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Dynamic economic dispatch problem (DEDP) for a multiple fuel power plant is a nonlinear and nonsmooth optimization problem
when valve-point effects, multifuel effects, and ramp-rate limits are considered. Additionally wind energy is also integrated with
the DEDP to supply the load for effective utilization of the renewable energy. Since the wind power may not be predicted, a radial
basis function network (RBFN) is presented to forecast a one-hour-ahead wind power to plan and ensure a reliable power supply.
In this paper, a refined teaching-learning based optimization (TLBO) is applied to minimize the overall cost of operation of wind-
thermal power system. The TLBO is refined by integrating the sequential quadratic programming (SQP) method to fine-tune the
better solutions whenever discovered by the former method. To demonstrate the effectiveness of the proposed hybrid TLBO-SQP
method, a standard DEDP and one practical DEDP with wind power forecasted are tested based on the practical information of
wind speed. Simulation results validate the proposed methodology which is reasonable by ensuring quality solution throughout
the scheduling horizon for secure operation of the system.

1. Introduction

Dynamic economic dispatch problem (DEDP) is indispens-
able for real-time control of power system operation in power
generation system. It comprises allocating the total electricity
generation required among the available thermal and other
power generating units, assuming that a unit commitment
has been previously determined [1]. The prime objective is
to minimize the cost of generated power subject to physical
and operational constraints in the system. The overwhelming
majority of published literature, however, deals with static
economic dispatch; that is, the dispatch horizon is divided
into periods and the dispatch is optimized period by period.
On the contrary, a dynamic dispatch process can handle with
this dynamic connection both by handling the ramp rate
limits of generating units and by modifying the steady state
costs to include the extra fuel consumption pertinent to the

act of changing the delivered power [2]. Thus, the DEDP has
been acknowledged as not only a more precise formulation
of economic dispatch problem (EDP) but also a complicated
dynamic optimization problem [3-9].

As a potential renewable energy source, the wind power
has been drawing enormous consideration, as various envi-
ronmental and economic apprehensions have been dramati-
cally increased in thermal power generation system [10]. Inte-
grating wind energy into existing power system introduces
numerous challenges to the operation and planning strategies
for the utilities. The fact that wind power is neither easily
predictable nor dispatchable is the prime motive behind secu-
rity and reliability concerns associated with wind-integrated
power systems [11]. When the wind speed changes randomly,
it is more suitable for power systems containing a wind power
farm to adopt dynamic models. Using DEDP, it is necessary
to know the output data from the wind farm at every moment



in the optimization process. Presently, it is rather difficult
to forecast the output of a wind farm. The error can be
large which further increases the complexity for the DEDP to
optimally share the load among the available generators [7].

Subsequently, in a power generating station, generators
are possibly operated with different fuels called multiple
fuel plants and when such cases exist and are supplied with
multiple fuel sources then that leads to an optimization
problem of determining the economic fuel to burn in a
particular time horizon [3, 4]. In the case of these generators,
unlike the conventional cost function, the cost function of
each unit should be presented with a few piecewise functions
reflecting the effects of fuel type changes and each segment of
the hybrid cost function implies some information about the
type of fuel being burned or the operational characteristics
of the unit. Thus, incorporating such multiple fuel plants
and wind farms for DEDP makes the problem formulation
practical and greatly challenging for the solution procedure
to achieve a reasonable dispatch solution. Since valve-point
effects are considered the fuel cost function of such gen-
erators, they will be modeled by superimposing this effect
as a rectified sinusoid component into the generating unit
(quadratic) fuel cost function [5]. Traditional methods like
Lagrangian relaxation, gradient projection method, and so
forth [3], when used to solve DEDP, suffer from myopia for
nonlinear, discontinuous search spaces, leading them to less
than desirable performance, often using approximations to
limit complexity. When search space is particularly irregular
(due to inclusion of valve-point effects), algorithms need to
be highly robust to escape from premature convergence.

Over the last few years, evolutionary algorithms, such as
the genetic algorithms (GA) [3], evolutionary programming
(EP) [1], the simulated annealing (SA), tabu search (TS) [2],
differential evolution (DE) [8], and particle swarm optimiza-
tion (PSO) [6], have been used to solve ED problems. Evolu-
tionary algorithms are appropriate choices for solving DED
problems as they prove to be very effective in solving without
any restrictions in the shape of the cost curves and also
because of their global search ability as well as their robust
and effective constraint handling capacity. Perhaps, they do
not always guarantee discovering the globally optimal solu-
tion in finite time. Therefore, hybrid methods combining two
or more optimization methods were introduced [13]: to name
a few, hybrid fuzzy PSO and Nelder-Mead (FAPSO-NM),
hybrid DE and sequential quadratic programming (DE-
SQP), hybrid GA (HGA), evolutionary strategy optimization
(ESO), self-organizing hierarchical PSO (SOHPSO), variable
scaling hybrid differential evolution (VSHDE), hybrid PSO,
and sequential quadratic programming (PSO-SQP) [2] and
there is a large still-growing body of literature. To be concise,
few are included in [14]. More precisely, hybrid methods
combining probabilistic methods and deterministic methods
are found to be very effective in solving complex optimization
problems [2].

Recently, a new optimization technique known as teach-
ing learning based optimization (TLBO) has been developed
by Rao et al. [I5, 16]. It is one of the recent evolution-
ary algorithms and is based on the natural phenomenon
of teaching and learning process. It has already proved
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its superiority over other existing optimization techniques
such as GA, ABC, PSO, harmony search (HS), DE, and
hybrid-PSO. This research also proposes a hybrid method
combining the teaching-learning based optimization (TLBO)
and SQP [17]. Here, TLBO will be performed as a base level
search procedure, which makes a decision to direct the search
towards the optimal region. Later the exact method (SQP)
will be used to fine-tune that region to get the final solution
(4, 5].

A practical thermal power system integrated with the
wind power generation system is used to demonstrate the
application of the proposed hybrid methodology. The wind
power system is designed and commissioned by the Suzlon
Energy, India, with an installed capacity of a 150 MW (1.5 x
100 mills) wind farm. This wind farm is integrated with
the Load Dispatch Center at Erode (LDCE) where a ther-
mal system comprising 7 thermal units with multiple fuel
options and valve-point loading effects is controlled. Several
experiments are performed to validate the effectiveness of the
proposed approach.

2. Mathematical Formulation of the DEDP

The objective function of DEDP is to minimize the total pro-
duction cost of a power system over a given dispatch period,
while satisfying various constraints [2]. Mathematically the
objective function is given as

H N
Minimize, Fp =) » Fy,(Py). )
h=1 i=1
Generally, the generator cost function is usually expressed
as a quadratic polynomial as

2
Fy, (Py,) = a;Py, + bPy, + . )

Generators with multivalve steam turbines produce rip-
ples like effect on their input-output curves. This effect,
known as valve point effect, makes the generator cost func-
tion discontinuous and nonconvex. For accurate modeling
of the cost function, the valve point effect is considered by
superimposing it with the basic cost function

Fy, (Py,) = a;Py, + biPy, + G + 'ei sin (fi (Pirp?m - ih))' )

Many generating units are supplied with multiple fuel
sources and the cost functions of these units are represented
with a few or several piecewise quadratic functions. Such
a cost function is called a hybrid cost function and each
segment of the hybrid cost function gives some information
about the fuel burned. The hybrid cost function is given as

Fy, (Py)

§ .
a1 Py + b, Py, + ¢y, fuel 1, PR < Py < Py

1

2
=4 @, P +b,Py +¢,y, fuel 2, Py, <Py <Py,

2
@ Py, + by Py + Gy, fuel k, Py < Py < PR

’ (4)
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For more accurate dispatch results, the valve point effect
and the multiple fuel options are integrated into the basic cost
function. Thus, the basic quadratic cost function given in (2)
with N generating units and Ny, fuel options for each unit is
given as

Fy, (Py) = a3 Py + by Py + G
+ |ei,k sin (fi,k (P:;znkn - b ))| J

if Py < Py, < Py, fuel option k,

©)

k=1,2,..., N

The objective function as given in (1) is subject to
following equality and inequality constraints.

The power output from all the generating units must
satisfy the total demand and the transmission losses of the
system. The equality constraint is given as

N
Z Pih = PDh + PLoss,h' (6)

i=1

The transmission loss is expressed in a quadratic form as

N N
PLoss,h = Z Z thanPnh' (7)

m=1 n=1

The real power output of each generating unit is limited
by the maximum and minimum power limit of the units. It is
given as

Pimin < Pih < Pimax. (8)

The operating range of the generating units is restricted
by their ramp rate limits. This is given as

Py, = Pyy,_1) < UR; if generation increases,

)
Pyj_yy = Py, < DR;

, if generation decreases.

Thus, (8) is modified as

max (Pimin’Pi(h—l) - DRi) < Py, < min (B, Py, y) + UR;).
(10)

2.1. Accounting the Wind Power for the DEDP. Similarly,
the nonlinear and fluctuation nature of wind proves to
be great challenge for reliability and accuracy of power
system that incorporates wind power. With accurate wind
speed data, power system operator can predict the required
power output. This helps in system planning, scheduling, and
storage capacity optimization. To obtain proper and efficient
wind power utilization wind speed prediction plays an impor-
tant factor in forecasting. In the literature, several models
have been used for wind speed prediction. The models are
mainly physical and statistical models [18, 19]. Artificial
neural network derives its computing power through its
massively parallel distributed structure and its ability to

learn and generalization for inputs. Neural network models
have better performance than other models [12]. There are
many approaches used based on neural networks such as
multilayer perceptron (MLP), ADALINE, back propagation
network (BPN), radial basis function network (RBFN), and
recurrent neural network (RNN). This paper proposes the
radial basis function network for the forecasting of wind
speed subsequently with the wind power generated.

The wind power is estimated from the forecasted wind
speed using the following expressions; as well known the
wind power can be harvested only at a particular wind speed;
thus, the wind power “w” is given by

w =0, V<V, Or V> Uy
v -

LU:LUR< = >> Uy S U S Up, (1)
UR = Uiy

w = wR, UR <v< Uout’

where wy, is the wind turbine rated power, v is the actual wind
speed, vy is the wind turbine rated wind speed, v, is the wind
turbine cutin speed, and v, is the wind turbine cutout speed.
Thus, (6) is rewritten as

N m

ZPih + Z Wi, = Ppp + Progp, 0wy, <wg,  (12)
=1 s

where w, is the wind power generated at time h, and the
total power generated from the entire wind farm containing
“m” wind mills is the summation of the wind power gen-
erated by the individual wind turbine. Thus, the DEDP will
then be solved for economically dispatching the remaining
demanded power using the multiple fuel power plant.

2.2. Evaluation Function. We must define the evaluation
function for evaluating the fitness of each candidate in the
solution space. It is the sum of the generation cost function
Fy,; and power balance constraint B, as in (1) and (3).

The evaluation function is as follows:

Min f = Fobj + anc’ (13)
where
Er
Foyj = <~
2p-1 Zim1 Lin
0N (14)
FT max
> S = e
h=1 i=1 FTmin
Fr max 18 the total fuel cost obtained using P, = P, and
Fr min 1s the total fuel cost obtained using Py, = P, .
H N m 2
anc= Z PDh+PLoss,h_ ZPih+ijh
h=1 i=1 =1
(15)

In order to limit the evaluation value of each candidate of
the population within a feasible range, before estimating



the fitness value of a candidate, the generated power output
must satisfy the constraint given in (8). This evaluation
function will be used to find the optimum design variable
value for the DEDP.

3. Wind Power Forecasting Using the Radial
Basis Function Network

For the reason that the speed of wind is unpredictable,
accurate wind speed forecasting still remains a challenging
task. Accurate wind speed prediction aids grid operator to
dispatch economically the wind power generated to satisfy
the power demand. Wind speed predictions can mainly
be done using two models called physical and statistical
models. The physical model considers the physical reasoning
to get the best results. The statistical model considers online
measurements of data. On the other hand, statistical models
are more efficient than physical models where real time data
is used [20, 21]. Artificial neural network (ANN) is one such
statistical model, which derives its computing power through
its massively parallel distributed structure and its ability
to learn and generalization for inputs [22-24]. The choice
of ANN is also imperative in accurate wind speed/power
forecasting.

3.1. Radial Basis Function Network. Radial basis function
(RBF) [12] network uses Gaussian function and has a long
history in the applications of recognition and approximating
function. RBF networks comprise three layers: the input layer,
the hidden layer, and the output layer, where the hidden layer
functions as layer of RBF units. The output layer is generally
a linear function. The interconnection between input and
hidden layer form hypothetical connection and between the
hidden and output layers form weighted connections.

Each hidden layer unit represents a single radial basis
function, with associated center position and width. Each
neuron on the hidden layer employs a radial basis function
as a nonlinear transfer function to operate on the input
data. The most often used RBF is a Gaussian function that
is characterized by a center and width. RBF functions by
measuring the Euclidean distance between input vector and
the radial basis function center.

The Gaussian RBF may be tuned by adjusting spread. It is
less susceptible to problem with non-stationary input because
of the behavior of RBF hidden units. The Gaussian function
curve has a peak at zero distance and it decreases as the
distance from the centre increases.

The Gaussian function is generally defined as

fOn) =, 1e)

where 0, is the net input.

The advantages of RBFN are being more compact and
having less training time, while eliminating local minima
phenomena. The selection of the centers for the Gaussian
function is important for nonlinear approximation. The
weights between the hidden and output layer is then updated
using the gradient descent rule.
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The RBEN design includes structural and parameter
design. The structural design involves finding number of
neuron. The parameter design involves spread and weight of
output mode. The RBFN is much more effective tool which
gains the advantage of both generalizing and refining local
features over BPN:

n
Output, ¢ = Zf("@—Ck") * Wy, i=12,...,n,
k=1

17)

«, »

where 0 is input vector, “n” is number of neurons, C;, is Kth
centre node in the hidden layer, and Wy, is the weight between
hidden and output layer.

3.2. The RBF-ANN Model for Forecasting the Wind Power.
This paper proposes a new RBF network architecture for
forecasting the wind power by modifying the one designed
in [12]. Since the method is established as a reliable predictor
of wind power, the training data used in this research are
different and claimed as original contribution to ensure a
more accurate prediction of wind power to assist the DEDP.
The wind speed depends on temperature, pressure difference
in the two different parts of the ground, wind direction, and
so on. In [12], the authors used three inputs to estimate the
wind speed and they are the temperature, wind direction,
and the past history of wind speed. Based on the information
gathered from the Suzlon Energy Ltd., India, we understand
that for a particular wind speed, the temperature and wind
vane directions need not be the same at all instances. Perhaps
the wind speed is influenced by various other factors. Thus, in
this research, unlike [12], three different data of temperature
and wind vane directions for the range of wind speed are
used to train the RBFN. This improves the accuracy in
predicting the wind speed and thereby the wind power with a
chance of increasing the reliability of the installed wind power
generation.

3.2.1. Architecture. For implementing the architecture, selec-
tion of inputs, hidden neuron, and outputs are required.
These selections depend on nature of the problem. The
data required for inputs are wind speed, wind direction,
and temperature. In spite of these three different data of
temperature and wind vane directions, the same range of
wind speed is used to train the RBEN. That is, for a particular
wind speed there are three different data taken. This is
because various other factors also influence the wind speed.
Hence, training the RBFN with additional data for the same
wind speed increases the prediction of wind speed. This
improves the accuracy in predicting the wind speed and
thereby the wind power with a chance of increasing the
reliability of the installed wind power generation. Neural
network with one hidden layer with a sufficient number of
hidden neuron is capable of approximating any continuous
function. The basic architecture is shown in Figure L.

The sample of the collected data as shown in Figures 2
and 3 are used as input to the RBFN model. A large number of
input parameters can be used for the analysis of the NN mod-
els. The input parameters are three different temperatures,
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F1GURE 1: The RBF-ANN architecture.
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FIGURE 2: Samples of wind vane direction and wind speeds.

three different wind directions, and the corresponding past
wind speed. The inputs are analyzed in different heights (50 m
and 65m) of wind mills. The analysis of NN architecture
is utilized with 500, 1000, 2000, 5000, and 10000 data for
training and testing of model.

The selection of hidden neurons is very important. Based
on trial and error method, 7 hidden neurons are selected with
single hidden layer. The constructed architecture includes
single hidden layer with 7 hidden neurons, 3 inputs, and 1 out-
put for implementing the model and initializing the weights
and epochs. The performance can change by increasing the
epochs. The weights are calculated by using gradient descent
rule. The error is the difference between actual and target
value. The errors are minimized by adjusting the weights.
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FIGURE 3: Samples of temperature and wind speeds.
TaBLE 1: Input parameters of the proposed models.
S.number Input parameters ~ Units Range of the parameters
1 Wind speed m/s 35-55
2 Wind direction 320-347
3 Temperature °C 24-32
4 Installed wind power MW 100 x 1.5 MW (150 MW)

3.2.2. Methodology

Step 1 (data collection). The real time data is collected from
Suzlon Energy Ltd., India, wind farm. The inputs are wind
speed, wind direction, and temperature. The predicted wind
speed is an output of the proposed model. The number of
samples taken to develop a proposed model is 500, 1000,
2000, 5000, and 10000. The input parameters are as shown
in Table 1. The wind energy depends on wind speed, wind
direction, and temperature.

Step 2 (data normalization). The data normalization is car-
ried out to improve accuracy of subsequent numeric com-
putation and to obtain better output of model. The min
max technique is used for normalization of input data. The
advantage is preserving exactly all relationships in the data
and it does not introduce bias. The normalization of data is
obtained by the following.
Normalized input is as follows:

o = (2 ) (-

mi - > 18
¢max - ¢min ¢mm) + ¢mm (18)
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TABLE 2: Parameter selection for designing the various networks.

Parameters BPN [12] RBEN [12] Improved RBEN

Learning rate 0.25 0.8 0.8

Momentum factor 0.9 — —

Number of neurons in hidden layer 7 7 7

Inputs 3 3 7

Epochs 2000 2000 2000

Training function Trainlm Newrb Newrb

Activation function Sigmoid function

Gaussian function Gaussian function

where ¢;, ¢.in> Prmax are the actual input data and minimum
. . ! ! ..

and maximum input data. ¢, ., ¢, are the minimum and

maximum target values.

Step 3 (designing the neural network). Setup parameter
includes learning rate, epoch, and dimensions. The training
can be learned from the past data after normalization.
The dimensions like number of input, hidden, and output
neurons are to be initialized. The three input parameters are
temperature, wind direction, and wind speed. The number
of hidden layers is one. The number of hidden neurons is
selected based on trial and error method. The input signal
is processed and net input of model is computed. The net
input is the weighted sum of inputs. The activation function
is applied over the net input to calculate the output of neural
network model. The sample inputs that are applied into the
proposed model are as shown in Table 2. The sample inputs
used for design of neural network are shown in Table 3.

Step 4 (training of network). For the purpose of developing
models, the training, testing, and developing model at end
stage for the past years in wind farms are needed. The
data required for input are wind speed, wind direction, and
temperature. Here, 70% of the total data is used for training
the network.

Step 5 (testing of network). Evaluate the performance of
network by testing models. Here, all available data is used for
testing the network. Finally the predicted wind speed is the
output of the NN architectures.

Thus, the RBF network is used to predict the wind speed
from the past data and thereby the wind power. Once the
wind speed is predicted, the wind power is estimated using
the expression given in (11). Once the available wind power
is estimated for the given horizon, the DEDP is solved to
economically dispatch remaining power demand with the
multiple fuel plant. This solves the DEDP using the teaching-
learning based optimization refined using the sequential
quadratic programming method which is discussed in the
following section.

4. Teaching-Learning Based Optimization

Teaching-learning based optimization (TLBO) is an opti-
mization technique developed by Rao et al. [15, 16] based
on teaching-learning process in a class among the teacher

TaBLE 3: Typical sample inputs and wind speed for a 24-hour
horizon (data provided by Suzlon Energy Ltd).

Hour  Temp (Q) G 0 sty
1 23.5 283.1 36.3
2 23.9 285.7 36.8
3 231 284.0 36.5
4 24.9 283.6 37.2
5 24.1 284.6 37.5
6 23.8 282.7 37.3
7 24.0 283.8 42.7
8 24.6 284.4 48.2
9 25.8 282.9 48.6
10 277 282.7 50.7
11 27.6 284.0 48.7
12 28.1 285.3 48.9
13 27.9 285.5 52.7
14 29.0 283.4 48.8
15 30.2 283.1 48.9
16 274 285.2 45.6
17 25.9 283.3 42.6
18 24.1 284.6 41.7
19 23.2 285.6 39.6
20 23.9 284.7 373
21 23.4 285.3 37.8
22 23.4 282.6 36.5
23 23.5 283.0 36.7
24 23.9 285.2 36.4

TaBLE 4: Comparison of MSE for various approaches.

S. number Comparison of approaches MSE (m/s)
1 BPN [12] 0.397
2 RBEN [12] 0.133
3 Proposed improved RBFN 0.092

and the students. Like other nature-inspired algorithms,
TLBO is also a population based technique with a predefined
population size that uses the population of solutions to arrive
at the optimal solution. In this method, population is also
called students in a class and design variables are the subjects
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TABLE 5: Wind power (for a particular trial) estimated from the wind
farm for the predicted wind speed.

TABLE 6: Production cost obtained using the proposed hybrid
TLBO-SQP method for each hour for Case 2.

Actual wind

Naive method  IRBF method

Hour powz\/s\l]l)zlon) (MW) (MW)

1 129.9336 126.287 131.317

2 130.5483 134.9044 131.5846
3 129.6927 131.612 131.3064
4 130.3383 133.7114 130.5666
5 130.5251 127.5346 128.5235
6 130.5604 130.0561 130.8185
7 132.4563 128.202 133.6588
8 140.1752 143.6834 142.0634
9 142.3433 142.9024 141.182

10 144.4042 142.5835 145.2115
11 146.2464 144.9367 146.2729
12 146.9441 146.5454 148.6656
13 146.443 145.1807 147.2728
14 147.0039 142.7703 145.9053
15 144.1318 141.0621 143.8849
16 141.6287 137.0738 140.2092
17 134.4697 135.0275 136.2793
18 134.4699 130.65 133.8301
19 132.3468 132.5606 130.4664
20 132.2144 128.3965 133.237

21 131.5594 134.1488 133.032

22 130.1897 128.819 129.2422
23 130.3156 133.5282 129.387

24 130.1835 125.598 131.8266

taken up by the students. Each candidate solution comprises
design variables responsible for the knowledge scale of a
student and the objective function value symbolizes the
knowledge of a particular student. The solution having best
fitness in the population (among all students) is considered
the teacher.

More specifically, an individual student (X;) within the
population represents a single possible solution to a particular
optimization problem. X; is a real-valued vector with D ele-
ments, where D is the dimension of the problem and is used
to represent the number of subjects that an individual, either
student or teacher, enrolls to learn/teach in the TLBO context.
The algorithm then tries to improve certain individuals by
changing these individuals during the teacher and learner
phases, where an individual is only replaced if his/her new
solution is better than his/her previous one. The algorithm
will repeat itself until it reaches the maximum number of
generations.

During the teacher phases, the teaching role is assigned
to the best individual (X, cpe)- The algorithm attempts to
improve other individuals (X;) by moving their position
towards the position of the X, by referring the current
mean value of the individuals (X,,.,,). This is constructed

Hour Hourly cost ($)
1 28245.17821
2 29831.86233
3 33143.03628
4 36303.70371
5 37909.09501
6 41395.27309
7 42711.98083
8 44452.70101
9 48000.5086
10 51963.15329
1 53892.34991
12 55871.06585
13 51375.66738
14 47970.41675
15 44605.33395
16 39887.21366
17 37915.15738
18 41283.82856
19 44360.70332
20 51792.13042
21 47727.3719
22 41517.72629
23 35037.89283
24 31477.24481

using the mean values for each parameter within the prob-
lem space (dimension) and represents the qualities of all
students from the current generation. Equation (1) simulates
how student improvement may be influenced by the differ-
ence between the teacher’s knowledge and the qualities of
all students. For stochastic purposes, randomly generated
parameters are applied within the equation: r ranges between
0 and 1 and T is a teaching factor which can be either 1 or 2,
thus emphasizing the importance of student quality:

Xnew = Xi tr- (Xteacher - (TF ' Xmean)) . (19)

During the learner phase, student (X;) tries to improve
his/her knowledge by peer learning from an arbitrary student
X;;» where i is unequal to 7i. In the case that X; is better than
X;, X; moves towards X;; (20). Otherwise, it is moved away
from X;; (21). If student X, performs better by following
(20) or (21), he/she will be accepted into the population.
The algorithm will continue its iterations until reaching the
maximum number of generations:

Xpew = X; +7- (X3 = X;) (20)
Xpew = X; +7-(X; - X)) (21)

Additionally infeasible individuals must be appropriately
handled to determine whether one individual is better than
the other, when applied to constrained optimization prob-
lems. For comparing two individuals, the TLBO algorithm,
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TABLE 7: Summary of best, worst, and mean production cost produced by the various methods for Case 2.
Method Maximum cost ($) Minimum cost ($) Average cost ($) Average time (min) Minimum time (min)
TLBO 1037842 1031746 1035748 5.62 5.21
CSADHS 1018760 1018681 1018718 2.72
TLBO-SQP 1018842 1018679 1018702 2.63 2.61
TABLE 8: Data for the 7-unit practical system with multiple fuel cost coeflicient.
Generation
Unit Min P1 P2 max Fuel type Cost coefficient
F1 F2 F3 a; b, G e; fi
1 0.1184e3 —0.1269el1  0.4194e -2 0.1184e0 —0.1269¢2
50 114 157 230
1 1 P 3 2 0.1865¢1l -0.3988e¢—-1 0.1138¢—-2 0.1865e—2 —0.3988e0
3 0.1365e2 —0.1980e0  0.1620e —2 0.1365e —1 —0.1980el
1 0.3979¢2 -0.3116e0  0.1457e -2 0.3979¢ -1 -0.3116el
200 332 388 500
2 1 P 3 2 —0.5914e2 0.4864e0 0.1176e —4 —0.5914e —1 0.4864el
3 -0.2875el  0.3389¢ -1 0.8035e—-3 -0.2876e -2 0.3389¢0
1 0.1983el —0.3114e—-1 0.1049¢—-2 0.1983e -2 —0.3114e0
99 138 200 265
3 1 5 3 2 0.5285e2  —0.6348e0 0.2785¢e -2 0.5285e—-1 —0.6348el
3 0.2668e3 —0.2338el  0.5935e — 2 0.2668¢e0 —0.2338¢2
1 0.1392¢2 -0.8733e—-1 0.1066e —2 0.1392e -1 —0.8733e0
190 338 407 490
4 1 P 3 2 0.9976€2 —0.5206e0  0.1597e —3 0.9976e — 1 —0.5206el
3 —0.5399¢2 0.4462e0 0.1498¢ -3 0.5399¢ -1 0.4462¢l
1 0.5285e2 —0.6348¢0  0.2758e -2 0.5285e -1 —0.6348el
85 138 200 265
5 1 2 3 2 0.1983el —0.3114e—-1 0.1049¢—-2 0.1983e -2 —0.3114e0
3 0.2668e3 —0.2338el  0.5935e — 2 0.2668¢e0 —0.2338e2
1 0.1893¢2  —-0.1325e0 0.1107e -2 0.1893e -1 —-0.1325el
200 331 391 500
6 1 5 3 2 0.4377e2 —0.2267e0  0.1165e —2 0.4377e -1 — -0.2267¢l
3 —0.4335e2 0.3559¢0 0.2454e -3 0.4335e -1 0.3559¢1
1 0.8853¢2  —0.5675e0 0.1554e -2 0.8853e—1 —0.5675el
130 213 370 400
7 1 ) 3 2 0.1530e2 -0.4514e—-1 0.7033e—-3 0.1423e—1 —0.1817e0
3 0.1423¢2 -0.1817e—-1 0.6121e—-3 0.1423e—1 -0.1817e0

according to [15], utilizes Deb’s constrained handling method
[25]:

(i) if both individuals are feasible, the fitter individual
(with the better value of fitness function) is preferred;

(ii) if one individual is feasible and the other one infeasi-
ble, the feasible individual is preferred;

(iii) if both individuals are infeasible, the individual hav-
ing the smaller number of violation (this value is
obtained by summing all the normalized constraint
violations) is preferred.

5. Sequential Quadratic Programming [17]

Sequential quadratic programming (SQP) [17] method
belongs to the most powerful nonlinear programming algo-
rithms for constrained optimization. Its excellent numerical
performance was tested and compared with other nonlinear

programming methods and since many years it belongs to
the most frequently used algorithms to solve practical con-
strained optimization problems [17]. The method resembles
closely Newton’s method for constrained optimization just
as is done for unconstrained optimization. At each iteration
an approximation is made of the Hessian of the Lagrangian
function using a Broyden-Fletcher-Goldfarb-Shanno quasi-
Newton updating method. This is then used to generate a
quadratic programming subproblem whose solution is used
to form a search direction for a line search procedure. The
SQP subroutine for the EDP is adopted as it is in [17].

6. The Pseudo Code of the Proposed Refined
TLBO Algorithm

The following steps enumerate the step-by-step procedure of
the teaching-learning based optimization algorithm refined
using the sequential quadratic programming method.
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TABLE 9: Power demand for Case 3.

Hr Power demand (MW)
1 1567
2 1567
3 1510
4 1510
5 1627
6 2029
7 2187
8 2334
9 2388
10 2274
1 2106
12 2050
13 1873
14 1500
15 1440
16 1601
17 1759
18 1802
19 2122
20 2040
21 1928
22 1867
23 1726
24 1653

(1) Initialize the number of students (population), range
of design variables, iteration count, and termination
criterion.

(2) Randomly generate the students using the design
variables.

(3) Evaluate the fitness function using the generated
(new) students.

/Iteacher phase//

(4) Calculate the mean of each design variable in the
problem.

(5) Identify the best solution as teacher amongst the
students based on their fitness value. Use SQP method
to fine-tune the teacher.

(6) Modity all other students with reference to the mean
of the teacher identified in step 4.

/Nearner phase//

(7) Evaluate the fitness function using the modified
students in step 6.

(8) Randomly select any two students and compare their
fitness. Modify the student whose fitness value is
better than the other and use again the SQP method
to fine-tune the modified student. Reject the unfit
student.

(9) Replace the student fitness and its corresponding
design variable.

(10) Repeat (test equal to the number of students) step 8,
until all the students participate in the test, ensuring
that no two students (pair) repeat the test.

(11) Ensure that the final modified students’ strength
equals the original strength, ensuring there is no
duplication of the candidates.

(12) Check for termination criterion and repeat from step
4.

The above procedure is used to solve the DEDP once
the wind power is forecasted by the RBF network. Here the
SQP method will be used to fine-tune the improving (better
fitness) solution. This will ensure that the better solution
region will not be overrun and will also aid in converging
faster towards the possible best solution of the DEDP.

7. Numerical Experiments

This paper establishes the effectiveness of the proposed
solution methodology for DEDP with integrated wind power
by solving the following test systems as three different cases:

(i) predicting the wind speed using RBFN using the
data (wind speed, wind direction, and temperature,
as shown in Figures 2 and 3) for a particular day (07
March, 2013; Thursday) provided by Suzlon Energy
Ltd., for validating the prediction of wind speed;

(ii) solving a standard 10-unit DEDP using the proposed
TLBO-SQP to validate the superiority of the method
over other existing methods in the literature (this is
because the literature review shows that there is not a
single paper archived (as per web of knowledge) for
DEDP with multiple fuel option considered);

(iii) solving a practical 7-unit multifuel DEDP with pre-
dicted wind power to share the total load demand
on the DEDP (this is to validate the combined
performance of the RBEN and the hybrid TLBO-SQP
methodologies).

The proposed technique has been implemented in Matlab
on a dual-core PC. The performance of the algorithm has
been evaluated through simulation. Simulation studies have
been carried out on three example test cases, over a schedul-
ing time horizon of 24 hours.

71. Case 1: Wind Power Predictions. The data for the wind
power prediction is provided by the Suzlon Energy Ltd.,
India, as they play key role in predicting the wind power for
the Load Dispatch Centre, Erode, (LDCE) which is control-
ling the Neyveli Thermal Power Station (NTPS). The wind
farm consists 0of 100 wind turbines of 1.5 MW each. The LDCE
forecasts wind power using Naive method as a generalized
method for further scheduling the thermal units to fulfill the
balance power demand requirements. Tables 1 and 2 present
the training parameters for the back propagation network,
RBF network, and improved RBF network.
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TABLE 10: Optimum power generation schedule by the proposed hybrid method for Case 3.
Hours  Unit 1 (MW) Unit 2 (MW) Unit 3 (MW) Unit 4 (MW) Unit 5 (MW) Unit 6 (MW) Unit 7 (MW)
1 50.1765 246.7831 109.0714 200.9432 249.4944 449.1239 130.4074
2 50.4837 246.7862 109.1178 199.1263 249.5121 449.1726 130.802
3 50.1504 248.194 109.6522 199.4125 250.1078 391.3154 130.167
4 50.1504 248.194 109.6522 199.4125 250.1078 391.3154 130.167
5 50.908 248.4653 227.0444 199.8768 249.217 391.8057 130.6821
6 50.0372 248.1954 228.4242 299.0385 149.3936 491.269 431.6421
7 150.5531 248.7201 228.4164 301.6176 201.7853 491.6717 430.2354
8 150.7471 248.0315 227.6193 399.1701 250.0372 491.3144 425.0805
9 201.5881 248.3894 227.8767 399.7394 251.8601 491.65 425.8968
10 200.3487 248.5601 2272035 284.7149 250.8383 491.8086 425.5268
11 150.5375 248.871 227.0273 284.2595 250.607 423.3105 375.3871
12 151.3938 248.0096 2279976 230.6298 250.0504 416.2553 376.6628
13 111.3893 206.308 187.8105 230.437 249.5497 366.5767 373.9281
14 50.2451 245.2532 109.4874 198.5244 170.4322 449.9621 130.0953
15 50.1059 245.8208 109.1871 198.0508 169.5593 393.1648 130.1121
16 51.0341 248.0319 223.3174 198.2213 249.7542 360.2424 130.3985
17 101.8185 249.2257 224.2334 199.0557 250.7762 404.5432 193.3477
18 100.222 248.4538 223.2834 198.7258 247.2119 400.2288 249.8746
19 150.8142 249.054 223.5754 280.419 247.8311 420.097 420.2097
20 151.1352 248.5349 223.1048 230.6187 2473284 385.2221 421.0556
21 151.3026 248.153 221.6068 201.726 240.4372 331.1033 400.6704
22 151.7401 246.2078 220.066 201.0327 190.4418 326.2747 402.2377
23 151.2091 245.8827 220.6052 200.645 191.2556 285.387 302.0158
24 150.6131 241.54 200.1566 200.9639 190.7316 286.3282 250.6668
TaBLE 11: Summary of best, worst, and mean production cost produced by the various methods for Case 2.
Method Maximum cost ($) Minimum cost ($) Average cost ($) Average time (min) Minimum time (min)
TLBO 9952.2471 9736.1471 9754.2321 4.21 4.18
TLBO-SQP 9588.2141 9538.1851 9551.3271 2.53 2.51

Additionally Table 3 shows the typical sample inputs and
wind speed for a 24-hour horizon which is used by the
BPN and RBEN [12], for predicting the wind speed. Similarly
Figures 2 and 3 show the samples of the training data for the
improved RBF network proposed in this research, which is
claimed as the new proposal to predict the wind speed as
far as this research is concerned. Figure 4 shows the wind
speed predicted for 100 trials by the proposed RBFN method
for a 24-hour horizon. This shows that the proposed RBFN
predicts almost the reasonable and acceptable wind speed
(thereby wind power) throughout all the trials.

In order to find the most suited NN architecture, mean
square error (MSE) criteria are used. MSE as one of the
error indices is used for the evaluation of performance of the
networks chosen in this research and is given by

z

1

N2
N (6:-6)"

1

MSE = (22)

where 6, is predicted output, 6, is actual output, and N
is number of samples. The MSE is used as the criteria for
measuring the forecasting performance.

The best suit NN architecture is preferred based on
the accuracy of the prediction of wind power. The model
accuracy is evaluated by comparing simulation results with
actual/measured wind speed at the wind farm by the Suzlon.
The experiments were carried out to test the performance
of the improved RBF in comparison with that of BPN and
RBFN [12]. Based on the MSE summarized in Table 4, the
improved RBFN proposed in this research proves predicting
reasonably closer wind speed prediction than other methods.
It is demonstrated that proposed improved RBFN is more
accurate than other networks and found suitable for wind
speed prediction in wind farms.

Figure 5 shows the comparison plot of the wind speed
predicted by various methods for a 24-hour scheduling
horizon, where the proposed improved RBEN is very much
closely following the actual wind speed. Finally, Table 5 shows
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FIGURE 4: Wind speed predicted for 100 trials by the proposed IRBFN method for a 24-hour horizon (legend WP (hr) stands for wind power
at that particular hour).
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FIGURE 5: Comparison plot for wind speed predicted by various
methods for a 24-hour horizon.

the wind power estimated using (11), from the wind speed
predicted using various methods.

Based on the above experiments and results, the proposed
IRBEN is proved to be a most suitable alternative for pre-
dicting the wind speed and thereby wind power. Thus, this
network will be adopted for predicting the wind power for the
DEDP for a practical power system. Next the DEDP solution
methodology proposed in this research will be validated with
a standard 10-unit test system.

7.2. Case 2: Validating the Hybrid TLBO-SQP Method for
Solving DEDP. To validate the proposed hybrid TLBO-SQP
method for solving the DEDDP, this research adopts a 10-unit
test system proven as a complex test bench for several solution
methods. Also the results are compared with the very recent
solutions reported in the literature [14]. Here the TLBO uses
a population size of 100 and total generation of 10000. A total
number of 30 trials were performed on the test system using
the proposed hybrid TLBO-SQP method to arrive at the final
conclusions about the superiority of the proposed method for
solving the DEDP with multiple fuel options. The results are
compared with the chaotic self-adaptive differential harmony
search algorithm (CSADHS) proposed in [14]. This research
did not implement the CSADHS method but only compared
the final results.

The system data and load demand considered for 24 h
time interval is obtained from [2]. In this test case, the DEDP
only considers valve-point effect in the fuel cost function
of generators. The optimal generation cost obtained by the
proposed hybrid TLBO-SQP method is $1018679.2135 as
against the $1018681.872 produced by the CSADHS algorithm
[14] for a 24h scheduling horizon and the corresponding
production cost for each hour in the horizon is given in
Table 6. Table 7 shows the production cost distribution as
best, worst, and average production cost obtained for 30 dif-
ferent trial runs. The convergence characteristic of the hybrid
TLBO-SQP method is shown in Figure 6. From Figure 6, it
is demonstrated that the convergence characteristic of the
proposed hybrid TLBO-SQP method is reliable and better
than TLBO alone. The standard deviation of generation cost
obtained by the proposed TLBO-SQP method is at an average
of 1.5 for 30 different trial runs, which is less compared to
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FIGURE 6: Convergence plot for both the methods for Case 2.

CSADHS algorithm, thus proving that the proposed method
is consistent in reaching the best optimal solution and best
suitable for solving the DEDP with valve-point effects.

7.3. Case 3: A practical 7-Unit Multifuel DEDP with Integrated
Wind. This is a practical system where 7 thermal units
are supplying the power demand and controlled by LDCE.
During 2010, wind power generation is penetrated into the
system with an installed capacity of 150 MW. As wind power is
unpredictable, an improved RBEN is proposed to forecast the
wind power and it is very well demonstrated through Case 1
that it is well suited for this system. The data for this practical
system is given in Table 8. Similarly power demand for the
total scheduling horizon is given in Table 9. The wind power
for this entire scheduling horizon is already forecasted and
will be used from Table 5 rounded to integer as done in the
LDCE. The remaining power demand (difference in Tables 9
and 5) will be scheduled using the proposed hybrid TLBO-
SQP method.

The optimal generation cost obtained by the proposed
hybrid TLBO-SQP algorithm for 24h time duration is
$9538.1851 as against the cost of 9736.1471 obtained using
the TLBO method alone. The corresponding generation
schedule by the hybrid TLBO-SQP method is shown in
Table 10. As seen in Table 11, the TLBO-SQP method can
obtain the better total fuel cost and best total fuel cost
compared to TLBO method, thus resulting in the higher
quality solution. Moreover, in all the 30 different trial runs,
the TLBO-SQP method produced almost less total fuel costs,
thus conforming a better quality solution and convergence
characteristic. The reliability of the proposed method in
producing quality solutions (total fuel cost less than the other
methods and convergence characteristics) is above 90% (as
per 30 different trial runs). The average computation time of
the proposed TLBO-SQP algorithm for 24 h time duration is
2.53 min as against the 4.21 min taken by the TLBO method.
The convergence characteristic is shown in Figure 7. From
Figure 7, it is revealed that the convergence characteristic
of the proposed hybrid TLBO-SQP algorithm is steady and
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FIGURE 7: Convergence plot for both the methods for Case 3.

fast. The standard deviation of generation cost obtained
by proposed hybrid TLBO-SQP algorithm and TLBO are
10.26 and 20.14, respectively. This proves that the proposed
algorithm is consistent in reaching the best optimal solution
for this practical 7-unit multiple fuel generating station.

8. Discussion

Due to fluctuation and nonlinearity of wind speed, accurate
wind speed prediction plays a major role in operational
control of wind farms. Thus, the radial basis function net-
work, a class in artificial neural network, is used to develop
architecture for predicting wind speed in wind farms. The
evaluation of neural network architecture is carried out for
various real time data from wind farm. The performance
analysis of modeling frame work was useful for accurate
wind speed prediction in wind farm operators and thereby
improves the reliability of wind power. Thus, on a particular
day the wind speed is predicted by training the network with
different samples (the temperature, wind direction, and the
past history of wind speed) but data taken for similar wind
speeds at various instances. Thus, the predicted wind speed is
almost similar to the actual wind speed.

After the wind power is estimated (from the predicted
wind speed), the difference in power is dispatched using the
practical 7-unit multiple fuel DEDP with valve-point effects.
Based on the simulation results in Case 2, the hybrid TLBO-
SQP method is found suitable producing quality dispatch
schedule. Hence, the hybrid TLBO-SQP is used to further
dispatch 7-unit multiple fuel DEDP meeting the balance
power demand.

The above 7-unit multiple fuel DEDP is considered only
with valve-point effects in problem formulation. Several
constraints like prohibited operating zones, line flows, voltage
limits, and transmission losses will also be included in the
problem formulation for better accuracy of the dispatch
solution and this will be done once practical data is received
from the power station.
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9. Conclusion

Integration of wind power into thermal generation system
and its impact on the DEDP are explored in this paper.
The DEDP formulation considering valve-point effects and
multiple fuel options has been solved using a new hybrid
TLBO-SQP algorithm. The DEDP formulation also incorpo-
rated wind power to demonstrate and assess the economic
benefits of integrating wind power into power system grids.
The wind speed prediction method has been analyzed using
a radial basis function network and trained using real time
wind data with different samples taken for similar wind
speeds. Simulation studies revealed that the RBFN is found
to be a more reasonable predictor than the existing methods
used in load dispatch center. Based on the predicted wind
power, the hybrid TLBO-SQP algorithm is used to solve
the DEDP to source the remaining power demand with the
available thermal generation. The performance of the TLBO
algorithm is studied on a standard bench mark DEDP with
10 units, in terms of the convergence rate and accuracy of
the solution produced. SQP is used on the run to fine-tune
the better solutions produced by the TLBO algorithm. The
effectiveness of the TLBO-SQP is finally illustrated on a
practical 7-unit multiple fuel DEDP with valve-point effects
with practical data. The comprehensive numerical results
reveal that the proposed wind speed predictor using RBFN
and the hybrid TLBO-SQP method to solve DEDP are most
suitable for a more economical power dispatch for practical
systems.

Nomenclature

The following nomenclature will be used throughout this paper:

F: Total production cost ($)

Fi,(Py): Incremental fuel cost function ($/hr)

Py Real power output of the ith unit at the hth
interval (MW)

N: Number of generating units

Np: tuel options for each unit

H: Number of intervals in the given time
horizon

Ppy: Power demand at the hth interval (MW)

Posen: Power Loss at the hth interval (MW)

' Transmission loss coefficients
Py, min/ Pimax: Minimum/maximum limit of the real
power of the ith unit at the hth interval

(MW)

UR,/DR, Up/down ramp rate limits of the ith unit
(MW)

py: Previous power generated by the ith unit
at the hth interval (MW)

Wyt Wind turbine rated power

v: Actual wind speed

Ug: Wind turbine rated wind speed

Uy Wind turbine cutin speed

Vgt Wind turbine cutout speed.
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