 1, . . . , 𝑛𝑘, do

𝜋
𝑖

𝑘
(𝑡) =

1

𝑛𝑘

𝑛𝑘

∑

𝑗=1

𝜏
𝑖𝑗

𝑘
(𝑡), 𝜇

𝑖

𝑘
(𝑡) =

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)𝑧
𝑗

𝑘

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)

, 𝑖 = 1, . . . , 𝑔𝑘(𝑡),
𝑖

∑

𝑐,𝑘

(𝑡) =

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)(𝑧
𝑗

𝑘
− 𝜇
𝑖

𝑐,𝑘
(𝑡))(𝑧

𝑗

𝑘
− 𝜇
𝑖

𝑐,𝑘
(𝑡))
𝑇

∑
𝑛𝑘

𝑗=1
𝜏
𝑖𝑗

𝑘
(𝑡)

end for 𝑗; end for 𝑖.
Component management step:manage the components of the set �̂�

𝑘
(𝑡) = {�̂�

𝑖

𝑘
(𝑡), �̂�
𝑖

𝑘
(𝑡), Σ̂
𝑖

𝑘
(𝑡)}
𝑔𝑘

𝑖=1

according to the merging and pruning strategy described in IV.C.
Update 𝑔𝑘(𝑡 + 1) and let 𝜓

𝑘
(𝑡 + 1) = {𝜋

𝑖

𝑘
(𝑡 + 1),𝜇

𝑖

𝑘
(𝑡 + 1), Σ

𝑖

𝑘
(𝑡 + 1)}

𝑔𝑘(𝑡+1)

𝑖=1
. denote the managed

component number and parameter set. Set 𝑡 := 𝑡 + 1.
Until L𝑘(𝑌𝑘;𝜓𝑘(𝑡 + 1)) −L𝑘(𝑌𝑘;𝜓𝑘(𝑡))


< 𝜀L𝑘(𝑌𝑘;𝜓𝑘(𝑡)).

Output: the set of estimated parameters �̂�
𝑘
= 𝜓
𝑘
(𝑡 + 1)

Algorithm 1: FMM Parameters Estimation by EM approach.

(1) Prediction Step

x̂𝑖
𝑘|𝑘−1

= 𝐹
𝑖

𝑘−1
x̂𝑖
𝑘−1
,

𝑃
𝑖

𝑘|𝑘−1
= 𝑄
𝑖

𝑘−1
+ 𝐹
𝑖

𝑘−1
𝑃
𝑖

𝑘−1
(𝐹
𝑖

𝑘−1
)
𝑇

.

(31)

(2) Update Step

𝐾
𝑖

𝑘
= 𝑃
𝑖

𝑘|𝑘−1
𝐻
𝑇

𝑘
(𝐻𝑘𝑃

𝑖

𝑘|𝑘−1
𝐻
𝑇

𝑘
)
−1

,

x̂𝑖
𝑘
= x̂𝑖
𝑘|𝑘−1

+ 𝐾
𝑖

𝑘
(�̂�
𝑖

𝑐,𝑘
− 𝐻𝑘x̂

𝑖

𝑘|𝑘−1
) ,

𝑃
𝑖

𝑘
= (𝐼 − 𝐾

𝑖

𝑘
𝐻𝑘) 𝑃

𝑖

𝑘|𝑘−1
.

(32)

If the state function or measurement function cannot
meet linear condition, nonlinear filter methods such as
extended Kalman filter (EKF) and unscented filter (UF) [16]
will make contribution.

7. Simulation

7.1. Scene Generation. Themotionmodel of the targets can be
described as

x̂𝑖
𝑘
= 𝐹
𝑖

𝑘−1
x̂𝑖
𝑘−1
+ 𝜔
𝑖

𝑘−1
, 𝑖 = 1, . . . , 𝑡𝑘, (33)

where 𝑡𝑘 denotes the target number at time 𝑘, x𝑖
𝑘
= [𝑥
𝑖

𝑘
, �̇�
𝑖

𝑘
,

�̈�
𝑖

𝑘
, 𝑦
𝑖

𝑘
, ̇𝑦
𝑖

𝑘
, ̈𝑦
𝑖

𝑘
] denotes the state vector of target 𝑖, 𝐹𝑖

𝑘
denotes
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Figure 1: Tracks of targets.

the state transition matrix, and 𝜔𝑖
𝑘
∼ N(0, 𝑄𝑖

𝑘
) denotes

the process noise. The tracking process lasted for 100 s
with a sampling interval 1 s. In two-dimensional coordi-
nate system, the surveillance region is [−1000m, 1000m] ×
[−1000m, 1000m]. The flight track is shown in Figure 1.

In Figure 1, the circle denotes starting point, while the
rectangular denotes the end points of a track.The solid line is
the track of target 1, which was born at time 1 and disappeared
at time 70. The dotted line is the track of target 2, which was
born at time 20 and disappeared at time 90. The dashed line
is the track of target 3, which was spawned by target 2 and
disappeared at time 100.

Target 1 and target 2 moved with constant acceleration
(CA). The state transition matrix 𝐹𝑖

𝑘
and variance matrix of

process noise 𝑄𝑖
𝑘
[17] are

𝐹
𝑖

𝑘
= [
𝐹CA

𝐹CA
] , 𝑄

𝑖

𝑘
= [
𝑄CA

𝑄CA
] , (34)

where

𝐹CA =
[
[
[
[

[

1 𝑇
𝑇
2

2

1 𝑇

1

]
]
]
]

]

, 𝑄CA = 𝜎
2

𝜔

[
[
[
[
[
[
[
[
[

[

𝑇
4

4

𝑇
3

2

𝑇
2

2

𝑇
3

2

𝑇
2

2
𝑇

𝑇
2

2
𝑇 1

]
]
]
]
]
]
]
]
]

]

. (35)

Target 3 moved with constant velocity (CV). The state
transition matrix 𝐹3

𝑘
and variance matrix of process noise 𝑄3

𝑘

are

𝐹
3

𝑘
= [
𝐹CV

𝐹CV
] , 𝑄

3

𝑘
= [
𝑄CV

𝑄CV
] , (36)

where

𝐹CV =
[

[

1 𝑇 0

1 0

0

]

]

, 𝑄CV = 𝜎
2

𝜔

[
[
[
[
[
[
[

[

𝑇
4

4

𝑇
3

2
0

𝑇
3

2
𝑇
2
0

0 0 0

]
]
]
]
]
]
]

]

, (37)

Table 1: Elliptic range of the complex clutter.

Model Weight Center
(×102m)

Long axis
(×102m)

Short axis
(×102m)

1 0.3 / /
2 0.3 [4, 2] 3 2
3 0.2 [−2, 4] 2 2
4 0.2 [2, −2] 2 2

where 𝜎𝜔 denotes the standard deviation of process noise,
𝜎𝜔 = 0.01m/s

2.
Supposing that the measurement function is linear,

z𝑘 = [
1 0 0 0 0 0

0 0 0 1 0 0
] x𝑘 + 𝜐𝑘. (38)

The sensor was in the origin of coordinate, with detection
probability𝑝𝐷 = 0.98 andmeasurement noise 𝜐𝑘 ∼N(0, 𝑅𝑘),
where variancematrix of measurement noise 𝑅𝑘 = 𝜎

2

𝜐
𝐼, 𝜎𝜐 =

12.5m.
Assume that the cluttermodel obeys stable Poisson distri-

bution in this tracking process, with the number of clutters𝑁𝑐
and parameter 𝜆𝑐 = 50.

𝑃 (𝑁𝑐 = 𝑐𝑘) =
𝑒
−𝜆𝑐𝜆
𝑐𝑘
𝑐

𝑐𝑘!
, (39)

where 𝑐𝑘 is the number of clutters and 𝜆𝑐 = 50 denotes the
average level that the sensor could receive 50 clutters each
frame.

Assume that the position distribution of clutter model is

F𝑐,𝑘 (⋅; 𝜃𝑐) = 𝜋
1

𝑐
U (⋅) +

4

∑

𝑖=2

𝜋
𝑖

𝑐
D (⋅) ,

4

∑

𝑖=1

𝜋
𝑖

𝑐
= 1, (40)

which is composed of one uniform distribution dispersed
over the whole surveillance region and three groups of com-
plex distribution concentrated in elliptic areas. Each group is
a superposition of different types clutter model, not limited
to uniform and Gaussian distribution, see in Figure 2.

Elliptic range of this complex clutter is listed as in Table 1.

7.2. Parameter Estimation in FMM. The effect of algorithm
proposed in this paper is compared with Gaussian mixture
PHD (GM-PHD) filter, which directly estimates the number
and state of multitarget without clutter model fitting.

To spontaneous birth targets, the measurement model
is represented by (13), with 𝑔𝑏,𝑘(0) = 2, 𝜇1

𝑏,𝑘
(0) =

[200, 800]
𝑇, 𝜇2
𝑏,𝑘
(0) = [800, −800]

𝑇, and Σ1
𝑏,𝑘
(0) = Σ

2

𝑏,𝑘
(0) =

diag([100, 100]). To the spawned targets generated from
existent targets, the measurement model is represented by
(14), with 𝑝𝑘 = 1, d1𝑝.𝑘 = [0, 0]

𝑇, and Σ𝑖1
𝑝,𝑘
= diag([100, 100]),

𝑖 = 1, . . . , 𝑡𝑘.
Let the merging threshold of the models 𝑈 = 4, pruning

threshold of clutter model 𝐷𝑐 = 3, and pruning threshold
of target-originated measurement model 𝐷𝑡 = 0.5. With
the algorithm proposed, estimation of clutter model can
approximately converge to realmodel, as is shown in Figure 2.
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Figure 2: Fitted clutter model.

In Figure 2, the solid line illustrates 95% ellipse of the
real clutter model, while the dotted line illustrates 95% ellipse
of the estimation. Times of Monte Carlo simulations have
shown that some estimation results could fit the region
which the clutter concentrated according to Table 1, shown
as Figure 2. But it does not exclude some results shown as
Figure 3, caused by the complexity of cluttermodel.Nomatter
how complex the clutter is, FMM algorithm would fit it as
a linear superposition of one uniform and many Gaussian
distributions, but the parameters may differ from each other,
as shown by different dotted ellipse in Figure 3. Nevertheless,
these situations do not affect the validity of FMM algorithm,
with estimation accuracy satisfied.

7.2.1. Effect Comparison of Target Number Estimation. The
target number estimated by GM-PHD filter is represented in
Figure 4, while the algorithm proposed in Figure 5.

In Figures 4 and 5, the solid line illustrates the real target
number varying with time, while it circles estimation. Appar-
ently, effect of GM-PHD filter is worse. In circumstances
of unknown complex clutter distribution, the assumption of
uniform style will lead to serious error in target number
estimation. Generally speaking, the more dense clutters the
target passing and more time spent in this area, the more
fake targets could emerge from estimation. As the algorithm
proposed can fit clutter model synchronous with tracking,
fake targets in high-density clutter area will decrease. Con-
sequently, estimation accuracy of target number improved
apparently. One attention: When target is passing high-
density clutter area, the state estimation will get lost provi-
sionally.

7.2.2. Effect Comparison of Target Position Estimation. Posi-
tion estimation of multitarget by GM-PHD filter is repre-
sented in Figure 6, while the method is proposed in Figure 7.

In Figures 6 and 7, the solid line illustrates the real target
track, while circles illustrate the position estimated. Similarly,

the assumption of uniform style will lead to a crowd of fake
targets emerging in high-density clutter area.

7.2.3. Evaluation of Effects. Different from single target track-
ing, root mean square error (RMSE) cannot measure error in
multiple targets tracking quantitatively, [18] suggesting that
Wasserstein distance can describe error in case of the number
of target varying with time in MTT.

Suppose that 𝑋𝑘 = {x1𝑘, . . . , x
𝑇𝑘

𝑘
} represents actual multi-

target state set at time 𝑘; estimated state set𝑋𝑘 = {x̂1𝑘, . . . , x̂
�̂�𝑘

𝑘
},

where 𝑇𝑘 and �̂�𝑘 denote the actual and estimated number
of multitarget, respectively. The Wasserstein distance can be
defined as

𝑑𝑝,𝑘 (𝑋𝑘, 𝑋𝑘) = min
𝐶𝑘

𝑝
√

|�̂�𝑘|

∑

𝑖=1

|𝑋𝑘|

∑

𝑗=1

𝐶
𝑖𝑗

𝑘


x̂𝑖
𝑘
− x𝑗
𝑘



𝑝

, (41)

where𝐶𝑘 denotes transfer matrix with every element𝐶𝑖𝑗
𝑘
≥ 0,

Σ
|𝑋𝑘|

𝑗=1
𝐶
𝑖𝑗

𝑘
= 1/|𝑋|, and Σ|𝑋𝑘|

𝑖=1
𝐶
𝑖𝑗

𝑘
= 1/|𝑋|. Also, | ⋅ | represents

cardinality and ‖ ⋅ ‖𝑝 represents norm with 𝑝 = 2. When the
set of𝑋𝑘 or𝑋𝑘 is empty,Wasserstein distance can be assigned
to 0.When the number of elements in𝑋𝑘 and𝑋𝑘 is the same,
Wasserstein distance is the best association distance.

Wasserstein distance varying with time of these two
methods is shown in Figures 8 and 9. To punish themistake in
target number estimation, Wasserstein distance reaches peak
value when the number is wrongly estimated. From Figures
8 and 9, Wasserstein distance of the latter is better than that
of former, because the latter has more precise estimation.
When the target number is correctly estimated, the value of
Wasserstein distance is about 10m, approximately the square
root of trace(Σ𝑖

𝑏,𝑘
(0)) in Section 7.2.

8. Conclusion

FMM approach can solve unknown clutter problem in MTT.
A novel MTT algorithm based on clutter model preestima-
tion is put forward in this paper. In this algorithm,multitarget
likelihood function is established with the finite mixture
model (FMM), the parameters of which can be estimated by
the algorithm of EM andMCMC.These two algorithms were
put forward in the paper. Furthermore, target number and
multitarget states can be estimated as well as the cluttermodel
fitted. No matter how complex the clutter is, FMM algorithm
would fit it as a linear superposition of one uniform and
many Gaussian distributions, but the parameters may differ
from each other, but it will not affect the validity of FMM
algorithm.
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Figure 3: Other estimation result of complex clutter model.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

11

Time (s)

Ta
rg

et
 n

um
be

r e
sti

m
at

io
n 

(m
)

Estimated target number
True target number

Figure 4: Target number estimation of GM-PHD filter.
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Figure 5: Target number estimation of the proposed method.
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Figure 6: Target position estimation of GM-PHD filter.
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Figure 7: Target position estimation of the proposed method.
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Figure 8: Wasserstein distance of GM-PHD filter.
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Figure 9: Wasserstein distance of the proposed method.
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