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Precise localization and formation control are one of the key technologies to achieve coordination and control of swarm robots,
which is also currently a bottleneck for practical applications of swarm robotic systems.Aiming at overcoming the limited individual
perception and the difficulty of achieving precise localization and formation, a localization approach combining dead reckoning
(DR) with wireless sensor network- (WSN-) based methods is proposed in this paper. Two kinds of WSN localization technologies
are adopted in this paper, that is, ZigBee-based RSSI (received signal strength indication) global localization and electronic tag
floors for calibration of local positioning. First, the DR localization information is combined with the ZigBee-based RSSI position
information using the Kalman filter method to achieve precise global localization and maintain the robot formation. Then the
electronic tag floors provide the robots with their precise coordinates in some local areas and enable the robot swarm to calibrate
its formation by reducing the accumulated position errors. Hence, the overall performance of localization and formation control of
the swarm robotic system is improved. Both of the simulation results and the experimental results on a real schematic system are
given to demonstrate the success of the proposed approach.

1. Introduction

The application area of robot continues to expand since the
1980s, and single robot can no longer satisfy the increasing
requirement due to the complication of tasks and working
environments. Since Beni developed several theories on
cellular automata in the early eighties [1], self-organization
multirobot system has drawnmuch attention of robot experts
across the world because of its many advantages. IEEE
International Conference on Robotics and Automation listed
the robot coordination as a special subject in 1986. Several
international conferences such as the Swarm Robotics and
Swarm Intelligence have been held regularly in the last
decade.

The swarm robotic system is a kind of special multirobot
system which focuses the realization of individual physical
robot as well as the interaction of robots with each other and
the environment; that is, the related studies are concerned
with how to design a relatively simple individual robot
physically so that to get the desired collective behavior

emerging from the interactions of robot to robot and robot to
environment. Compared with the centralized control system,
the structure of robots in a swarm robotic system which can
fulfill the same task is relatively simpler. So the individuals
in a swarm robotic system are interchangeable and easy to
modularize and suitable for mass production. Generally, a
swarm robot system is highly redundant. Therefore it has
strong robust performance and the ability to adapt to the
environment dynamically, which exceeds the capability of
other kinds of robot systems, especially the single robot
system. Swarm robotic systems are used in many occasions,
such as organizing robots into certain formations, deploy-
ment of distributed sensors, mapping of the environment,
and goal-searching [1, 2]. Although the swarm robot system
derives from the multirobot system, there are some major
differences comparing with other multirobot systems: the
robot’s autonomy, large number of the robots, homogeneity
of the robots, the incapability and inefficiency which can also
be interpreted as simplicity of a single robot, and the limited
sensing range [3].
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Research on swarm robots has gradually emerged in
recent years along with the development of multirobot
systems. Fukuda is the first to attempt a collaborative way
of working for a team of robots in his study of CEBOT [4].
CEBOT is a distributed systemmade of many indiscriminate
autonomous robots which have limited intelligence on their
own. The swarm intelligence emerges when the single robots
interact with each other in the system they formed, in this
way a complex task which outranges the capability of single
robot can be fulfilled. The MARTHA (multiple autonomous
robots system for transport and handling application) project
specializes in a multirobot system, planning to set up a large-
scale team, made of 10 to 100 autonomous mobile robots, to
carry cargoes in ports, airports, and other application scenar-
ios [5]. Dorigo is the lead researcher of the SWARM-BOTS
project sponsored by the Future and Emerging Technologies
program of the European Commission [6]. They used s-
bots to conduct a series of experiments to achieve different
goals. Seyfried et al. in KarlsruheUniversity of Germany have
the I-SWARM project funded by the European Commission,
intending to build the first very large-scale artificial swarm
(VLSAS) with a swarm size of up to 1,000 microrobots with a
planned size of 2 × 2 × 1mm3 [7].

The further researches and applications of swarm robots
depend much on the position information of the robot
members in the system.There are many localizationmethods
for mobile robots. Dead reckoningmethod is an effective and
widely used localization method for mobile robots, which is
usually utilized with other localization techniques to com-
pensate its own defects [8, 9]. Considering the requirements
of low power and time consumption, data transfer speed,
calculation complexity, and other characteristics of swarm
robots, wireless sensor network is fit for the localization
of swarm robot systems. Mao et al. give a general review
of measurement techniques and localization algorithms in
WSN, among which RSSI method proved to be suitable for
multirobot localization [10]. Ishimoto and Hara use RSSI to
calculate a set of common coordinates and heading direction
for a robot swarm. Both indoor and outdoor environment
experiment results are obtained and analyzed, though the
data is not very satisfactory because of the poor ranging
capability of RSSI [11]. Oliveira et al. proposed a relative
localization algorithm for multirobot teams based on RSSI
[12]. Although RSSI estimation is a coarse result, it is still
sufficient for the robots to perform their tasks. So when the
requirement of accuracy is not very high, RSSI can be used as
an effective and efficient localization method [13, 14]. Zhang
et al. proposed an environmental-adaptive path loss model
to modify the traditional RSSI localization and obtained a
desired result [15]. In the experiment of Dulimarta and Jain,
mobile robots move from initial position to final position
and avoid static or dynamic obstacles during navigation.
They utilize the ceiling lights and door number plates as
landmarks to complete the feedback and verification process
of the robot’s self-location, which makes a considerable
improvement of localization accuracy in experimental results
[16].

In this paper, we propose a hybrid localization method
for swarm robots utilizing DR, WSN-based RSSI, and RFID

techniques. Through the data fusion of Kalman filter and
RFID-based calibration, the robot swarm is able to obtain
its location with higher accuracy. The rest of the paper is
organized as follows. In Section 2, the problem formulation,
the model of a single robot, and the overall control structure
are discussed. An improved localization method for swarm
robots is proposed and analyzed in Section 3. Simulation
results and schematic tests on real systems are given in
Section 4 to verify the effectiveness and feasibility of the
proposed approach. Conclusions are given in Section 5.

2. Problem Formulation

In this section, the problem of interest is first illustrated.Then
a simplified model of an individual swarm robot is given and
the formation control strategy is described.

2.1. Statement of the Problem. This paper focuses on the
localization and formation control problem of a mobile
swarm robotic system within a certain range of movement,
using DR method and WSN to localize the robot and the
electronic tag floors for position calibration.The robots work
inside an office building and move through the corridors
from an initial position to the goal position, maintaining the
original formation during movement. Figure 1 gives a sketch
of the designed scenario.

In most practical applications, the robot swarm should
have a relatively accurate knowledge of each robot’s position
to perform its task efficiently. However, there are still defects
in many localization methods for swarm robots and the lack
of accuracy is the main problem. The localization method
proposed in this paper aims at improving the precision of
localization for swarm robots with no additional complexity
in computation and hardware. Meanwhile an appropriate
formation control strategy is adopted to keep the robots in
a desired shape of formation.

2.2. Model of a Single Robot. A simplified model of a single
robot in the robot swarm is described as shown in Figure 2
with the one step movement from step 𝑘 to step 𝑘 + 1.
Consider the robot as a square with two driving wheels
mounted on opposite sides across the central axis. The wheel
gauge is the same as the robot’s side length 𝑙.

The coordinate 𝑥𝑜𝑦 is defined as the world coordinate
system. The robot’s state vector 𝑝 at step 𝑘 is 𝑝

𝑘
=

[𝑥
𝑘
, 𝑦
𝑘
, 𝜃
𝑘
, V
𝑘
]
𝑇, where (𝑥

𝑘
, 𝑦
𝑘
) is the coordinate of the robot,

𝜃
𝑘
is its orientation with respect to the 𝑥-axis of 𝑥𝑜𝑦, and V

𝑘
is

the robot’s current velocity. 𝑑
𝑘,𝑙
and 𝑑
𝑘,𝑟

are the displacements
of the left and right wheels from the 𝑘th step to the 𝑘 + 1th
step, respectively. 𝑑

𝑘
denotes the displacement of the robot’s

geometrical center, and Δ𝜃
𝑘
denotes the robot’s orientation

change. Thus the 𝑘 + 1th position can be obtained based on
the position of 𝑘th step.
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Figure 1: Sketch of the swarm robots moving in an office building environment.

The dead reckoning method gives an estimation of the
robot’s current position utilizing encoders.The process of cal-
culating the robot’s position by DR method can be described
with the following equations:

𝑑
𝑘
=
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(1)

The DR method only requires the previous coordinate
and orientation; then the localization estimation of the next
step can be obtained. This positioning method is efficient
and has low requirements for hardware; thus it has been
used widely for mobile robots. However, since the coordinate
of next step is calculated on the basis of its previous step,
the localization error accumulates through the whole motion
process which leads to large deviation in a long distance due
to the wheel slip, uneven ground, and many other errors.
Generally there are systematic error and stochastic error
for DR method. The systematic error mainly consists of the
inequality of two wheels, the uncertainty of wheel gauge,
the limitation of the encoder’s resolution, and the limited
sampling frequency. The stochastic error comes from wheel
slipping and the difference of floor’s roughness in different
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Figure 2: Model of a single robot moving from step 𝑘 to step 𝑘 + 1.

areas. Since the stochastic error is unpredictable, a perfect
solution to eliminate the error of dead reckoning is yet to
be found. Due to the uncertainty of DR method, we have
to use other kinds of sensors and localization methods to
compensate.

2.3. Formation Control. In most application scenarios such
as environment detection, reconnaissance, and surveillance,
the robot swarm will be much more efficient and man-
ageable when it is organized in a certain formation. There
are several formation control strategies, such as behavior-
based approach combined with potential field [17], leader-
follower approach [18], and generalized coordinates and
virtual structure methods [19]. Due to the simplicity of the
single robot of swarm robots in equipment and low power
consumption and other intrinsic properties, each robot only
has the local information obtained by the limited sensors on
board.Without centralized controller and a global knowledge
of the rest robots’ position, the formation of all the robots
is organized through the communication and coordination
with each other. Considering all the factors above, the leader-
follower strategy is most applicable in this scenario.

After forming a square with 7 × 7 robots in the starting
position, the robot swarm continues to maintain the forma-
tion during the whole movement process. 𝑝𝑘

𝑖,𝑗
denotes the

position of the robot in the 𝑖th column and 𝑗th row at the
𝑘th sampling step. Figure 3 shows the formation of the robot
swarm in the world coordinate system. Along the heading
direction, the head of every column is assigned as the group
leader and the robot at the far left in the front line is presumed
as the global leader. Role assignment will change following
the above rules when the swarm’s heading direction changes.
Each robot is considered as capable of knowing the distance
and the difference of heading direction between each other.
At each sampling step, every robot in the swarm detects
its surroundings and decides the actions it will perform
to correct the current formation. Global leader remains its
position unchanged; group leaders adjust themselves in a
straight line which is perpendicular to the heading direction
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Figure 3: The square shape formation of the robot swarm in the
initial position.

with the global leader and the followers in each group move
in line with their group leaders along the heading direction.

3. Localization and Formation Control with
Wireless Sensor Networks

Two kinds of WSN-based localization methods are utilized
to help improve the performance of DR-based method, that
is, RSSI-based localization method using ZigBee WSN and
position calibration using electronic tag floors. In this work
the designed scenario is that a robot swarm which has
been organized into a certain shape of formation in the
initial position moves to a target position while maintaining
the original formation during the whole moving process.
The beacon nodes of ZigBee WSN system and electronic
tag floors are laid in some relevant locations within the
movement range of the robot swarm. When a robot moves
outside the areas covered by electronic floors, its position
is calculated by DR and RSSI methods; once it reaches the
areas covered by electronic tag floors, the robot obtains
its coordinates from the detected electronic tag floor and
eliminates the accumulated errors of DR- and RSSI-based
localization method. In the designed scenario, the electronic
tag floors are laid in the corners and thus can effectively
eliminate the turning errors. The formation of the swarm
robots is maintained by utilizing the leader-follower method.
The flowchart of the designed approach is shown in Figure 4.

3.1. Overall Control Structure. The overall control structure
is designed based on the properties of the swarm robots.
Considering the large number of individual robots and
their limited sensing range, centralized control strategy is
not feasible for a swarm robot system. While distributed
control fits for the requirements such as flexibility, reliability,
openness, and easy maintenance, it has disadvantages like
low efficiency. Thus we use a linear dominance hierarchy
[20] as the overall control structure to achieve a balanced
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Figure 4: Flowchart of the designed approach.

performance in formation control of thewhole swarm robotic
system.

As shown in Figure 5, the control architecture is a
distributed control system organized in a two-level linear
hierarchy. Facing the robot swarm’s heading direction, the
leftmost robot in the front line is assigned as the global leader
automatically. The rest robots in the front line work as the
group leader, and the ones after them are the followers which
comply with the leader-follower formation control strategy.
It is assumed that the robots are equipped with infrared
sensor that allows them to know the deviation of distance and
direction between each other within a certain range, which is
also used to avoid collisions of robots.

3.2. Fusion of DR and RSSI

3.2.1. ZigBee-Based RSSI Localization. The communication
between swarm robots is a many-many process and it is
achieved by the local area communication network. For
reasons of economy and efficiency, requirements of transfer
speed, distance, network scale, and power consumption of
a robot swarm, ZigBee-based WSN is adopted in this paper
for the communication between robots, and accordingly it
is very convenient to implement the localization of each

of the nodes. Generally speaking, there are three kinds
of ranging methods in WSN localization, which are based
on the angle-of-arrival, the distance estimation, and the
RSS profiling measurements [10], respectively. As a kind of
distancemeasurement technique, RSSI requires nomore than
the basic sensors and has low power consumption, which fits
for the localization of small-size wireless mobile devices. In
this paper, ZigBee-based RSSI localization method is applied
to improve the DR method.

Each robot is equipped with the same ZigBee commu-
nication module, and it is assumed that the robot swarm
has built up a wireless sensor network within its working
environment. All the robots in the WSN can be positioned
by the RSSI information. Based on many previous researches
and experiments [13, 14], the received power 𝑃(𝑑) has a
logarithmic relationship with the distance 𝑑 between the
sender and the receiver, which can be described by the
following equation:

𝑃 (𝑑) = 𝑃
0
− 10𝑛

𝑝
log 𝑑

𝑑
0

, (2)

where 𝑃
0
is the received power at the reference distance of

𝑑
0
, 𝑑 is the distance between the sender and the receiver,

and 𝑛
𝑝
is the path-loss exponent. The value of 𝑛

𝑝
can be

determined by doing a series of empirical measurements of
𝑃 and 𝑑. Then with the knowledge of 𝑃, the value of 𝑑 can be
obtained. Theoretically, with three reference nodes the robot
(a blind node) is able to calculate its own position 𝑝

𝑘,RSSI.
With more reference nodes the localization estimation can
achieve higher accuracy, but it also leads to higher energy
consumption and computational complexity.

In fact, RSSI is an unstable indicator that suffers from a
number of related parameter variations which can be divided
into two kinds of influence factors: the propagation envi-
ronment and the hardware devices. Environmental factors
include the background noise, multipath propagation, the
temperature, and obstacles within the propagation space.
Hardware factors consist of the sending power, antenna’s
type and gains, the signal-noise ratio and supply voltage,
and so forth [21]. Since the RSSI method is a quite coarse
localization technique, it is only used as a complementary tool
considering the topology of the whole localization system.

3.2.2. Kalman Filter. Kalman filtering, proposed in 1960 by
R. E. Kalman, is a popular technique in multisensor data
fusion, which includes two steps, prediction and calibration.
Kalman filtering has been applied in robot localization, map
building, navigation, object identification, and many other
related fields for many years [22–27].

Consider the moving robot swarm as a discrete-time
system which can be described as follows:

𝑥
𝑘
= 𝐴𝑥
𝑘−1

+ 𝐵𝑈
𝑘
+ 𝑤
𝑘
,

𝑧
𝑘
= 𝐻𝑥
𝑘
+ V
𝑘
,

(3)

where 𝑥
𝑘
and 𝑧

𝑘
are the actual and measured values at

sampling step 𝑘, respectively; 𝐴 is the system matrix; 𝐵 is
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Figure 5: Overall control structure of the swarm robotic system.

the input matrix;𝑤
𝑘
is process covariance; V

𝑘
is measurement

covariance.
Assumed as white Gaussian noise, 𝑤

𝑘
and V

𝑘
follow

normal distribution described in (4), where their covariances
are denoted by 𝑄 and 𝑅, respectively:

𝑃
𝑤
∼ 𝑁 (𝜇

𝑤
, 𝑄) ,

𝑃V ∼ 𝑁 (𝜇V, 𝑅) .
(4)

Then the system state can be reconstructed utilizing
Kalman filter as follows:

𝑥
𝑘|𝑘−1
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𝑘−1|𝑘−1
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,
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𝑃
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,

(5)

where 𝑥
𝑘|𝑘−1

and 𝑥
𝑘|𝑘

are the prior and posterior estimation
of system state at step 𝑘, respectively, 𝑃

𝑘|𝑘−1
and 𝑃

𝑘|𝑘
are their

covariances, KG
𝑘
is the optimal Kalman gain, and 𝐼 is the

identity matrix. Based on (5), the minimum estimation error
covariance can be acquired in time, described as

𝑃
𝑘|𝑘

= 𝐸 (𝑒
𝑘|𝑘
𝑒
𝑇

𝑘|𝑘
) , (6)

where 𝑒
𝑘|𝑘

= 𝑥
𝑘
− 𝑥
𝑘|𝑘
, 𝑥
𝑘
is the actual state value [26].

The essence of Kalman filtering is to refactor system
state vectors. Follow the prediction-measurement-calibration
sequence and eliminate the random disturbance using the
actual measurements; then the system state can be recon-
structed.

3.2.3. Data Fusion by Kalman Filter. The movement process
of the robot swarm can be divided into two stages, as shown
in Figure 4.The first stage ismoving forward in a straight line.
The second stage starts when the robot’s position estimation
gets in the electronic tag floor areas, which triggers the RFID
card reader mounted on the robot, and it ends when robot
moves away from these areas.

During the first stage, the robots move forward, self-
positioning with Kalman filter bymerging the data of DR and
RSSImeasurements. InDRmethod, systematic errors like the
inequality of wheel diameter cannot be avoided but can be
compensated by modeling the errors, while stochastic errors
like wheel slipping can be treated as white Gaussian noise [25]
and can be reduced by using Kalman filter. According to [28],
the errors of𝑥, 𝑦 coordinates and turning angle 𝜃 inDR-based
localization estimation can be modeled as Δ𝑥 ∼ 𝑁(𝜇

𝑥
, 𝜎
2

𝑥
),

Δ𝑦 ∼ 𝑁(𝜇
𝑦
, 𝜎
2

𝑦
), and Δ𝜃 ∼ 𝑁(𝜇

𝜃
, 𝜎
2

𝜃
), respectively.

DR is used to get the prior estimation andRSSI estimation
is used as the measured values. Then (5) can be adapted to a
simpler version as follows:

KG
2,𝑘

=

𝜎
2

1,𝑘

𝜎
2

1,𝑘
+ 𝜎
2

𝑧
2
,𝑘

,

𝑥
2,𝑘

= 𝑥
1,𝑘

+ KG
2
(𝑍
2,𝑘

− 𝑥
1,𝑘
) ,

(7)

where KG
2,𝑘

is the Kalman gain used in data fusion and 𝜎
1,k

and 𝜎
𝑧
2
,𝑘
are the standard deviations of DR and RSSI estima-

tion, which can be obtained statistically from experimental
results. 𝑥

1,𝑘
and 𝑥

2,𝑘
are the prior and posterior estimation

at step 𝑘; 𝑧
2,𝑘

is the RSSI measurements. Thus an optimized
localization result can be obtained at each step by (7).

3.3. Calibration Using Electronic Tag. Radio frequency iden-
tification, also known as electronic tag, is used to identify
a certain object and transfer data via radio signal with no
need formechanical or optical contact between identification
system and target objects. The basic components of a RFID
system are a tag, a reader, and an antenna. A tag has its
exclusive electronic code and it is attached to the target object.
A reader is a handheld or stationary device used to read or
sometimes write data in the tag. An antenna completes the
radiofrequency signal transmission tasks.

There are active tags, passive tags, and semipassive tags.
Active tags have built-in batteries and emit signals period-
ically. Battery-assisted passive tags also have small batteries,
which can be triggered onlywhen the reader is nearby. Passive
tags get their power supply from the radio waves of the reader
instead of batteries. The data exchange will not happen until
the reader comes close to the tag to power it up [29]. The
default of batterymakes passive tags cheaper and smaller, and
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the electronic floor we use in our work is a kind of passive tag.
The RFID technology has been widely used and has plenty of
potential applications in the future [30]. In this paper we use
it in the localization system as fixed-point marks to calibrate
the estimated position of swarm robots.

In the process of moving around, the robots will get
into the areas where the electronic tag floors are previously
distributed. For the sake of energy conservation, the RFID
reader will be turned on only when the estimated position
of the robots are close to the electronic tag floor area within
a range of 0.5m. The ID of each electronic tag corresponds
to a certain set of fixed coordinates, which was manually
preset. Then the robot can obtain its actual location by any
detected ID. Since the electronic tags are only floored in
the topologically important areas, in this case, the turning
corners, the robot can adjust its turning angle to the desirable
orientation by continually collecting the errorless position
information from the tags along its path. The localization
method in stage one is suspended until the robots can no
longer detect electronic tags and step out of the electronic tag
floor areas. Once the robot leaves these areas, it steps into the
stage one again. In this way the cycle repeats until the robot
swarm arrives to its final destination.

An illustration of the calibration process of a single robot
is shown in Figure 6. When the robot 𝑅 steps onto the
floors at sampling step 𝑚, it obtains the first detected RFID
signal, which can be transformed into its present coordinates.
During themovement between two electronic tag floor areas,
the uneven ground and the mechanical errors deflect 𝑅
from its ideal trajectory. In order to make a turn at the
desired position, robot 𝑅 calculates the difference between
its current position and the preset turning point denoted by
the blue shaded floor and adjusts its heading direction. As
it moves towards the turning point, 𝑅 keeps detecting IDs
and uses them to navigate until it reaches the blue floor.
Then 𝑅 turns a preset amount of angle, which inevitably has
some mechanical errors. Robot 𝑅 navigates itself to the right
heading direction and continues its following journey after
stepping out of the electronic tag floors.

For the whole swarm, robots still comply with the leader-
follower method to maintain the formation. Once the global
leader detected the first ID of an electronic tag, obtaining
its precise location, then all the other robots correct their
orientation and position based on their assigned roles. So far
the localization errors are already eliminated to relatively very
small values. When all the swarm members are inside the
electronic tag floor area, the localization errors can be almost
eliminated completely.

4. Experimental Results

4.1. Simulated Results. To verify the effectiveness of the
proposed approach, a series of simulations are carried out
using Matlab. All the related parameters are chosen based
on real robot systems that are tested in an indoor office
environment.

As shown in Figure 7, it can be seen that generally the
deviation of DR method’s estimation from the ideal position

Orientation adjustment

RR

R

R

R

R

R
Step m

Step n

Actual
turning
angel
Δ𝜃

Figure 6: Position calibration for robots using electronic tag floors.

is quite large. As the movement distance increases, the
errors accumulate to a great extent, which can be seen in
the figure that the robot’s trajectory is diverging during
the movement from one corner to another. However, the
trajectory converges when it reaches the turning corner
covered by electronic tag floors, because the robot can obtain
their precise location with an RFID reader receiving data
from the electronic tags. So, as the robots move through the
electronic tag floor area, they can adjust themselves to the
right direction based on the coordinate information from the
tags and thus there is no turning error. In this way, the robot
starts its second, third, and fourth segment of path with no
previous error. On the other hand, the deviation of the RSSI
localization results varies in a certain range and does not
accumulate as robots move forward. The localization results
of the proposed approach demonstrate better performance
and the deviation of the localization results is relatively small
in general. All these simulation results show that the esti-
mated coordinates of RSSI method are less accurate than DR
method in a short distance, while, after a period of time, the
error of DR method accumulates quickly and then becomes
bigger than that of the RSSI method. By combining these
two methods, the proposed approach has the least deviation.
In addition, the electronic tag floors further improve the
localization results by calibrating all the positions of robots
that step into the electronic tag areas, which is very important
for formation control of swarm robots.

Figures 8(a) and 8(b) demonstrate the partial magnifi-
cations of the trajectories. From step 𝑘 = 1 to 𝑘 = 8, the
deviation of DR estimation is relatively small while the RSSI
estimation is far from the real trajectory, and the estimation
of the proposed method is close to DR estimation. From
step 𝑘 = 8 to 𝑘 = 16, DR’s estimation gradually moves
farther and farther away from the real trajectory; during this
period, the estimation of the proposed method still keeps
close to the real trajectory due to the balancing of RSSI
results. Figure 8(c) shows the situation when a robot reaches
the electronic tag floor area, where all the localization errors
have been eliminated and the estimation matches perfectly
the real position. As the robots move out of the corner area,
localization errors begin to accumulate again.
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Figure 7: Estimated trajectories of all the three methods for the
swarm robotic systems.

The deviation of each method is shown in Figure 9.
There are four segments of the robot’s trajectory and within
each segment the red curve of DR is on the rise and then
converges to zero when the robot gets to the electronic tag
floor areas. The blue curve of RSSI deviation fluctuates and
has no tendency to grow over time. The black curve of the
proposed method’s deviation is a balanced result between
the DR method and the RSSI method, which is lower than
both of DR and RSSI methods regarding the whole process
of movement. The bars of three different colors on the right
denote the mean error of all the robots in each step of DR,
RSSI, and the proposed approach, respectively. It is clear that
the proposed method has the least deviation.

Since thewhole robot swarm corrects its formation before
it moves towards the next step, the localization results of DR
and the proposedmethod are influenced. Figure 10 shows the
comparison on estimation errors of DR method before and
after formation correction. From the perspective of the whole
swarm, the localization errors of each step are smaller after
the formation adjustment. The estimation results of the RSSI
method are not affected by the formation control process, so
the accuracy of its localization will not change and thus has
no influence on the result of the proposed method. Figure 11
shows the comparison on estimation error of the proposed
method before and after formation correction. The curve of
the error after formation adjustment is not always below the
one before formation adjustment, but the bar denoting the
mean error of each step shows that the estimation error does
decrease after adjusting the formation.Though the formation
control may lead to an increase of the estimation error in
some steps, there is a slightly drop of 0.4 cm on average.

Table 1: Total errors of the three methods.

/cm RSSI Dead reckoning Proposed method

𝑛

∑

𝑘=1

𝑆
𝑘

1334.90 408.42 377.97 360.75 335.28
1350.22 395.39 362.07 349.26 392.92
1333.80 385.98 354.06 339.87 307.89
1349.20 386.36 355.66 344.04 194.80

Mean values 1342.03 394.04 362.44 348.48 307.72

Table 2: Average errors of the three methods at each step.

/cm RSSI Dead reckoning Proposed method

∑
𝑛

𝑘=1
𝑆
𝑘

number of steps

20.55 6.28 5.81 5.55 5.16
20.77 6.08 5.57 5.37 6.04
20.52 5.94 5.45 5.23 4.74
20.76 5.94 5.47 5.29 3.00

Mean values 20.65 6.06 5.58 5.36 4.73

Define the error 𝑆
𝑘
as the deviation between estimation

results and the real position at the 𝑘th step:

𝑆
𝑘
= √(𝑥

𝑘
− 𝑥


𝑘
)
2
+ (𝑦
𝑘
− 𝑦


𝑘
)
2
, (8)

where (𝑥
𝑘
, 𝑦
𝑘
) is the real coordinates and the (𝑥

𝑘
, 𝑦


𝑘
) is the

estimated coordinates.
Table 1 gives the total estimation errors of the three

methods through the whole trajectory, where the numbers in
italic are the results after formation adjustment. According
to the leader-follower formation control strategy, the mean
error of the whole swarm at each step is actually the
value of the global leader, which is presented in Table 2.
Based on the seven simulation tests, it can be seen from
Table 3 that the errors tend to decrease after adjusting the
formation.Theoretically the formation control does not affect
the localization results of the whole swarm. However, in the
proposed algorithm, group leaders and followers update their
current locations with the values calculated by the leader-
follower rule. The errors in this location information only
contain mechanical errors, which are definitely smaller than
the errors of localization results estimated by any positioning
method.

When the robot swarmmovesmore than one round along
the hallway, the result remains the same as the first round
since the electronic tag floors eliminate the accumulated
error of DR method at each turn. Figure 12 gives an evident
illustration during the second round, and the following more
rounds are still the same situation as before.

4.2. Experimental Results on Real Systems. Experiments on
real systems are carried out inside an 8 × 8m2 office room
and four identical differential-drive mobile robots are used
as a simplified robot swarm for schematic demonstration. A
ZigBee WSN is built with 8 anchor nodes and 4 blind nodes
mounted on the robots. The electronic tag floors are laid in
the corners of a 5 × 5m2 square. There are 3 × 3 pieces of
tagged floors in each corner, and each floor contains 9 evenly
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Figure 8: Magnification of one segment of the trajectories: (a) the first half of the trajectory; (b) the latter half of the trajectory; (c) the
converging effect of the electronic tag floors.

Table 3: Comparison of the total errors of DR and the proposed method before and after formation correction.

/cm 1 2 3 4 5 6 7 Mean values
DR 408.42 381.79 395.39 385.98 386.36 397.77 397.97 393.38
DRafter 377.97 351.67 362.07 354.06 355.66 365.00 369.08 362.22
PM 360.75 339.54 349.26 339.88 344.04 350.76 350.07 347.76
PMafter 335.28 310.53 392.92 307.89 194.80 362.34 265.90 309.95

distributed tags. Figures 13 and 14 show the environment and
the robots, respectively.

The robots move along the preset path inside the scope
of 8 reference nodes while maintaining the desired formation
of a square shape. Since they move along the four sides of a
square and every robot is located in the vertices of the 4 × 4

square formation, each robot in the swarmwill be assigned as
the global leader, group leader, and follower during the whole
movement course. They experience the same localization
process and the behavior of each robot is equivalent. For
the simplicity of discussion, the one located in (4, 4) of the
formation is studied. Figure 15 is the estimated trajectory of
the DR method and the DR method with RFID calibration
compared with the real trajectory. During the process of
moving along the first side of the 5 × 5m2 square, the
estimated positions are relatively close to robots’ real location.
However, as the robots move further, the localization results
are not satisfactory. The estimated trajectory of DR diverges
farther and farther away from the real trajectory. Figure 16

shows the increasing deviation of localization using the DR
method. However, there is a downward trend in the deviation
of DR method between the 24th and the 35th sampling step
in Figure 16.This phenomenon results from the accumulated
errors as the robots takemore turns along their path. It can be
seen from Figure 15 that the estimated position of the robot
is ahead of the real coordinates. Thus, with an inaccurate
turning angle estimation towards the direction of the robot’s
actual trajectory, the localization results of DR method are
more close to the real position than the proposed method.
The real localization performances are shown by the average
deviation values of the two localization methods in the far
right of Figure 16.

As shown in Figure 17, after integrating the DR method
with the WSN and electronic tag floors, the performance
of localization system is greatly improved. The advantage
of the proposed method is not obvious in the first few
steps, but it gives much more precise estimated location
of the robot swarm in the long term. The stability of the
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and the proposed method.
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proposed method is also superior to the DR method, which
is illustrated by Figure 18. The deviation of proposed method
is not accumulating and remains in a certain range. There is
a significant drop of 11 cm in the mean localization error for
each step.

D
ev

ia
tio

n 
(c

m
)

Distance (cm)
RSSI method
DR method
The proposed method

0

6
00

12
00

18
00

24
00

3
00
0

3
6
00

4
20
0

4
80
0

5
4
00

6
00
0

6
6
00

7
20
0

7
80
0

84
00

9
00
0

9
6
00

0
4
8
12
16
20
24
28

A comparison of the three methods
(DR, ZigBee and proposed method) on localization error

ZB

DR PM

Figure 12: Localization errors of the leader robot using DR, ZigBee,
and the proposed method during the movement of the first two
rounds.

Figure 13: Experimental environment and the localization system.

Figure 14: The robots used for the experiments.

5. Conclusions

Precise localization is the basis for the performance of a
swarm robotic system. The dead reckoning-based localiza-
tionmethod is easy to implement, yet it has unbounded accu-
mulated errors and too much uncertainty due to stochastic
errors. ZigBee-based WSN localization has less uncertainty
and its error does not accumulate, but it has the disadvantage
of low precision for short range of localization.The proposed
method in this paper integrates the two methods with
Kalman filter and uses the RFID technique to eliminate
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the accumulated errors. Both of the simulation results and
real experiments demonstrate the success of the proposed
method. Our future work will focus on theoretical analysis
of the swarm robotic systems with precise localization and
learning-based methods [31, 32] for the coordinated control
of swarm robots in an uncertain environment.
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[3] E. Şahin, “Swarm robotics: from sources of inspiration to
domains of application,” in Swarm Robotics, Springer, Berlin,
Germany, 2005.

[4] T. Fukuda, Y. Kawauchi, and F. Hara, “A study on a dynamically
reconfigurable robotic system. (Self-organizing distributed



12 Mathematical Problems in Engineering

intelligence system of learning and reasoning for cellular
robotics “CEBOT”),” JSME International Journal, Series C:
Dynamics, Control, Robotics, Design andManufacturing, vol. 37,
no. 1, pp. 162–171, 1994.

[5] R. Alami, F. Robert, F. Ingrad, and S. Suzuki, “Multi-robot coop-
eration through incremental plan-merging,” in Proceedings of
the IEEE International Conference on Robotics and Automation,
pp. 2573–2579, IEEE, May 1995.

[6] M. Dorigo, E. Tuci, F.Mondada et al., “The swarm-bots project,”
in Swarm Robotics, pp. 31–44, Springer, Berlin, Germany, 2005.

[7] J. Seyfried, M. Szymanski, N. Bender, R. Estaña, M. Thiel,
and H. Wörn, “The I -SWARM project: intelligent small
world autonomous robots for micro-manipulation,” in Swarm
Robotics, vol. 3342 of 83Lecture Notes in Computer Science, pp.
70–83, Springer, Berlin, Germany, 2005.

[8] J. H. Kim and H. S. Cho, “An improved dead reckoning scheme
for a mobile robot using neutral networks,”Mechatronics, vol. 3,
no. 5, pp. 625–645, 1993.

[9] M. Hashimoto, F. Oba, K. Imamaki, and T. Nishida, “Mobile
robot localization using integrated dead reckoning and laser/
corner cube based location systems,” in Robotics, Mechatronics
and Manufacturing Systems, pp. 403–408, Elsevier, 1993.

[10] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor
network localization techniques,” Computer Networks, vol. 51,
no. 10, pp. 2529–2553, 2007.

[11] T. Ishimoto and S. Hara, “Use of RSSI for motion control
of wirelessly networked robot swarm,” in Proceedings of the
International Workshop on Robotic and Sensors Environments,
pp. 92–97, IEEE, 2008.

[12] L. Oliveira, H. Li, L. Almeida, and T. E. Abrudan, “RSSI-based
relative localisation for mobile robots,” Ad Hoc Networks, vol.
13, pp. 321–335, 2014.

[13] N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, and R. J.
O’Dea, “Relative location estimation in wireless sensor net-
works,” IEEE Transactions on Signal Processing, vol. 51, no. 8, pp.
2137–2148, 2003.

[14] N. Patwari, J. N.Ash, S. Kyperountas, A.O.Hero III, R. L.Moses,
and N. S. Correal, “Locating the nodes: cooperative localization
in wireless sensor networks,” IEEE Signal Processing Magazine,
vol. 22, no. 4, pp. 54–69, 2005.

[15] R.-B. Zhang, J.-G. Guo, F.-H. Chu, and Y.-C. Zhang,
“Environmental-adaptive indoor radio path loss model for
wireless sensor networks localization,” International Journal of
Electronics and Communications, vol. 65, no. 12, pp. 1023–1031,
2011.

[16] H. S. Dulimarta and A. K. Jain, “Mobile robot localization in
indoor environment,” Pattern Recognition, vol. 30, no. 1, pp. 99–
111, 1997.

[17] T. Balch and R. C. Arkin, “Behavior-based formation control
for multirobot teams,” IEEE Transactions on Robotics and
Automation, vol. 14, no. 6, pp. 926–939, 1998.

[18] H. Takahashi, H. Nishi, and K. Ohnishi, “Autonomous decen-
tralized control for formation of multiple mobile robots con-
sidering ability of robot,” IEEE Transactions on Industrial
Electronics, vol. 51, no. 6, pp. 1272–1279, 2004.

[19] Y. Chen and Z. Wang, “Formation control: a review and a new
consideration,” in Proceedings of the IEEE IRS/RSJ International
Conference on Intelligent Robots and Systems (IROS ’05), pp.
3181–3186, August 2005.

[20] R. Haghighi and C. C. Cheah, “Multi-group coordination
control for robot swarms,”Automatica, vol. 48, no. 10, pp. 2526–
2534, 2012.

[21] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Models
and solutions for radio irregularity in wireless sensor networks,”
ACMTransactions on Sensor Networks, vol. 2, no. 2, pp. 221–262,
2006.

[22] H. F. Durrant-Whyte, B. Y. S. Rao, and H. Hu, “Toward a
fully decentralized architecture for multi-sensor data fusion,” in
Proceedings of the IEEE International Conference onRobotics and
Automation, vol. 2, pp. 1331–1336, Cincinnati, Ohio, USA, May
1990.

[23] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot local-
ization by tracking geometric beacons,” IEEE Transactions on
Robotics and Automation, vol. 7, no. 3, pp. 376–382, 1991.

[24] L. Jetto, S. Longhi, and G. Venturini, “Development and experi-
mental validation of an adaptive extended Kalman filter for the
localization of mobile robots,” IEEE Transactions on Robotics
and Automation, vol. 15, no. 2, pp. 219–229, 1999.

[25] S. Kwon, K. Yang, and S. Park, “An effective kalman filter
localization method for mobile robots,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1524–1529, October 2006.

[26] G. Welch and G. Bishop, “An introduction to the Kalman filter,”
Tech. Rep. 95-04, University of North Carolina, 1995.

[27] Q. Gan and C. J. Harris, “Comparison of two measure-
ment fusion methods for Kalman-filter-based multisensor data
fusion,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 37, no. 1, pp. 273–279, 2001.

[28] G. Fu, J. Zhang,W. Chen, F. Peng, P. Yang, andC. Chen, “Precise
localization of mobile robots via odometry and wireless sensor
network,” International Journal of Advanced Robotic Systems,
vol. 10, article no. 203, 2013.

[29] C. M. Roberts, “Radio frequency identification (RFID),” Com-
puters and Security, vol. 25, no. 1, pp. 18–26, 2006.

[30] X. Zhu, S. K. Mukhopadhyay, and H. Kurata, “A review of RFID
technology and its managerial applications in different indus-
tries,” Journal of Engineering and Technology Management, vol.
29, no. 1, pp. 152–167, 2012.

[31] C. Chen, D. Dong, H.-X. Li, J. Chu, and T.-J. Tarn, “Fidelity-
based probabilistic Q-learning for control of quantum systems,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 25, no. 5, pp. 920–933, 2014.

[32] D. Dong, C. Chen, H. Li, and T.-J. Tarn, “Quantum rein-
forcement learning,” IEEE Transactions on Systems, Man, and
Cybernetics Part B: Cybernetics, vol. 38, no. 5, pp. 1207–1220,
2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


