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We discuss spectral properties of the iteration matrix of the HSS method for saddle point problems and derive estimates for the
region containing both the nonreal and real eigenvalues of the iteration matrix of the HSS method for saddle point problems.

1. Introduction

Consider the following saddle point problem:

A𝑥 ≡ [
𝐴 𝐵
𝑇

−𝐵 0

] [

𝑢

V] = [

𝑓

−𝑔
] ≡ 𝑏, (1)

with symmetric positive definite 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑚×𝑛

with rank (𝐵) = 𝑚 ≤ 𝑛. Without loss of generality,
we assume that the coefficient matrix of (1) is nonsingular
so that (1) has a unique solution. Systems of the form (1)
arise in a variety of scientific and engineering applications,
such as linear elasticity, fluid dynamics, electromagnetics,
and constrained quadratic programming. One can see [1] for
more applications and numerical solution techniques of (1).

Recently, based on the Hermitian and skew-Hermitian
splitting ofA:A = 𝐻 + 𝑆, where

𝐻 = [

𝐴 0

0 0
] , 𝑆 = [

0 𝐵
𝑇

−𝐵 0

] , (2)

the HSS method [2] has been extended by Benzi and Golub
[3] to solve the saddle point problem (1) and it is as follows.

The HSS Method. Let 𝑥(0) ∈ C𝑛 be an arbitrary initial guess.
For 𝑘 = 0, 1, 2, . . . until the sequence of iterates {𝑥(𝑘)}∞

𝑘=0

converges, compute the next iterate 𝑥(𝑘+1) according to the
following procedure:

(𝛼𝐼 + 𝐻) 𝑥
(𝑘+(1/2))

= (𝛼𝐼 − 𝑆) 𝑥
(𝑘)

+ 𝑏,

(𝛼𝐼 + 𝑆) 𝑥
(𝑘+1)

= (𝛼𝐼 − 𝐻) 𝑥
(𝑘+(1/2))

+ 𝑏,

(3)

where 𝛼 is a given positive constant.
By eliminating the intermediate vector 𝑥

(𝑘+(1/2)), we
obtain the following iteration in fixed point form as

𝑥
(𝑘+1)

= 𝑀
𝛼
𝑥
(𝑘)

+ 𝑁
𝛼
𝑏, 𝑘 = 0, 1, 2, . . . , (4)

where𝑀
𝛼
= (𝛼𝐼 + 𝑆)

−1
(𝛼𝐼 −𝐻)(𝛼𝐼 +𝐻)

−1
(𝛼𝐼 − 𝑆) and𝑁

𝛼
=

2𝛼(𝛼𝐼+𝑆)
−1
(𝛼𝐼+𝐻)

−1. Obviously,𝑀
𝛼
is the iteration matrix

of the HSS iteration method.
In addition, if we introduce matrices

𝐵
𝛼
=

1

2𝛼

(𝛼𝐼 + 𝐻) (𝛼𝐼 + 𝑆) , 𝐶
𝛼
=

1

2𝛼

(𝛼𝐼 − 𝐻) (𝛼𝐼 − 𝑆) ,

(5)

then A = 𝐵
𝛼
− 𝐶
𝛼
and 𝑀

𝛼
= 𝐵
−1

𝛼
𝐶
𝛼
. Therefore, one can

readily verify that the HSS method is also induced by the
matrix splittingA = 𝐵

𝛼
− 𝐶
𝛼
.

The following theorem established in [3] describes the
convergence property of the HSS method.

Theorem 1 (see [3]). Consider problem (1) and assume that
𝐴 is positive real and B has full rank. Then the iteration (3) is
unconditionally convergent; that is, 𝜌(𝑀

𝛼
) < 1 for all 𝛼 > 0.
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In fact, one can see [4] for a comprehensive survey on the
HSSmethod. As is known, the iterationmethod (3) converges
to the unique solution of the linear system (1) if and only if the
spectral radius 𝜌(𝑀

𝛼
) of the iteration matrix𝑀

𝛼
is less than

1.The spectral radius of the iterationmatrix is decisive for the
convergence and stability, and the smaller it is, the faster the
iteration method converges when the spectral radius is less
than 1. In this paper, we will discuss the spectral properties of
the iteration matrix𝑀

𝛼
of the HSS method for saddle point

problems and derive estimates for the region containing both
the nonreal and real eigenvalues of the iterationmatrix𝑀

𝛼
of

the HSS method for saddle point problems.
Throughout the paper, 𝐵𝑇 denotes the transpose of a

matrix𝐵 and 𝑢∗ indicates its transposed conjugate. 𝜆
𝑛
, 𝜆
1
≥ 0

are the smallest and largest eigenvalues of symmetric positive
semidefinite 𝐴, respectively. We denote by 𝜎

1
, . . . , 𝜎

𝑚
the

decreasing ordered singular values of 𝐵. R(𝜃) and I(𝜃),
respectively, denote the real part and imaginary part of 𝜃 ∈ C.

2. Main Results

In fact, the iteration matrix𝑀
𝛼
can be written as

𝑀
󸀠

𝛼
= (𝛼𝐼 + 𝑆)

−1
(𝛼𝐼 + 𝐻)

−1
(𝛼𝐼 − 𝐻) (𝛼𝐼 − 𝑆) . (6)

Therefore, we are just thinking about the spectral properties
of matrix 𝑀󸀠

𝛼
. That is, we consider the following eigenvalue

problem:

(𝛼𝐼 − 𝐻) (𝛼𝐼 − 𝑆) 𝑥 = 𝜆 (𝛼𝐼 + 𝐻) (𝛼𝐼 + 𝑆) 𝑥, (7)

where (𝜆, 𝑥) is any eigenpair of𝑀󸀠
𝛼
. From (7), we have

(1 − 𝜆) (𝛼
2
𝐼 + 𝐻𝑆) 𝑥 = (1 + 𝜆) 𝛼A𝑥. (8)

Note that 𝜌(𝑀
𝛼
) < 1 for all 𝛼 > 0. From (8), we have

A𝑥 =

(1 − 𝜆) 𝛼

(1 + 𝜆)

(𝐼 +

1

𝛼
2
𝐻𝑆)𝑥. (9)

Let

𝜃 =

(1 − 𝜆) 𝛼

(1 + 𝜆)

, from which 𝜆 =

𝛼 − 𝜃

𝛼 + 𝜃

= 1 −

2𝜃

𝛼 + 𝜃

. (10)

Obviously, 𝜃 ̸= 0. Therefore, (9) can be written as

(𝐻 + 𝑆) 𝑥 = 𝜃 (𝐼 +

1

𝛼
2
𝐻𝑆)𝑥. (11)

That is,

[
𝐴 𝐵
𝑇

−𝐵 0

] 𝑥 = 𝜃
[

[

𝐼

1

𝛼
2
𝐴𝐵
𝑇

0 𝐼

]

]

𝑥, (12)

which is equal to

B𝑥 ≡
[

[

𝐴 +

1

𝛼
2
𝐴𝐵
𝑇
𝐵 𝐵
𝑇

−𝐵 0

]

]

𝑥 = 𝜃𝑥. (13)

It is easy to see that the two eigenproblems (7) and (13) have
the same eigenvectors, while the eigenvalues are related by
(10). Obviously, if the spectrum of B can be obtained, then
the spectrum of (7) can be also derived.

From [5, Lemma 2.1], we have the following result.

Lemma 2. Assume that 𝐴 is symmetric and positive definite
and𝐾 = 𝐼+(1/𝛼

2
)𝐵
𝑇
𝐵. For each eigenpair (𝜆, 𝑥) of (7), all the

eigenvalues 𝜆 of the iterationmatrix𝑀
𝛼
are 𝜆 = (𝛼−𝜃)/(𝛼+𝜃),

where 𝜃 ̸= 0 satisfies the following.

(1) If I(𝜃) ̸= 0, then

R (𝜃) =

1

2

𝑢
∗
𝐾𝐴𝐾𝑢

𝑢
∗
𝐾𝑢

, |𝜃|
2
=

𝑢
∗
𝐾𝐵
𝑇
𝐵𝑢

𝑢
∗
𝐾𝑢

. (14)

(2) If I(𝜃) = 0, then

min{𝜆
𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)

} ≤ 𝜃 ≤ 𝜆
1
(1 +

𝜎
2

1

𝛼
2
) . (15)

From (14), it is easy to verify that 0 ≤ |𝜃|
2
≤ 𝜎
2

1
, and if

𝑚 = 𝑛, then 𝜆
𝑛
(1 + (𝜎

2

𝑚
/𝛼
2
)) ≤ 2R(𝜃) ≤ 𝜆

1
(1 + (𝜎

2

1
/𝛼
2
)), or

if𝑚 < 𝑛, then 𝜆
𝑛
≤ 2R(𝜃) ≤ 𝜆

1
(1 + (𝜎

2

1
/𝛼
2
)).

In the sequel, we will present the main result, that is,
Theorem 3.

Theorem 3. Under the hypotheses and notation of Lemma 2,
all the eigenvalues 𝜆 of the iteration matrix 𝑀

𝛼
are such that

the following hold.

(1) If I(𝜃) ̸= 0, then

|𝜆|
2
≤ 1 − 2

𝜆
𝑛
(1 + (𝜎

2

𝑚
/𝛼
2
)) 𝛼

𝛼
2
+ 𝜆
𝑛
(1 + (𝜎

2

𝑚
/𝛼
2
)) 𝛼 + 𝜎

2

1

. (16)

(2) If I(𝜃) = 0, then

𝛼 − 𝜆
1
(1 + (𝜎

2

1
/𝛼
2
))

𝛼 + 𝜆
1
(1 + (𝜎

2

1
/𝛼
2
))

≤ 𝜆 ≤

𝛼 −min {𝜆
𝑛
, 𝛼
2
𝜎
2

𝑚
/𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)}

𝛼 +min {𝜆
𝑛
, 𝛼
2
𝜎
2

𝑚
/𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)}

.

(17)

Proof. Let 𝑥 = [𝑢
∗
, V∗]∗ be an eigenvector with respect to 𝜃.

From (13), we get

𝐴𝐾𝑢 + 𝐵
𝑇V = 𝜃𝑢, (18)

−𝐵𝑢 = 𝜃V. (19)

By (19), we get V = −𝜃
−1
𝐵𝑢. Substituting it into (18) yields

𝜃𝐴𝐾𝑢 − 𝐵
𝑇
𝐵𝑢 = 𝜃

2
𝑢. (20)

Multiplying (20) from the left by 𝑢∗𝐾, we arrive at

𝜃
2
𝑢
∗
𝐾𝑢 − 𝜃𝑢

∗
𝐾𝐴𝐾𝑢 + 𝑢

∗
𝐾𝐵
𝑇
𝐵𝑢 = 0. (21)
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Let 𝜃 = R(𝜃) + 𝑖I(𝜃). For symmetric matrix𝐴, the quadratic
equation (21) has real coefficients so that its roots are given by

𝜃
±
=

1

2

𝑢
∗
𝐾𝐴𝐾𝑢

𝑢
∗
𝐾𝑢

± √
1

4

(

𝑢
∗
𝐾𝐴𝐾𝑢

𝑢
∗
𝐾𝑢

)

2

−

𝑢
∗
𝐾𝐵
𝑇
𝐵𝑢

𝑢
∗
𝐾𝑢

.
(22)

Eigenvalues with nonzero imaginary part arise if the discrim-
inant is negative.

IfI(𝜃) ̸= 0, from (14) we have

2R (𝜃) =

𝑢
∗
𝐾𝐴𝐾𝑢

𝑢
∗
𝐾𝑢

> 0, |𝜃|
2
=

𝑢
∗
𝐾𝐵
𝑇
𝐵𝑢

𝑢
∗
𝐾𝑢

. (23)

In this case, from (23) we have

|𝜆|
2
=

𝛼 − 𝜃

𝛼 + 𝜃

⋅

𝛼 − 𝜃

𝛼 + 𝜃

=

𝛼 − 𝜃

𝛼 + 𝜃

⋅

𝛼 − 𝜃

𝛼 + 𝜃

=

𝛼
2
− 2R (𝜃) 𝛼 + |𝜃|

2

𝛼
2
+ 2R (𝜃) 𝛼 + |𝜃|

2
(<1)

= 1 − 2

2R (𝜃) 𝛼

𝛼
2
+ 2R (𝜃) 𝛼 + |𝜃|

2

= 1−2

(𝑢
∗
𝐾𝐴𝐾𝑢/𝑢

∗
𝐾𝑢) 𝛼

𝛼
2
+(𝑢
∗
𝐾𝐴𝐾𝑢/𝑢

∗
𝐾𝑢) 𝛼+(𝑢

∗
𝐾𝐵
𝑇
𝐵𝑢/𝑢
∗
𝐾𝑢)

≤ 1 − 2

𝜆
𝑛
(1 + (𝜎

2

𝑚
/𝛼
2
)) 𝛼

𝛼
2
+ 𝜆
𝑛
(1 + (𝜎

2

𝑚
/𝛼
2
)) 𝛼 + 𝜎

2

1

.

(24)

IfI(𝜃) = 0, then 𝜃 > 0 from (22). Combing (10) with (15),
we have

min{𝜆
𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)

} ≤

(1 − 𝜆) 𝛼

(1 + 𝜆)

≤ 𝜆
1
(1 +

𝜎
2

1

𝛼
2
) .

(25)

That is,

1

𝛼

min{𝜆
𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)

} ≤

1 − 𝜆

1 + 𝜆

≤

1

𝛼

𝜆
1
(1 +

𝜎
2

1

𝛼
2
) .

(26)

Further, we have

−

1

𝛼

𝜆
1
(1 +

𝜎
2

1

𝛼
2
) ≤

𝜆 − 1

𝜆 + 1

≤ −

1

𝛼

min{𝜆
𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)

} .

(27)

Therefore,

−

1

𝛼

𝜆
1
(1 +

𝜎
2

1

𝛼
2
) ≤1 −

2

𝜆 + 1

≤ −

1

𝛼

min{𝜆
𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)

} .

(28)

So, we have

1

𝛼

min{𝜆
𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)

} ≤

2

𝜆 + 1

− 1 ≤

1

𝛼

𝜆
1
(1 +

𝜎
2

1

𝛼
2
) .

(29)

That is,

1 +

1

𝛼

min{𝜆
𝑛
,

𝛼
2
𝜎
2

𝑚

𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)

} ≤

2

𝜆 + 1

≤ 1 +

1

𝛼

𝜆
1
(1 +

𝜎
2

1

𝛼
2
) .

(30)

By the simple computations, we have

1

1 + (1/𝛼) 𝜆1
(1 + (𝜎

2

1
/𝛼
2
))

≤

𝜆 + 1

2

≤

1

1 + (1/𝛼)min {𝜆
𝑛
, 𝛼
2
𝜎
2

𝑚
/𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)}

.

(31)

Obviously, we also have

2

1 + (1/𝛼) 𝜆1
(1 + (𝜎

2

1
/𝛼
2
))

≤ 𝜆 + 1 ≤

2

1 + (1/𝛼)min {𝜆
𝑛
, 𝛼
2
𝜎
2

𝑚
/𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)}

.

(32)

That is to say,

1 − (1/𝛼) 𝜆1
(1 + (𝜎

2

1
/𝛼
2
))

1 + (1/𝛼) 𝜆1
(1 + (𝜎

2

1
/𝛼
2
))

≤ 𝜆 ≤

1 − (1/𝛼)min {𝜆
𝑛
, 𝛼
2
𝜎
2

𝑚
/𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)}

1 + (1/𝛼)min {𝜆
𝑛
, 𝛼
2
𝜎
2

𝑚
/𝜆
1
(𝛼
2
+ 𝜎
2

𝑚
)}

.

(33)

3. Numerical Experiments

In this section, we consider the following two examples to
illustrate the above result.

Example 1 (see [6–9]). Consider the following classic incom-
pressible steady Stokes problem:

−Δ𝑢 + grad𝑝 = 𝑓, in Ω,

− div 𝑢 = 0, in Ω,

(34)

with suitable boundary condition on 𝜕Ω. That is to say, the
boundary conditions are 𝑢

𝑥
= 𝑢
𝑦
= 0 on the three fixed

walls (𝑥 = 0, 𝑥 = 1, and 𝑦 = 0) and 𝑢
𝑥
= 1, 𝑢

𝑦
= 0 on

the moving wall (𝑦 = 1). The test problem is a “leaky” two-
dimensional lid-driven cavity problem in square (0 ≤ 𝑥 ≤ 1,
0 ≤ 𝑦 ≤ 1). Using the IFISS software [10] to discretize
(34), the finite element subdivision is based on 8 × 8 and
16 ×16 uniform grids of square elements and themixed finite
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Table 1: The region for all the eigenvalues of𝑀
𝛼
withI(𝜃) = 0 and

8 × 8.

𝛼 𝐸min 𝐿min 𝜆min 𝜆max 𝑈max 𝐸max

0.1 0 −0.9978 −0.9978 0.9957 0.9971 0.0014
0.2 0 −0.9846 −0.9846 0.9977 0.9985 0.0008
0.3 0.0001 −0.9568 −0.9567 0.9985 0.9990 0.0005
0.4 0.0002 −0.9176 −0.9174 0.9988 0.9992 0.0004
0.5 0.0006 −0.8723 −0.8717 0.9990 0.9994 0.0004
0.6 0.001 −0.8249 −0.8239 0.9992 0.9995 0.0003
0.7 0.0015 −0.7779 −0.7764 0.9993 0.9996 0.0003
0.8 0.0021 −0.7325 −0.7304 0.9994 0.9996 0.0002
0.9 0.0026 −0.6892 −0.6866 0.9995 0.9997 0.0002
1 0.0031 −0.6482 −0.6451 0.9995 0.9997 0.0002

Table 2:The region for all the eigenvalues of𝑀
𝛼
withI(𝜃) = 0 and

16 × 16.

𝛼 𝐸min 𝐿min 𝜆min 𝜆max 𝑈max 𝐸max

0.1 0 −0.9929 −0.9929 0.9997 1 0.0003
0.2 0 −0.9608 −0.9608 0.9998 1 0.0002
0.3 0.0001 −0.9135 −0.9134 0.9999 1 0.0001
0.4 0.0002 −0.8635 −0.8633 0.9999 1 0.0001
0.5 0.0004 −0.8154 −0.8150 0.9999 1 0.0001
0.6 0.0006 −0.7702 −0.7696 0.99996 1 0.00004
0.7 0.0007 −0.7278 −0.7271 0.99998 1 0.00002
0.8 0.001 −0.6880 −0.6870 0.99997 1 0.00003
0.9 0.001 −0.6504 −0.6494 0.99998 1 0.00002
1 0.001 −0.6147 −0.6137 0.99998 1 0.00002

element used is the bilinear-constant velocity pressure:𝑄
1
−𝑃
0

pair with stabilization (the stabilization parameter is zero).
The coefficient matrix generated by this package is singular
because 𝐵 corresponding to the discrete divergence operator
is rank deficient. The nonsingular matrix A is obtained by
dropping the first two rows of 𝐵 and the first two rows and
columns of matrix 𝐶. Note that matrix 𝐶 is a null matrix,
which is the corresponding (2,2) block of (1). In this case,
𝑛 = 162 and 𝑚 = 62 correspond to 8 × 8, and 𝑛 = 578

and𝑚 = 254 correspond to 16 × 16. For the Stokes problem,
the (1, 1) block of the coefficient matrix corresponding to the
discretization of the conservative term is symmetric positive
definite.

By calculations, the values given in Tables 1 and 2 are
obtained, which are to verify the results of Theorem 3. In
Tables 1 and 2, 𝐿min, 𝑈max, respectively, denote the lower and
upper bounds of all the eigenvalues of 𝑀

𝛼
. 𝐸min = |𝐿min −

𝜆min| and 𝐸max = |𝑈max − 𝜆max|.

From Tables 1 and 2, it is not difficult to find that the
theoretical results are in line with the results of numerical
experiments. Further, for 8 × 8, the average error in the lower
bounds for 10 different values of 𝛼 is 0.00112 and the average
error in the upper bounds for 10 different values of 𝛼 is
0.00047. For 16 × 16, the average error in the lower bounds
for 10 different values of 𝛼 is 0.0005 and the average error
in the upper bounds for 10 different values of 𝛼 is 0.000091.

Table 3: All the nonreal eigenvalues of𝑀
𝛼
withI(𝜃) ̸= 0.

𝛼 max |𝜆| Upper bound
0.05 0.963349 0.999793
0.1 0.977199 0.999878
0.3 0.979200 0.999894
0.5 0.959713 0.999860
1 0.865509 0.999774

That is, Theorem 3 provides reasonably good bounds for the
eigenvalue distribution of the iteration matrix𝑀

𝛼
of the HSS

method when the iteration parameter 𝛼 is taken in different
regions.

Example 2 (see [11]). The saddle point system is from the
discretization of a groundwater flow problem using mixed-
hybrid finite elements [11]. In the example at hand, 𝑛 = 270

and 𝑚 = 207. By calculations, here we have 𝜆
𝑛
= 0.0017,

𝜆
1
= 0.010, 𝜎

1
= 2.611, and 𝜎

𝑚
= 0.19743.

In this case there are nonreal eigenvalues (except for
very small 𝛼). In Table 3 we list the upper bounds given in
Theorem 3 when I(𝜃) ̸= 0. From Table 3, it is not difficult
to find that the theoretical results are in line with the
results of numerical experiments.That is,Theorem 3 provides
reasonably good bounds for the eigenvalue distribution of
the iteration matrix 𝑀

𝛼
with I(𝜃) ̸= 0 when the iteration

parameter 𝛼 is taken in different regions.
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