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We investigate themultiple attribute decisionmaking (MADM) problems in which attribute values take the form of interval-valued
dual hesitant fuzzy information. Firstly, some operational laws for interval-valued dual hesitation fuzzy elements (IVDHFEs) based
on Einstein operations are developed. Then we develop some aggregation operators based on Einstein operations: the interval-
valued dual hesitant fuzzy Einstein weighted averaging (IVDHFEWA) operator, interval-valued dual hesitant fuzzy Einstein
ordered weighted averaging (IVDHFEOWA) operator, interval-valued dual hesitant fuzzy Einstein hybrid averaging (IVDHFEHA)
operator, interval-valued dual hesitant fuzzy Einstein weighted geometric (IVDHFEWG) operator, interval-valued dual hesitant
fuzzy Einstein ordered weighted geometric (IVDHFEOWG) operator, and interval-valued dual hesitant fuzzy Einstein hybrid
geometric (IVDHFEHG) operator. Furthermore, we discuss some desirable properties of these operators, and investigate the
relationship between the developed operators and the existing ones. Based on the IVDHFEWA operator, an approach to MADM
problems is proposed under the interval-valued dual hesitant fuzzy environment. Finally, a numerical example is given to show
the application of the developed method, and a comparison analysis is conducted to demonstrate the effectiveness of the proposed
approach.

1. Introduction

The fuzzy set [1] has received increasing attention since its
introduction by Zadeh. Various extensions of this theory
have been developed, including the interval-valued fuzzy set
[2], type-2 fuzzy set [3], intuitionistic fuzzy set [4], interval-
valued intuitionistic fuzzy set [5], and linguistic fuzzy set [6].
However, the aforementioned extensions cannot dealwith the
situation where it is difficult to determine the membership
of an element to a set owing to ambiguity among several
different values; that is, the difficulty in establishing themem-
bership of an element to a set does not arise from a margin of
error (as in intuitionistic or interval-valued fuzzy sets) or a
specified possibility distribution of the possible values (as in
type-2 fuzzy set) but instead arises fromour hesitation among
a few different values. Recently, Torra and Narukawa [7] and
Torra [8] introduced the concept of hesitant fuzzy sets (HFSs)
to handle such cases. HFSs permit the membership degree

of an element to a set to be represented by a set of possible
values. Hesitant fuzzy aggregation operators have received
increasing attention from researchers recently. Xia and Xu [9]
defined some hesitant fuzzy operational rules and discussed
a series of operators under various conditions. Furthermore,
Xia et al. [10] developed some quasiarithmetic aggregation
operators and some induced aggregation operators for hes-
itant fuzzy information. Zhu et al. [11] defined the hesitant
fuzzy geometric Bonferroni mean (HFGBM), the hesitant
fuzzy Choquet geometric Bonferroni mean (HFCGBM) and
then applied them to MADM problems. Motivated by the
idea of prioritized aggregation operators, Wei [12] developed
some prioritized aggregation operators for aggregating hes-
itant fuzzy information. Zhang [13] extended the classical
power aggregation operators to hesitant fuzzy environment
and then developed the hesitant fuzzy power averaging
(HFPA) operator, generalized hesitant fuzzy power averag-
ing (GHFPA) operator, weighted generalized hesitant fuzzy
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power averaging (WGHFPA) operator, hesitant fuzzy power
ordered weighted averaging (HFPOWA) operator, and gen-
eralized hesitant fuzzy power ordered weighted averaging
(GHFPOWA) operator. Lin et al. [14] proposed hesitant fuzzy
linguistic set (HFLS) and developed some hesitant fuzzy
linguistic aggregation operators. In addition to the aforemen-
tioned aggregation operators for hesitant fuzzy information,
many other research topics have also been discussed with the
help of HFSs [15–26].

Recently, Zhu et al. [27] proposed dual hesitant fuzzy sets
(DHFSs), which consists of two parts: the membership hes-
itancy function and the nonmembership hesitancy function.
They have investigated some basic operations and properties
of DHFS. Furthermore, Wang et al. [28] developed some
aggregation operators based on dual hesitant fuzzy elements
(DHFEs), such as the dual hesitant fuzzy weighted averaging
(DHFWA) operator, the dual hesitant fuzzy weighted geo-
metric (DHFWG) operator, the dual hesitant fuzzy ordered
weighted averaging (DHFOWA) operator, the dual hesitant
fuzzy ordered weighted geometric (DHFOWG) operator, the
dual hesitant fuzzy hybrid averaging (DHFHA) operator, and
the dual hesitant fuzzy hybrid geometric (DHFHG) operator,
and then studied some properties of these operators. Ju et
al. [29] developed some aggregation operators with interval-
valued dual hesitant fuzzy information.

It is obvious that the aforementioned aggregation oper-
ators all built on the basic algebraic product and algebraic
sum, which are not the unique operations that can be chosen
to model the intersection and union of IVDHFEs. Einstein
operations include Einstein product and Einstein sum, which
are good alternatives to the algebraic product and algebraic
sum, respectively. Moreover, it seems that there are some
investigations on aggregation techniques using the Einstein
operations on IFSs (or HFSs) for aggregating a collection of
IFVs (or HFEs). Zhao andWei [30] applied the intuitionistic
fuzzy Einstein hybrid averaging operator and intuitionis-
tic fuzzy Einstein hybrid geometric operator to deal with
MADM problems. Wang and Liu [31, 32] developed some
arithmetic aggregation operators and geometric aggregation
operators by using Einstein operations to aggregate intui-
tionistic fuzzy information. Wang and Liu [33, 34] further
investigated the Einstein operators under interval-valued
intuitionistic fuzzy environments. Zhang and Yu [35] pro-
posed some geometric Choquet aggregation operators using
Einstein operations to deal withMADMproblems. Zhao et al.
[36] utilized Einstein operations to develop some hesitant
fuzzy correlated aggregation operators. Wei and Zhao [37]
developed some induced hesitant interval-valued fuzzy Ein-
stein aggregation operators to deal with MADM problems
with hesitant interval-valued fuzzy information. Zhao et al.
[38] developed some hesitant triangular fuzzy aggregation
operators based on the Einstein operations.

Based on the above analysis, we find that how to extend
the Einstein operations to aggregate the interval-valued dual
hesitation fuzzy information is a meaningful work. There-
fore, we will develop some aggregation operators based on
Einstein operations under interval-valued dual hesitant fuzzy
setting. To do that, the remainder of the paper is organized
as follows: Section 2 reviews some basic concepts related

to HFSs, DHFSs, and IVDHFSs. In Section 3, we define
some operational laws for interval-valued dual hesitant fuzzy
element (IVDHFE) based on Einstein operations and develop
some aggregation operators for aggregating interval-valued
dual hesitant fuzzy information based on Einstein opera-
tions of IVDHFE. Section 4 proposes a method to MADM
problems under interval-valued dual hesitant fuzzy setting.
A numerical example is developed to illustrate how to apply
the proposed approach in Section 5, followed by concluding
remarks in Section 6.

2. Preliminaries

In this section, we briefly review some basic notations and
definitions regarding hesitant fuzzy sets, dual hesitant fuzzy
sets, and interval-valued hesitant fuzzy sets.

2.1. Hesitant Fuzzy Sets. Torra and Narukawa [7] and Torra
[8] firstly proposed the hesitant fuzzy set. The concept of
hesitant fuzzy set (HFS) and some operation laws of hesitant
fuzzy elements are given as follows.

Definition 1 (see [9]). Let𝑋 be a fixed set; a hesitant fuzzy set
(HFS) on 𝑋 is in terms of a function that when applied to 𝑋
returns a subset of [0, 1]. To be easily understood, Xia and Xu
[9] expressed the HFS by a mathematical symbol:

𝐸 = {⟨𝑥, ℎ
𝐸 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

where ℎ
𝐸 (𝑥) is a set of some values in [0, 1], denoting the

possible membership degrees of the element 𝑥 ∈ 𝑋 to the
set 𝐸. For convenience, Xia and Xu [9] called ℎ = ℎ

𝐸 (𝑥) a
hesitant fuzzy element (HFE) and 𝐻 the set of all hesitant
fuzzy elements (HFEs).

Definition 2 (see [9]). Let ℎ, ℎ
1
, and ℎ

2
be any three HFEs;

then some operation laws about HFEs are defined as follows:

(1) ℎ
𝜆
= ⋃

𝑟∈ℎ

{𝑟
𝜆
} ;

(2) 𝜆ℎ = ⋃

𝑟∈ℎ

{1 − (1 − 𝑟)
𝜆
} ;

(3) ℎ1 ⊕ ℎ2 = ⋃

𝑟
1
∈ℎ
1
,𝑟
2
∈ℎ
2

{𝑟
1
+ 𝑟
2
− 𝑟
1
𝑟
2
} ;

(4) ℎ1 ⊗ ℎ2 = ⋃

𝑟
1
∈ℎ
1
,𝑟
2
∈ℎ
2

{𝑟
1
𝑟
2
} .

(2)

Definition 3 (see [9]). Let ℎ be a HFE; then the score function
of ℎ is determined as follows:

𝑆 (ℎ) =
1

𝑙 (ℎ)
∑

𝑟∈ℎ

𝑟, (3)

where 𝑙(ℎ) is the number of the elements in ℎ. For two HFEs,
ℎ
1
and ℎ
2
, if 𝑆(ℎ

1
) > 𝑆(ℎ

2
), then ℎ

1
> ℎ
2
; if 𝑆(ℎ

1
) = 𝑆(ℎ

2
), then

ℎ
1
= ℎ
2
.
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2.2. Dual Hesitant Fuzzy Sets. As an extension of HFS, Zhu
et al. [27] developed the concept of dual hesitant fuzzy sets
(DHFSs), in terms of two functions that return two sets of
membership values and nonmembership values, respectively,
for each element in the domain as follows.

Definition 4 (see [27]). Let 𝑋 be a fixed set; then a dual
hesitant fuzzy set (DHFS) 𝐸 on𝑋 is described as follows:

𝐸 = {⟨𝑥, ℎ (𝑥) , 𝑔 (𝑥)⟩ | 𝑥 ∈ 𝑋} (4)

in which ℎ(𝑥) and 𝑔(𝑥) are two sets of some values in [0, 1],
denoting the possible membership degrees and nonmember-
ship degrees of the element 𝑥 ∈ 𝑋 to the set 𝐸, with the
conditions: 𝛾, 𝜂 ∈ [0, 1] and 0 ≤ 𝛾+ + 𝜂+ ≤ 1, where 𝛾 ∈ ℎ(𝑥),
𝜂 ∈ 𝑔(𝑥), 𝛾+ ∈ ℎ

+
(𝑥) = ⋃

𝛾∈ℎ(𝑥)
max{𝛾}, and 𝜂+ ∈ 𝑔

+
(𝑥) =

⋃
𝜂∈𝑔(𝑥)

max{𝜂} for all 𝑥 ∈ 𝑋. For convenience, the pair 𝑒(𝑥) =
{ℎ(𝑥), 𝑔(𝑥)} is called a dual hesitant fuzzy element (DHFE)
denoted by 𝑒 = {ℎ, 𝑔}.

To compare the DHESs, Zhu et al. [27] gave the following
comparison laws.

Definition 5 (see [27]). Let 𝑒
1
= {ℎ
1
, 𝑔
1
} and 𝑒

2
= {ℎ
2
, 𝑔
2
} be

any two DHFSs; then the score function of 𝑒
𝑖
(𝑖 = 1, 2) is

𝑆(𝑒
𝑖
) = (1/𝑙 (ℎ

𝑖
))∑
𝛾
𝑖
∈ℎ
𝑖

𝛾
𝑖
−(1/𝑙(𝑔

𝑖
)) ∑
𝜂
𝑖
∈𝑔
𝑖

𝜂
𝑖
(𝑖 = 1, 2) and the

accuracy function of 𝑒
𝑖
(𝑖 = 1, 2) is 𝑃(𝑒

𝑖
) = (1/𝑙 (ℎ

𝑖
))∑
𝛾
𝑖
∈ℎ
𝑖

𝛾
𝑖
+

(1/𝑙 (𝑔
𝑖
))∑
𝜂
𝑖
∈𝑔
𝑖

𝜂
𝑖
(𝑖 = 1, 2), where 𝑙(ℎ

𝑖
) and 𝑙(𝑔

𝑖
) are the

numbers of the elements in ℎ
𝑖
and 𝑔

𝑖
, respectively; then con-

sider the following:

(1) if 𝑆(𝑒
1
) > 𝑆(𝑒

2
), then 𝑒

1
is superior to 𝑒

2
, denoted by

𝑒
1
≻ 𝑒
2
;

(2) if 𝑆(𝑒
1
) = 𝑆(𝑒

2
), then consider the following:

(a) if 𝑃(𝑒
1
) > 𝑃(𝑒

2
), then 𝑒

1
is superior to 𝑒

2
,

denoted by 𝑒
1
≻ 𝑒
2
;

(b) if 𝑃(𝑒
1
) = 𝑃(𝑒

2
), then 𝑒

1
is equivalent to 𝑒

2
,

denoted by 𝑒
1
= 𝑒
2
.

2.3. Interval-ValuedDualHesitant Fuzzy Set. In some real-life
decision making problems, decision makers may find it hard
to express their evaluation about an alternative under a spe-
cific attribute with exact and crisp values. Since the interval-
valued fuzzy set is usually more adequate or sufficient to
model real-life decision problems than real numbers, Ju et al.
[29] developed the interval-valued dual hesitant fuzzy set.

Definition 6 (see [29]). Let𝑋 be a fixed set; then an interval-
valued dual hesitant fuzzy set (IVDHFS) 𝐸 on 𝑋 is defined
as

𝐸 = {⟨𝑥, ℎ̃ (𝑥) , 𝑔 (𝑥)⟩ | 𝑥 ∈ 𝑋} , (5)

where ℎ̃(𝑥) and 𝑔(𝑥) are two sets of some interval values in
[0, 1], denoting the possible membership degrees and non-
membership degrees of the element 𝑥 ∈ 𝑋 to the set 𝐸,
respectively, with the conditions: [𝛾𝐿, 𝛾𝑈], [𝜂𝐿, 𝜂𝑈] ⊂ [0, 1]

and 0 ≤ (𝛾𝑈)+ + (𝜂𝑈)+ ≤ 1, where [𝛾𝐿, 𝛾𝑈] ∈ ℎ̃(𝑥), [𝜂𝐿, 𝜂𝑈] ∈
𝑔(𝑥), (𝛾𝑈)+ ∈ ℎ̃

+
(𝑥) = ⋃

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ̃(𝑥)

max{𝛾𝑈}, and (𝜂𝑈)+ ∈
𝑔
+
(𝑥) = ⋃

[𝜂
𝐿
,𝜂
𝑈
]∈𝑔(𝑥)

max{𝜂𝑈} for all 𝑥 ∈ 𝑋. For convenience,
we call the pair 𝑒(𝑥) = {ℎ̃(𝑥), 𝑔(𝑥)} an interval-valued dual
hesitant fuzzy element (IVDHFE) denoted by 𝑒 = {ℎ̃, 𝑔} and
𝐸 the set of all IVDHFEs.

Especially, if 𝛾𝐿 = 𝛾
𝑈 and 𝜂𝐿 = 𝜂

𝑈, then 𝐸 reduces to a
dual hesitant fuzzy set.

To compare the IVDHFEs, Ju et al. [29] give the following
comparison laws.

Definition 7 (see [29]). Let 𝑒̃ = (ℎ̃, 𝑔̃) =⋃
[𝛾
𝐿
,𝛾
𝑈
]∈ℎ̃,[𝜂
𝐿
,𝜂
𝑈
]∈𝑔̃
{[𝛾
𝐿
, 𝛾
𝑈
],

[𝜂
𝐿
, 𝜂
𝑈
]} be an interval-valued dual hesitant fuzzy element;

then

𝑆 (𝑒)

=
1

2
(

1

𝑙 (ℎ̃)

∑

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ̃

(𝛾
𝐿
+ 𝛾
𝑈
) −

1

𝑙 (𝑔)
∑

[𝜂
𝐿
,𝜂
𝑈
]∈𝑔

(𝜂
𝐿
+ 𝜂
𝑈
))

(6)

is called the score function of 𝑒, and

𝐻(𝑒)

=
1

2
(

1

𝑙 (ℎ̃)

∑

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ̃

(𝛾
𝐿
+ 𝛾
𝑈
) +

1

𝑙 (𝑔)
∑

[𝜂
𝐿
,𝜂
𝑈
]∈𝑔

(𝜂
𝐿
+ 𝜂
𝑈
))

(7)

is called the accuracy function of 𝑒, where 𝑙(ℎ̃) and 𝑙(𝑔) are
the numbers of interval values in ℎ̃ and 𝑔, respectively.

Theorem8 (see [29]). Let 𝑒
1
= {ℎ̃
1,
𝑔
1
} and 𝑒

2
= {ℎ̃
2,
𝑔
2
} be any

two IVDHFEs; then one can compare them in terms of the fol-
lowing rules:

(1) if 𝑆 (𝑒
1
) > 𝑆 (𝑒

2
), then 𝑒

1
> 𝑒
2
;

(2) if 𝑆 (𝑒
1
) = 𝑆 (𝑒

2
), then

(a) if𝐻(𝑒
1
) = 𝐻 (𝑒

2
), then 𝑒

1
= 𝑒
2
;

(b) if𝐻(𝑒
1
) > 𝐻 (𝑒

2
), then 𝑒

1
> 𝑒
2
;

(c) if𝐻(𝑒
1
) < 𝐻 (𝑒

2
), then 𝑒

1
< 𝑒
2
.

Based on algebraic operations of IVDHFEs, some inter-
val-valued dual hesitant fuzzy aggregation operators can be
defined as follows.

Motivated by the intuitionistic fuzzy aggregation opera-
tors developed by Xu [39] and Xu and Yager [40], some inter-
val-valued dual hesitant fuzzy aggregation operators can be
defined as follows based on algebraic operations of IVDHFEs.

Definition 9 (see [29]). Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection

of IVDHFEs and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vec-

tor of 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛), with 𝜔

𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1;

then consider the following.
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(1) An interval-valued dual hesitant fuzzy weighted aver-
age (IVDHFWA) operator is defined as follows:

IVDHFWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨁

𝑗=1

𝜔
𝑗
𝑒
𝑗

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{

{

{

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗
)
𝜔
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗
)
𝜔
𝑗]

]

}

}

}

,

{

{

{

[

[

𝑛

∏

𝑗=1

(𝜂
𝐿

𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑖=1

(𝜂
𝑈

𝑗
)
𝜔
𝑗]

]

}

}

}

}

}

}

.

(8)

(2) An interval-valued dual hesitant fuzzy weighted geo-
metric (IVDHFWG) operator is defined as follows:

IVDHFWG (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨂

𝑗=1

𝑒
𝜔
𝑗

𝑗

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{

{

{

{

{

{

[

[

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗
)
𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝛾
𝐿

𝑗
)
𝜔
𝑗]

]

}

}

}

,

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝜂
𝐿

𝑗
)
𝜔
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − 𝜂
𝑈

𝑗
)
𝜔
𝑗]

]

}

}

}

}

}

}

.

(9)

Definition 10 (see [29]). Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection

of IVDHFEs, let 𝑒
𝜎(𝑗)

be the 𝑗th largest of them, and let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the aggregation-associatedweight vector

with𝑤
𝑗
∈ [0, 1] and∑𝑛

𝑗=1
𝑤
𝑗
= 1; then consider the following.

(1) An interval-valued dual hesitant fuzzy ordered
weighted averaging (IVDHFOWA) operator is
defined as follows:

IVDHFOWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨁

𝑗=1

𝑤
𝑗
𝑒
𝜎(𝑗)

= ⋃

[𝛾
𝐿

𝜎(𝑗)
,𝛾
𝑈

𝜎(𝑗)
]∈ℎ̃
𝜎(𝑗)
,[𝜂
𝐿

𝜎(𝑗)
,𝜂
𝑈

𝜎(𝑗)
]∈𝑔
𝜎(𝑗)

{

{

{

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝜎(𝑗)
)
𝑤
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝜎(𝑗)
)
𝑤
𝑗]

]

}

}

}

,

{

{

{

[

[

𝑛

∏

𝑗=1

(𝜂
𝐿

𝜎(𝑗)
)
𝑤
𝑗

,

𝑛

∏

𝑖=1

(𝜂
𝑈

𝜎(𝑗)
)
𝑤
𝑗 ]

]

}

}

}

}

}

}

.

(10)

(2) An interval-valued dual hesitant fuzzy ordered
weighted geometric (IVDHFOWG) operator is
defined as follows:

IVDHFOWG (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨂

𝑗=1

(𝑒
𝜎(𝑗)

)
𝑤
𝑗

= ⋃

[𝛾
𝐿

𝜎(𝑗)
,𝛾
𝑈

𝜎(𝑗)
]∈ℎ̃
𝜎(𝑗)
,[𝜂
𝐿

𝜎(𝑗)
,𝜂
𝑈

𝜎(𝑗)
]∈𝑔
𝜎(𝑗)

{

{

{

{

{

{

[

[

𝑛

∏

𝑗=1

(𝛾
𝐿

𝜎(𝑗)
)
𝑤
𝑗

,

𝑛

∏

𝑗=1

(𝛾
𝑈

𝜎(𝑗)
)
𝑤
𝑗]

]

}

}

}

,

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝜂
𝐿

𝜎(𝑗)
)
𝑤
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − 𝜂
𝑈

𝜎(𝑗)
)
𝑤
𝑗]

]

}

}

}

}

}

}

.

(11)

Definition 11 (see [29]). Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection

of IVDHFEs, let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector of

𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛), with 𝜔

𝑗
∈ [0, 1] and∑𝑛

𝑗=1
𝜔
𝑗
= 1, and let 𝑛

be the balancing coefficientwhich plays a role of balance; then
based on the location weighted vector𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇,

such that 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1, some interval-valued

dual hesitant fuzzy hybrid aggregation operators are defined
as follows.

(1) An interval-valued dual hesitant fuzzy hybrid average
(IVDHFHA) operator is defined as follows:

IVDHFHA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨁

𝑗=1

𝑤
𝑗
̇𝑒
𝜎(𝑗)

= ⋃

[ ̇𝛾
𝐿

𝜎(𝑗)
, ̇𝛾
𝑈

𝜎(𝑗)
]∈ℎ̇
𝜎(𝑗)
,[ ̇𝜂
𝐿

𝜎(𝑗)
, ̇𝜂
𝑈

𝜎(𝑗)
]∈ ̇𝑔
𝜎(𝑗)

{

{

{

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − ̇𝛾
𝐿

𝜎(𝑗)
)
𝑤
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − ̇𝛾
𝑈

𝜎(𝑗)
)
𝑤
𝑗]

]

}

}

}

,

{

{

{

[

[

𝑛

∏

𝑗=1

( ̇𝜂
𝐿

𝜎(𝑗)
)
𝑤
𝑗

,

𝑛

∏

𝑗=1

( ̇𝜂
𝑈

𝜎(𝑗)
)
𝑤
𝑗]

]

}

}

}

}

}

}

.

(12)
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(2) An interval-valued dual hesitant fuzzy hybrid geo-
metric (IVDHFHG) operator is defined as follows:

IVDHFHG (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨂

𝑗=1

( ̈𝑒
𝜎(𝑗)

)
𝑤
𝑗

= ⋃

[ ̈𝛾
𝐿

𝜎(𝑗)
, ̈𝛾
𝑈

𝜎(𝑗)
]∈ℎ̈
𝑗
,[ ̈𝜂
𝐿

𝜎(𝑗)
, ̈𝜂
𝑈

𝜎(𝑗)
]∈ ̈𝑔
𝑗

{

{

{

{

{

{

[

[

𝑛

∏

𝑗=1

( ̈𝛾
𝐿

𝜎(𝑗)
)
𝑤
𝑗

,

𝑛

∏

𝑗=1

( ̈𝛾
𝑈

𝜎(𝑗)
)
𝑤
𝑗]

]

}

}

}

,

{

{

{

[

[

1 −

𝑛

∏

𝑗=1

(1 − ̈𝜂
𝐿

𝜎(𝑗)
)
𝑤
𝑗

,

1 −

𝑛

∏

𝑗=1

(1 − ̈𝜂
𝑈

𝜎(𝑗)
)
𝑤
𝑗]

]

}

}

}

}

}

}

(13)

inwhich ̇𝑒
𝜎(𝑗)

is the 𝑗th largest of interval-valued dual hesitant
fuzzy weighted arguments ̇𝑒

𝑗
( ̇𝑒
𝑗
= 𝑛𝜔
𝑗
𝑒
𝑗
, 𝑗 = 1, 2, . . . , 𝑛), and

̈𝑒
𝜎(𝑗)

is the 𝑗th largest of interval-valued dual hesitant fuzzy
weighted arguments ̈𝑒

𝑗
( ̈𝑒
𝑗
= (𝑒
𝑗
)
𝑛𝜔
𝑗 , 𝑗 = 1, 2, . . . , 𝑛).

3. Interval-Valued Dual Hesitant
Fuzzy Aggregation Operators Based on
Einstein Operations

In this section, we will develop some aggregation operators
to aggregate interval-valued dual hesitant fuzzy information
based on Einstein operations. Einstein operations include the
Einstein product and Einstein sum. Einstein product ⊗

𝜀
is a

𝑡-norm and Einstein sum ⊕
𝜀
is a 𝑡-conorm [41], where

(1) 𝑎 ⊕
𝜀
𝑏 = (𝑎 + 𝑏)/(1 + 𝑎 × 𝑏);

(2) 𝑎 ⊗
𝜀
𝑏 = (𝑎×𝑏)/(1+ (1−𝑎)× (1−𝑏)), ∀(𝑎, 𝑏) ∈ [0, 1]2.

3.1. Operational Laws for IVDHFEs Based on Einstein Oper-
ations. Let 𝑒 = (ℎ̃, 𝑔), 𝑒

1
= (ℎ̃
1
, 𝑔
1
), and 𝑒

2
= (ℎ̃
2
, 𝑔
2
) be

any three interval-valued dual hesitant fuzzy elements, where
[𝛾
𝐿

𝑖
, 𝛾
𝑈

𝑖
] ∈ ℎ̃
𝑖
, [𝜂𝐿
𝑖
, 𝜂
𝑈

𝑖
] ∈ 𝑔

𝑖
, 𝑖 = 1, 2, and 𝜆 > 0; then some

operational laws of the IVDHFEs can be defined based on
Einstein operations.

Definition 12. Let 𝑒, 𝑒
1
, and 𝑒

2
be three IVDHFEs, then we

have the following operational rules:

(1) 𝑒1 ⊕ 𝑒2 = ⋃

[𝛾
𝐿

𝑖
,𝛾
𝑈

𝑖 ]∈ℎ̃𝑖 ,[𝜂
𝐿

𝑖
,𝜂
𝑈

𝑖
]∈𝑔
𝑖

{{[
𝛾
𝐿

1
+ 𝛾
𝐿

2

1 + 𝛾
𝐿

1
𝛾
𝐿

2

,
𝛾
𝑈

1
+ 𝛾
𝑈

2

1 + 𝛾
𝑈

1
𝛾
𝑈

2

]} ,

{[
𝜂
𝐿

1
𝜂
𝐿

2

1 + (1 − 𝜂
𝐿

1
) (1 − 𝜂

𝐿

2
)
,

𝜂
𝑈

1
𝜂
𝑈

2

1 + (1 − 𝜂
𝑈

1
) (1 − 𝜂

𝑈

2
)
]}} , 𝑖 = 1, 2;

(2) 𝑒1 ⊗ 𝑒2 = ⋃

[𝛾
𝐿

𝑖
,𝛾
𝑈

𝑖
]∈ℎ̃
𝑖
,[𝜂
𝑖

𝐿
,𝜂
𝑖

𝑈
]∈𝑔
𝑖

{{[
𝛾
𝐿

1
𝛾
𝐿

2

1 + (1 − 𝛾
𝐿

1
) (1 − 𝛾

𝐿

2
)
,

𝛾
𝑈

1
𝛾
𝑈

2

1 + (1 − 𝛾
𝑈

1
) (1 − 𝛾

𝑈

2
)
]} ,

{[
𝜂
𝐿

1
+ 𝜂
𝐿

2

1 + 𝜂
𝐿

1
𝜂
𝐿

2

,
𝜂
𝑈

1
+ 𝜂
𝑈

2

1 + 𝜂
𝑈

1
𝜂
𝑈

2

]}} , 𝑖 = 1, 2;

(3) 𝜆𝑒 = ⋃

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ̃,[𝜂

𝐿
,𝜂
𝑈
]∈𝑔

{

{

{

{

{

{

[

[

(1 + 𝛾
𝐿
)
𝜆

− (1 − 𝛾
𝐿
)
𝜆

(1 + 𝛾𝐿)
𝜆
+ (1 − 𝛾𝐿)

𝜆
,

(1 + 𝛾
𝑈
)
𝜆

− (1 − 𝛾
𝑈
)
𝜆

(1 + 𝛾𝑈)
𝜆
+ (1 − 𝛾𝑈)

𝜆

]

]

}

}

}

,

{

{

{

[

[

2 (𝜂
𝐿
)
𝜆

(2 − 𝜂𝐿)
𝜆
+ (𝜂𝐿)

𝜆
,

2 (𝜂
𝑈
)
𝜆

(2 − 𝜂𝑈)
𝜆
+ (𝜂𝑈)

𝜆

]

]

}

}

}

}

}

}

, 𝜆 > 0;

(4) 𝑒
𝜆
= ⋃

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ̃,[𝜂

𝐿
,𝜂
𝑈
]∈𝑔

{

{

{

{

{

{

[

[

2 (𝛾
𝐿
)
𝜆

(2 − 𝛾𝐿)
𝜆
+ (𝛾𝐿)

𝜆
,

2 (𝛾
𝑈
)
𝜆

(2 − 𝛾𝑈)
𝜆
+ (𝛾𝑈)

𝜆

]

]

}

}

}

,

{

{

{

[

[

(1 + 𝜂
𝐿
)
𝜆

− (1 − 𝜂
𝐿
)
𝜆

(1 + 𝜂𝐿)
𝜆
+ (1 − 𝜂𝐿)

𝜆
,

(1 + 𝜂
𝑈
)
𝜆

− (1 − 𝜂
𝑈
)
𝜆

(1 + 𝜂𝑈)
𝜆
+ (1 − 𝜂𝑈)

𝜆

]

]

}

}

}

}

}

}

, 𝜆 > 0.

(14)
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Obviously, the above operational rules are still IVDHFEs.
Some relationships can be further established for these oper-
ations on IVDHFEs.

Theorem 13. Let 𝑒, 𝑒
1
, and 𝑒

2
be any three IVDHFEs; then one

has

(1) 𝑒
1
⊕ 𝑒
2
= 𝑒
2
⊕ 𝑒
1
;

(2) 𝑒
1
⊗ 𝑒
2
= 𝑒
2
⊗ 𝑒
1
;

(3) 𝜆 (𝑒
1
⊕ 𝑒
2
) = 𝜆𝑒

1
⊕ 𝜆𝑒
2
, 𝜆 > 0;

(4) (𝑒
1
⊗ 𝑒
2
)
𝜆
= 𝑒
𝜆

1
⊗ 𝑒
𝜆

2
, 𝜆 > 0.

3.2. Interval-Valued Dual Hesitant Fuzzy Einstein Weighted
Aggregation Operators. Based on the above operational
laws, we develop a new operator, which is defined as follows.

Definition 14. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

IVDHFEs; an interval-valued dual hesitant fuzzy Einstein
weighted averaging (IVDHFEWA) operator is a mapping
IVDHFEWA: 𝐸𝑛 → 𝐸, such that

IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) =

𝑛

⨁

𝑗=1

(𝜔
𝑗
𝑒
𝑗
) , (15)

where 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of (𝑒

1
, 𝑒
2
,

. . . , 𝑒
𝑛
) with 𝜔

𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1.

Theorem 15. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVD-

HFEs; then their aggregation value by using the IVDHFEWA
operator is also an IVDHFE, and

𝐼𝑉𝐷𝐻𝐹𝐸𝑊𝐴(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨁

𝑗=1

𝑤
𝑗
𝑒
𝑗

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{

{

{

{

{

{

[

[

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

,

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

]

]

}

}

}

,

{

{

{

[

[

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

,

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

]

]

}

}

}

}

}

}

,

(16)

where 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of (𝑒

1
, 𝑒
2
,

. . . , 𝑒
𝑛
) with 𝜔

𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1.

Proof. The first result follows quickly from Definition 14.
In what follows, we prove (16) using mathematical induction
on 𝑛.

(1) When 𝑛 = 1, it is easy to conclude that (16) holds
according to the Einstein operational law (3) in Defi-
nition 12:

IVDHFEWA (𝑒
1
)

= 𝑤
1
𝑒
1

= ⋃

[𝛾
𝐿

1
,𝛾
𝑈

1
]∈ℎ
1
,[𝜂
𝐿

1
,𝜂
𝑈

1
]∈𝑔
1

{

{

{

{

{

{

[

[

(1 + 𝛾
𝐿

1
)
𝑤
1

− (1 − 𝛾
𝐿

1
)
𝑤
1

(1 + 𝛾
𝐿

1
)
𝑤
1

+ (1 − 𝛾
𝐿

1
)
𝑤
1

,

(1 + 𝛾
𝑈

1
)
𝑤
1

− (1 − 𝛾
𝑈

1
)
𝑤
1

(1 + 𝛾
𝑈

1
)
𝑤
1

+ (1 − 𝛾
𝑈

1
)
𝑤
1

]

]

}

}

}

,

{

{

{

[

[

2 (𝜂
𝐿

1
)
𝑤
1

(2 − 𝜂
𝐿

1
)
𝑤
1

+ (𝜂
𝐿

1
)
𝑤
1

,

2 (𝜂
𝑈

1
)
𝑤
1

(2 − 𝜂
𝑈

1
)
𝑤
1

+ (𝜂
𝑈

1
)
𝑤
1

]

]

}

}

}

}

}

}

.

(17)
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(2) Assume that (16) holds for 𝑛 = 𝑘 (𝑘 ≥ 1); namely,

IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑘
)

=

𝑘

⨁

𝑗=1

𝑤
𝑗
𝑒
𝑗

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{

{

{

{

{

{

[

[

∏
𝑘

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝑤
𝑗

−∏
𝑘

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝑤
𝑗

∏
𝑘

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝑤
𝑗

,

∏
𝑘

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝑤
𝑗

−∏
𝑘

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝑤
𝑗

∏
𝑘

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝑤
𝑗

]

]

}

}

}

,

{

{

{

[

[

2∏
𝑘

𝑗=1
(𝜂
𝐿

𝑗
)
𝑤
𝑗

∏
𝑘

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(𝜂
𝐿

𝑗
)
𝑤
𝑗

,

2∏
𝑘

𝑗=1
(𝜂
𝑈

𝑗
)
𝑤
𝑗

∏
𝑘

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(𝜂
𝑈

𝑗
)
𝑤
𝑗

]

]

}

}

}

}

}

}

.

(18)

When 𝑛 = 𝑘 + 1, we get

IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑘+1
)

=

𝑘+1

⨁

𝑗=1

𝑤
𝑗
𝑒
𝑗
= (

𝑘

⨁

𝑗=1

𝑤
𝑗
𝑒
𝑗
) ⊕ 𝑤

𝑘+1
𝑒
𝑘+1

= IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑘
) ⊕ 𝑤
𝑘+1
𝑒
𝑘+1

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{

{

{

{

{

{

[

[

∏
𝑘

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝑤
𝑗

−∏
𝑘

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝑤
𝑗

∏
𝑘

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝑤
𝑗

,

∏
𝑘

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝑤
𝑗

−∏
𝑘

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝑤
𝑗

∏
𝑘

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝑤
𝑗

]

]

}

}

}

,

{

{

{

[

[

2∏
𝑘

𝑗=1
(𝜂
𝐿

𝑗
)
𝑤
𝑗

∏
𝑘

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(𝜂
𝐿

𝑗
)
𝑤
𝑗

,

2∏
𝑘

𝑗=1
(𝜂
𝑈

𝑗
)
𝑤
𝑗

∏
𝑘

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(𝜂
𝑈

𝑗
)
𝑤
𝑗

]

]

}

}

}

}

}

}

⊕ ⋃

[𝛾
𝐿

𝑘+1
,𝛾
𝑈

𝑘+1
]∈ℎ
𝑘+1
,[𝜂
𝐿

𝑘+1
,𝜂
𝑈

𝑘+1
]∈𝑔
𝑘+1

{

{

{

{

{

{

[

[

(1 + 𝛾
𝐿

𝑘+1
)
𝑤
𝑘+1

− (1 − 𝛾
𝐿

𝑘+1
)
𝑤
𝑘+1

(1 + 𝛾
𝐿

𝑘+1
)
𝑤
1

+ (1 − 𝛾
𝐿

𝑘+1
)
𝑤
𝑘+1

,

(1 + 𝛾
𝑈

𝑘+1
)
𝑤
𝑘+1

− (1 − 𝛾
𝑈

𝑘+1
)
𝑤
𝑘+1

(1 + 𝛾
𝑈

𝑘+1
)
𝑤
𝑘+1

+ (1 − 𝛾
𝑈

𝑘+1
)
𝑤
𝑘+1

]

]

}

}

}

,

{

{

{

[

[

2 (𝜂
𝐿

𝑘+1
)
𝑤
𝑘+1

(2 − 𝜂
𝐿

𝑘+1
)
𝑤
𝑘+1

+ (𝜂
𝐿

𝑘+1
)
𝑤
𝑘+1

,

2 (𝜂
𝑈

𝑘+1
)
𝑤
𝑘+1

(2 − 𝜂
𝑈

𝑘+1
)
𝑤
𝑘+1

+ (𝜂
𝑈

𝑘+1
)
𝑤
𝑘+1

]

]

}

}

}

}

}

}

.

(19)

Let

𝑎
1
=

𝑘

∏

𝑗=1

(1 + 𝛾
𝐿

𝑗
)
𝑤
𝑗

, 𝑏
1
=

𝑘

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗
)
𝑤
𝑗

,

𝑐
1
=

𝑘

∏

𝑗=1

(1 + 𝛾
𝑈

𝑗
)
𝑤
𝑗

, 𝑑
1
=

𝑘

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗
)
𝑤
𝑗

,

𝑢
1
=

𝑘

∏

𝑗=1

(𝜂
𝐿

𝑗
)
𝑤
𝑗

, V
1
=

𝑘

∏

𝑗=1

(2 − 𝜂
𝐿

𝑗
)
𝑤
𝑗

,

𝑝
1
=

𝑘

∏

𝑗=1

(𝜂
𝑈

𝑗
)
𝑤
𝑗

, 𝑞
1
=

𝑘

∏

𝑗=1

(2 − 𝜂
𝑈

𝑗
)
𝑤
𝑗

,

𝑎
2
= (1 + 𝛾

𝐿

𝑘+1
)
𝑤
𝑘+1

, 𝑏
2
= (1 − 𝛾

𝐿

𝑘+1
)
𝑤
𝑘+1

,

𝑐
2
= (1 + 𝛾

𝑈

𝑘+1
)
𝑤
𝑘+1

, 𝑑
2
= (1 − 𝛾

𝑈

𝑘+1
)
𝑤
𝑘+1

,

𝑢
2
= (𝜂
𝐿

𝑘+1
)
𝑤
𝑘+1

, V
2
= (2 − 𝜂

𝐿

𝑘+1
)
𝑤
𝑘+1

,

𝑝
2
= (𝜂
𝑈

𝑘+1
)
𝑤
𝑘+1

, 𝑞
2
= (2 − 𝜂

𝑈

𝑘+1
)
𝑤
𝑘+1

;

(20)



8 Mathematical Problems in Engineering

then

IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑘
)

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{{[
𝑎
1
− 𝑏
1

𝑎
1
+ 𝑏
1

,
𝑐
1
− 𝑑
1

𝑐
1
+ 𝑑
1

]} ,

{[
2𝑢
1

𝑢
1
+ V
1

,
2𝑝
1

𝑝
1
+ 𝑞
1

]}} ,

𝑤
𝑘+1
𝑒
𝑘+1

= ⋃

[𝛾
𝐿

𝑘+1
,𝛾
𝑈

𝑘+1
]∈ℎ
𝑘+1
,[𝜂
𝐿

𝑘+1
,𝜂
𝑈

𝑘+1
]∈𝑔
𝑘+1

{{[
𝑎
2
− 𝑏
2

𝑎
2
+ 𝑏
2

,
𝑐
2
− 𝑑
2

𝑐
2
+ 𝑑
2

]} ,

{[
2𝑢
2

𝑢
2
+ V
2

,
2𝑝
2

𝑝
2
+ 𝑞
2

]}} .

(21)

According to the Einstein operational law (1) inDefinition 12,
we have

IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑘+1
)

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{{[
𝑎
1
− 𝑏
1

𝑎
1
+ 𝑏
1

,
𝑐
1
− 𝑑
1

𝑐
1
+ 𝑑
1

]} , {[
2𝑢
1

𝑢
1
+ V
1

,
2𝑝
1

𝑝
1
+ 𝑞
1

]}}

⊕ ⋃

[𝛾
𝐿

𝑘+1
,𝛾
𝑈

𝑘+1
]∈ℎ
𝑘+1
,[𝜂
𝐿

𝑘+1
,𝜂
𝑈

𝑘+1
]∈𝑔
𝑘+1

{{[
𝑎
2
− 𝑏
2

𝑎
2
+ 𝑏
2

,
𝑐
2
− 𝑑
2

𝑐
2
+ 𝑑
2

]} , {[
2𝑢
2

𝑢
2
+ V
2

,
2𝑝
2

𝑝
2
+ 𝑞
2

]}}

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{{[
𝑎
1
𝑎
2
− 𝑏
1
𝑏
2

𝑎
1
𝑎
2
+ 𝑏
1
𝑏
2

,
𝑐
1
𝑐
2
− 𝑑
1
𝑑
2

𝑐
1
𝑐
2
+ 𝑑
1
𝑑
2

]} , {[
2𝑢
1
𝑢
2

𝑢
1
𝑢
2
+ V
1
V
2

,
2𝑝
1
𝑝
2

𝑝
1
𝑝
2
+ 𝑞
1
𝑞
2

]}}

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{

{

{

{

{

{

[

[

∏
𝑘+1

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝑤
𝑗

−∏
𝑘

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝑤
𝑗

∏
𝑘+1

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝑤
𝑗

,

∏
𝑘+1

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝑤
𝑗

−∏
𝑘+1

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝑤
𝑗

∏
𝑘+1

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝑤
𝑗

+∏
𝑘+1

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝑤
𝑗

]

]

}

}

}

,

{

{

{

[

[

∏
𝑘+1

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝑤
𝑗

−∏
𝑘

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝑤
𝑗

∏
𝑘+1

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝑤
𝑗

+∏
𝑘

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝑤
𝑗

,

∏
𝑘+1

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝑤
𝑗

−∏
𝑘+1

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝑤
𝑗

∏
𝑘+1

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝑤
𝑗

+∏
𝑘+1

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝑤
𝑗

]

]

}

}

}

}

}

}

;

(22)

that is, (16) holds for 𝑛 = 𝑘 + 1.
According to steps (1) and (2), we know that (16) holds

for any positive integer 𝑛.
The proof is completed.

Especially, if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the IVD-

HFEWA operator is reduced to an interval-valued dual hesi-
tant fuzzy Einstein averaging (IVDHFEA) operator, which is
shown as follows:

IVDHFEA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=
1

𝑛

𝑛

⨁

𝑗=1

𝑒
𝑗

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{

{

{

{

{

{

[

[

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
1/𝑛

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
1/𝑛

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
1/𝑛

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
1/𝑛
,

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
1/𝑛

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
1/𝑛

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
1/𝑛

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
1/𝑛

]

]

}

}

}

,

{

{

{

[

[

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
1/𝑛

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
1/𝑛

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
1/𝑛
,

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
1/𝑛

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
1/𝑛

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
1/𝑛

]

]

}

}

}

}

}

}

.

(23)
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Theorem 16. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

IVDHFEs, then we have the following properties:
(1) Idempotency. If all 𝑒

𝑗
(𝑗 = 1, 2, . . . , 𝑛) are equal and 𝑒

𝑗

= 𝑒̃ = {{[𝛾
𝐿
, 𝛾
𝑈
]}, {[𝜂
𝐿
, 𝜂
𝑈
]}}, for all 𝑗 = 1, 2, . . . , 𝑛, then

𝐼𝑉𝐷𝐻𝐹𝐸𝑊𝐴(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) = 𝑒. (24)

Proof. Since 𝑒
𝑗
= 𝑒 = {{[𝛾

𝐿
, 𝛾
𝑈
]}, {[𝜂

𝐿
, 𝜂
𝑈
]}}, for all 𝑗 =

1, 2, . . . , 𝑛, then

IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃𝑗 ,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔𝑗

{

{

{

{

{

{

[

[

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

,

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

]

]

}

}

}

,

{

{

{

[

[

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

,

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

]

]

}

}

}

}

}

}

= ⋃

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ̃𝑗 ,[𝜂
𝐿
,𝜂
𝑈
]∈𝑔𝑗

{

{

{

{

{

{

[

[

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾𝐿)

𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾𝐿)

𝜔
𝑗

,

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾𝑈)

𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾𝑈)

𝜔
𝑗

]

]

}

}

}

,

{

{

{

[

[

2∏
𝑛

𝑗=1
(𝜂
𝐿
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂𝐿)

𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂𝐿)
𝜔
𝑗

,

2∏
𝑛

𝑗=1
(𝜂
𝑈
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂𝑈)

𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂𝑈)
𝜔
𝑗

]

]

}

}

}

}

}

}

= ⋃

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ
𝑗
,[𝜂
𝐿
,𝜂
𝑈
]∈𝑔
𝑗

{{[

1 + 𝛾
𝐿
− (1 − 𝛾

𝐿
)

1 + 𝛾𝐿 + (1 − 𝛾𝐿)
,

1 + 𝛾
𝑈
− (1 − 𝛾

𝐿
)

1 + 𝛾𝑈 + (1 − 𝛾𝐿)
]} , {[

2𝜂
𝐿

2 − 𝜂𝐿 + 𝜂𝐿
,

2𝜂
𝑈

2 − 𝜂𝑈 + 𝜂𝑈
]}}

= ⋃

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ
𝑗
,[𝜂
𝐿
,𝜂
𝑈
]∈𝑔
𝑗

{{[𝛾
𝐿
, 𝛾
𝑈
]} , {[𝜂

𝐿
, 𝜂
𝑈
]}}

= {{[𝛾
𝐿
, 𝛾
𝑈
]} , {[𝜂

𝐿
, 𝜂
𝑈
]}} = 𝑒.

(25)

Thus, IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) = 𝑒.

The proof is completed.

(2) Boundedness. If 𝛾𝐿min = min
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗
| [𝛾
𝐿

𝑗
, 𝛾
𝑈

𝑗
] ∈ ℎ̃
𝑗
},

𝛾
𝑈

min = min
1≤𝑗≤𝑛

{𝛾
𝑈

𝑗
| [𝛾
𝐿

𝑗
, 𝛾
𝑈

𝑗
] ∈ ℎ̃

𝑗
}, 𝛾𝐿max =

max
1≤𝑗≤𝑛

{𝛾
𝐿

𝑗
| [𝛾
𝐿

𝑗
, 𝛾
𝑈

𝑗
] ∈ ℎ̃
𝑗
}, 𝛾𝑈max = max

1≤𝑗≤𝑛
{𝛾
𝑈

𝑗
|

[𝛾
𝐿

𝑗
, 𝛾
𝑈

𝑗
] ∈ ℎ̃
𝑗
}, 𝜂𝐿min = min

1≤𝑗≤𝑛
{𝜂
𝐿

𝑗
| [𝜂
𝐿

𝑗
, 𝜂
𝑈

𝑗
] ∈ 𝑔

𝑗
},

𝜂
𝑈

min = min
1≤𝑗≤𝑛

{𝜂
𝑈

𝑗
| [𝜂
𝐿

𝑗
, 𝜂
𝑈

𝑗
] ∈ 𝑔

𝑗
}, 𝜂𝐿max =

max
1≤𝑗≤𝑛

{𝜂
𝐿

𝑗
| [𝜂

𝐿

𝑗
, 𝜂
𝑈

𝑗
] ∈ 𝑔

𝑗
}, and 𝜂

𝑈

max =

max
1≤𝑗≤𝑛

{𝜂
𝑈

𝑗
| [𝜂
𝐿

𝑗
, 𝜂
𝑈

𝑗
] ∈ 𝑔

𝑗
}, for all 𝑗 = 1, 2, . . . , 𝑛,

then we can obtain

{{[𝛾
𝐿

min, 𝛾
𝑈

min]} , {[𝜂
𝐿

max, 𝜂
𝑈

max]}}

≤ IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

≤ {{[𝛾
𝐿

max, 𝛾
𝑈

max]} , {[𝜂
𝐿

min, 𝜂
𝑈

min]}} .

(26)

Proof. Let 𝑓(𝑥) = (1 − 𝑥)/(1 + 𝑥), 𝑥 ∈ (0, 1]; then 𝑓󸀠(𝑥) =
−2/(1 + 𝑥)

2
< 0; that is, 𝑓(𝑥) is a decreasing function. Since

𝛾
𝐿

min ≤ 𝛾
𝐿

𝑗
≤ 𝛾
𝐿

max, then, for all 𝑗, we have 𝑓(𝛾
𝐿

max) ≤ 𝑓(𝛾
𝐿

𝑗
) ≤

𝑓(𝛾
𝐿

min); that is,

1 − 𝛾
𝐿

max
1 + 𝛾𝐿max

≤

1 − 𝛾
𝐿

𝑗

1 + 𝛾
𝐿

𝑗

≤
1 − 𝛾
𝐿

min
1 + 𝛾
𝐿

min
. (27)

Let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector of (𝑒

1
, 𝑒
2
,

. . . , 𝑒
𝑛
), such that 𝜔

𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1. Then, for all

𝜔
𝑗
∈ [0, 1], we have

(
1 − 𝛾
𝐿

max
1 + 𝛾𝐿max

)

𝜔
𝑗

≤ (

1 − 𝛾
𝐿

𝑗

1 + 𝛾
𝐿

𝑗

)

𝜔
𝑗

≤ (
1 − 𝛾
𝐿

min
1 + 𝛾
𝐿

min
)

𝜔
𝑗

. (28)
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Thus
𝑛

∏

𝑗=1

(
1 − 𝛾
𝐿

max
1 + 𝛾𝐿max

)

𝜔
𝑗

≤

𝑛

∏

𝑗=1

(

1 − 𝛾
𝐿

𝑗

1 + 𝛾
𝐿

𝑗

)

𝜔
𝑗

≤

𝑛

∏

𝑗=1

(
1 − 𝛾
𝐿

min
1 + 𝛾
𝐿

min
)

𝜔
𝑗

⇐⇒
1 − 𝛾
𝐿

max
1 + 𝛾𝐿max

≤

𝑛

∏

𝑗=1

(

1 − 𝛾
𝐿

𝑗

1 + 𝛾
𝐿

𝑗

)

𝜔
𝑗

≤
1 − 𝛾
𝐿

min
1 + 𝛾
𝐿

min

⇐⇒
2

1 + 𝛾𝐿max
≤ 1 +

𝑛

∏

𝑗=1

(

1 − 𝛾
𝐿

𝑗

1 + 𝛾
𝐿

𝑗

)

𝜔
𝑗

≤
2

1 + 𝛾
𝐿

min

⇐⇒
1 + 𝛾
𝐿

min
2

≤
1

1 + ∏
𝑛

𝑗=1
((1 − 𝛾

𝐿

𝑗
) / (1 + 𝛾

𝐿

𝑗
))
𝜔
𝑗

≤
1 + 𝛾
𝐿

max
2

⇐⇒ 1 + 𝛾
𝐿

min ≤
2

1 + ∏
𝑛

𝑗=1
((1 − 𝛾

𝐿

𝑗
) / (1 + 𝛾

𝐿

𝑗
))
𝜔
𝑗

≤ 1 + 𝛾
𝐿

max

⇐⇒ 𝛾
𝐿

min ≤
2

1 + ∏
𝑛

𝑗=1
((1 − 𝛾

𝐿

𝑗
) / (1 + 𝛾

𝐿

𝑗
))
𝜔
𝑗

− 1 ≤ 𝛾
𝐿

max;

(29)

that is,

𝛾
𝐿

min ≤
∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

≤ 𝛾
𝐿

max. (30)

Similarly, we have

𝛾
𝑈

min ≤
∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

≤ 𝛾
𝑈

max. (31)

For all 𝑗, we have

𝛾
𝐿

min + 𝛾
𝑈

min

≤
1

𝑙 (ℎ̃)

∑

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ̃

(

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

+

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

)

≤ 𝛾
𝐿

max + 𝛾
𝑈

max,

(32)

where 𝑙(ℎ̃) is the number of interval values in themembership
degrees of IVDHFEWA (𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
).

Let 𝑔(𝑦) = (2 − 𝑦)/𝑦, 𝑦 ∈ (0, 1]; then 𝑔󸀠(𝑦) = −2/𝑦2 < 0;
that is, 𝑔(𝑦) is a decreasing function. Since 𝜂𝐿min ≤ 𝜂

𝐿

𝑗
≤ 𝜂
𝐿

max,
then, for all 𝑗, we have 𝑔(𝜂𝐿max) ≤ 𝑔(𝜂

𝐿

𝑗
) ≤ 𝑔(𝜂

𝐿

min); that is, (2−
𝜂
𝐿

max)/𝑦 ≤ (2−𝜂
𝐿

𝑗
)/𝑦 ≤ (2−𝜂

𝐿

min)/𝑦. Let𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛)
𝑇

be the weight vector of (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
), such that 𝜔

𝑗
∈ [0, 1]

and ∑𝑛
𝑗=1

𝜔
𝑗
= 1. Then, for all 𝜔

𝑗
∈ [0, 1], we have

(
2 − 𝜂
𝐿

max
𝜂𝐿max

)

𝜔
𝑗

≤ (

2 − 𝜂
𝐿

𝑗

𝜂
𝐿

𝑗

)

𝜔
𝑗

≤ (
2 − 𝜂
𝐿

min
𝜂
𝐿

min
)

𝜔
𝑗

. (33)

Thus

𝑛

∏

𝑛=1

(
2 − 𝜂
𝐿

max
𝜂𝐿max

)

𝜔
𝑗

≤

𝑛

∏

𝑛=1

(

2 − 𝜂
𝐿

𝑗

𝜂
𝐿

𝑗

)

𝜔
𝑗

≤

𝑛

∏

𝑛=1

(
2 − 𝜂
𝐿

min
𝜂
𝐿

min
)

𝜔
𝑗

⇐⇒
2 − 𝜂
𝐿

max
𝜂𝐿max

≤

𝑛

∏

𝑛=1

(

2 − 𝜂
𝐿

𝑗

𝜂
𝐿

𝑗

)

𝜔
𝑗

≤
2 − 𝜂
𝐿

min
𝜂
𝐿

min

⇐⇒
2

𝜂𝐿max
≤

𝑛

∏

𝑛=1

(

2 − 𝜂
𝐿

𝑗

𝜂
𝐿

𝑗

)

𝜔
𝑗

+ 1 ≤
2

𝜂
𝐿

min

⇐⇒
𝜂
𝐿

min
2

≤
1

∏
𝑛

𝑛=1
((2 − 𝜂

𝐿

𝑗
) /𝜂
𝐿

𝑗
)
𝜔
𝑗

+ 1

≤
𝜂
𝐿

max
2

⇐⇒ 𝜂
𝐿

min ≤
2

∏
𝑛

𝑛=1
((2 − 𝜂

𝐿

𝑗
) /𝜂
𝐿

𝑗
)
𝜔
𝑗

+ 1

≤ 𝜂
𝐿

max;

(34)

that is,

⇐⇒ 𝜂
𝐿

min ≤
2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

≤ 𝜂
𝐿

max. (35)

Similarly, we have

𝜂
𝑈

min ≤
2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

≤ 𝜂
𝑈

max. (36)
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That is,

𝜂
𝐿

min + 𝜂
𝑈

min

≤
1

𝑙 (𝑔)
∑

[𝜂
𝐿
,𝜂
𝑈
]∈𝑔

(

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

+

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

)

≤ 𝜂
𝐿

max + 𝜂
𝑈

max,

(37)

where 𝑙(𝑔) is the number of interval values in the nonmem-
bership degrees of IVDHFEWA (𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
).

So we can get

(𝛾
𝐿

min + 𝛾
𝑈

min) − (𝜂
𝐿

max + 𝜂
𝑈

max)

2

≤
1

2
⋅

1

𝑙 (ℎ̃)

× ∑

[𝛾
𝐿
,𝛾
𝑈
]∈ℎ̃

(

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

+

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

)

−
1

2
⋅
1

𝑙 (𝑔)

× ∑

[𝜂
𝐿
,𝜂
𝑈
]∈𝑔

(

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

+

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

)

≤

(𝛾
𝐿

max + 𝛾
𝑈

max) − (𝜂
𝐿

min + 𝜂
𝑈

min)

2
.

(38)

Therefore, according to Theorem 8, we have

{{[𝛾
𝐿

min, 𝛾
𝑈

min]} , {[𝜂
𝐿

max, 𝜂
𝑈

max]}}

≤ IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

≤ {{[𝛾
𝐿

max, 𝛾
𝑈

max]} , {[𝜂
𝐿

min, 𝜂
𝑈

min]}} .

(39)

The proof is completed.

Lemma 17 (see [42]). Let 𝑎
𝑗
> 0, 𝑤

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛, and

∑
𝑛

𝑗=1
𝑤
𝑗
= 1; then

𝑛

∏

𝑗=1

𝑎
𝑤
𝑗

𝑗
≤

𝑛

∑

𝑗=1

𝑤
𝑗
𝑎
𝑗 (40)

with equality if and only if 𝑎
1
= 𝑎
2
= ⋅ ⋅ ⋅ = 𝑎

𝑛
.

To compare the aggregated values between the IVD-
HFEWAoperator and IVDHFWAoperator in (8), we give the
following theorem.

Theorem 18. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVD-

HFEs and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector of

(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) with 𝜔

𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1; then

𝐼𝑉𝐷𝐻𝐹𝐸𝑊𝐴(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) ≤ 𝐼𝑉𝐷𝐻𝐹𝑊𝐴(𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
) .

(41)

Proof. According to Lemma 17, for any [𝛾𝐿
𝑗
, 𝛾
𝑈

𝑗
] ∈ ℎ̃

𝑗
, 𝑗 =

1, 2, . . . , 𝑛, we have
𝑛

∏

𝑗=1

(1 + 𝛾
𝐿

𝑗
)
𝜔
𝑗

+

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗
)
𝜔
𝑗

≤

𝑛

∑

𝑗=1

𝜔
𝑗
(1 + 𝛾

𝐿

𝑗
) +

𝑛

∑

𝑗=1

𝜔
𝑗
(1 − 𝛾

𝐿

𝑗
) = 2,

𝑛

∏

𝑗=1

(1 + 𝛾
𝑈

𝑗
)
𝜔
𝑗

+

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗
)
𝜔
𝑗

≤

𝑛

∑

𝑗=1

𝜔
𝑗
(1 + 𝛾

𝑈

𝑗
) +

𝑛

∑

𝑗=1

𝜔
𝑗
(1 + 𝛾

𝑈

𝑗
) = 2.

(42)

Thus, we have

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

= 1 −

2∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

≤ 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗
)
𝜔
𝑗

,

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

= 1 −

2∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

≤ 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗
)
𝜔
𝑗

.

(43)
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Similarly, for any [𝜂𝐿
𝑗
, 𝜂
𝑈

𝑗
] ∈ ℎ̃
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, we have

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

≥

𝑛

∏

𝑗=1

(𝜂
𝐿

𝑗
)
𝜔
𝑗

,

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

≥

𝑛

∏

𝑗=1

(𝜂
𝑈

𝑗
)
𝜔
𝑗

.

(44)

That is,

1

𝑙
1

∑

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗

(

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

+

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

)

≤
1

𝑙
3

∑

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗

(1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗
)
𝑤
𝑗

+ 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗
)
𝑤
𝑗

) ;

1

𝑙
2

∑

[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

(

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

+

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

)

≥
1

𝑙
4

∑

[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

(

𝑛

∏

𝑗=1

(𝜂
𝐿

𝑗
)
𝜔
𝑗

+

𝑛

∏

𝑗=1

(𝜂
𝑈

𝑗
)
𝜔
𝑗

) ,

(45)

that is,

1

𝑙
1

∑

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗

(

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

+

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

)

−
1

𝑙
2

∑

[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

(

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑗
)
𝜔
𝑗

+

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑗
)
𝜔
𝑗

)

≤
1

𝑙
3

∑

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗

(1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝐿

𝑗
)
𝑤
𝑗

+ 1 −

𝑛

∏

𝑗=1

(1 − 𝛾
𝑈

𝑗
)
𝑤
𝑗

)

−
1

𝑙
4

∑

[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

(

𝑛

∏

𝑗=1

(𝜂
𝐿

𝑗
)
𝜔
𝑗

+

𝑛

∏

𝑗=1

(𝜂
𝑈

𝑗
)
𝜔
𝑗

) ,

(46)

where 𝑙
1
and 𝑙

2
are the numbers of interval values in

the membership degrees and nonmembership degrees of
IVDHFEWA (𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
), respectively; 𝑙

3
and 𝑙
4
are the

numbers of interval values in the membership degrees
and nonmembership degrees of IVDHFWA (𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
),

respectively. Therefore, according toTheorem 8, we obtain

IVDHFEWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) ≤ IVDHFWA (𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
) .

(47)

The proof is completed.

Definition 19. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

IVDHFEs; an interval-valued dual hesitant fuzzy Einstein
weighted geometric (IVDHFEWG) operator is a mapping
IVDHFEWG: 𝐸𝑛 → 𝐸, such that

IVDHFEWG (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨂

𝑗=1

𝑒
𝜔
𝑗

𝑗

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{

{

{

{

{

{

[

[

2∏
𝑛

𝑗=1
(𝛾
𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝛾
𝐿

𝑗
)
𝜔
𝑗

,

2∏
𝑛

𝑗=1
(𝛾
𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝛾
𝑈

𝑗
)
𝜔
𝑗

]

]

}

}

}

,

{

{

{

[

[

∏
𝑛

𝑗=1
(1 + 𝜂

𝐿

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝜂

𝐿

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝜂

𝐿

𝑗
)
𝜔
𝑗

,

∏
𝑛

𝑗=1
(1 + 𝜂

𝑈

𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝜂

𝑈

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝜂

𝑈

𝑗
)
𝜔
𝑗

]

]

}

}

}

}

}

}

,

(48)

where 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of (𝑒

1
, 𝑒
2
,

. . . , 𝑒
𝑛
) with 𝜔

𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1.



Mathematical Problems in Engineering 13

Especially, if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the IVD-

HFEWG operator is reduced to an interval-valued dual
hesitant fuzzy Einstein geometric (IVDHFEG) operator.
Consider

IVDHFEG (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨂

𝑗=1

𝑒
1/𝑛

𝑗

= ⋃

[𝛾
𝐿

𝑗
,𝛾
𝑈

𝑗
]∈ℎ̃
𝑗
,[𝜂
𝐿

𝑗
,𝜂
𝑈

𝑗
]∈𝑔
𝑗

{

{

{

{

{

{

[

[

2∏
𝑛

𝑗=1
(𝛾
𝐿

𝑗
)
1/𝑛

∏
𝑛

𝑗=1
(2 − 𝛾

𝐿

𝑗
)
1/𝑛

+∏
𝑛

𝑗=1
(𝛾
𝐿

𝑗
)
1/𝑛
,

2∏
𝑛

𝑗=1
(𝛾
𝑈

𝑗
)
1/𝑛

∏
𝑛

𝑗=1
(2 − 𝛾

𝑈

𝑗
)
1/𝑛

+∏
𝑛

𝑗=1
(𝛾
𝑈

𝑗
)
1/𝑛

]

]

}

}

}

,

{

{

{

[

[

∏
𝑛

𝑗=1
(1 + 𝜂

𝐿

𝑗
)
1/𝑛

−∏
𝑛

𝑗=1
(1 − 𝜂

𝐿

𝑗
)
1/𝑛

∏
𝑛

𝑗=1
(1 + 𝜂

𝐿

𝑗
)
1/𝑛

+∏
𝑛

𝑗=1
(1 − 𝜂

𝐿

𝑗
)
1/𝑛
,

∏
𝑛

𝑗=1
(1 + 𝜂

𝑈

𝑗
)
1/𝑛

−∏
𝑛

𝑗=1
(1 − 𝜂

𝑈

𝑗
)
1/𝑛

∏
𝑛

𝑗=1
(1 + 𝜂

𝑈

𝑗
)
1/𝑛

+∏
𝑛

𝑗=1
(1 − 𝜂

𝑈

𝑗
)
1/𝑛

]

]

}

}

}

}

}

}

.

(49)

Similar to the IVDHFEWA operator, the IVDHFEWG oper-
ator also has the properties of idempotency and bounded-
ness.

Theorem 20. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

IVDHFEs and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector

of (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) with 𝜔

𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1; then

𝐼𝑉𝐷𝐻𝐹𝑊𝐺(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) ≤ 𝐼𝑉𝐷𝐻𝐹𝐸𝑊𝐺(𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
) .

(50)

This theorem can be proved similar to Theorem 18.

3.3. Interval-Valued Dual Hesitant Fuzzy Einstein Ordered
Weighted Aggregation Operators. Motivated by the idea
of the ordered weighted averaging (OWA) [43] and the
ordered weighted geometric [44] operators, we develop some
interval-valued dual hesitant fuzzy Einstein orderedweighted
aggregation operators.

Definition 21. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

IVDHFEs, let 𝑒
𝜎(𝑗)

be the 𝑗th largest of them, and let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the aggregation-associated weight vec-

tor, such that 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1; then an interval-

valued dual hesitant fuzzy Einstein ordered weighted aver-
aging (IVDHFEOWA) operator is a mapping IVDHFEOWA:
𝐸
𝑛
→ 𝐸, where

IVDHFEOWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨁

𝑗=1

(𝑤
𝑗
𝑒
𝜎(𝑗)

)

= ⋃

[𝛾
𝐿

𝜎(𝑗)
,𝛾
𝑈

𝜎(𝑗)
]∈ℎ̃
𝜎(𝑗)
,[𝜂
𝐿

𝜎(𝑗)
,𝜂
𝑈

𝜎(𝑗)
]∈𝑔
𝜎(𝑗)

{{

{{

{

{{

{{

{

[
[

[

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝜎(𝑗)
)
𝑤
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝜎(𝑗)
)

𝑤
𝑗

,

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝜎(𝑗)
)
𝑤
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝜎(𝑗)
)

𝑤
𝑗

]
]

]

}}

}}

}

,

{{

{{

{

[
[

[

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝜎(𝑗)
)

𝑤
𝑗

,

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝜎(𝑗)
)

𝑤
𝑗

]
]

]

}}

}}

}

}}

}}

}

,

(51)

where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that 𝑒

𝜎(𝑗−1)
≥ 𝑒
𝜎(𝑗)

for all 𝑗 = 2, 3, . . . , 𝑛.
Especially, if𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

𝑇, then the IVDHFE-
OWA operator reduces to the IVDHFEA operator in (23).
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Similar to IVDHFEWA and IVDHFEWG operators, the
IVDHFEOWA operator also has the properties of idempo-
tency and boundedness. In addition, it has the property of
commutativity shown as follows.

Theorem 22 (commutativity). Let (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) be a collec-

tion of IVDHFEs and let (𝑒󸀠
1
, 𝑒
󸀠

2
, . . . , 𝑒

󸀠

𝑛
) be any permutation of

(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
); then

𝐼𝑉𝐷𝐻𝐹𝐸𝑂𝑊𝐴(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

= 𝐼𝑉𝐷𝐻𝐹𝐸𝑂𝑊𝐴(𝑒
󸀠

1
, 𝑒
󸀠

2
, . . . , 𝑒

󸀠

𝑛
) .

(52)

Proof. Since (𝑒󸀠
1
, 𝑒
󸀠

2
, . . . , 𝑒

󸀠

𝑛
) is a permutation of (𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
),

we have 𝑒󸀠
𝜎(𝑗)

= 𝑒
𝜎(𝑗)

for all 𝑗 = 1, 2, . . . , 𝑛. Then, based on
Definition 21, we obtain

IVDHFEOWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

= IVDHFEOWA (𝑒󸀠
1
, 𝑒
󸀠

2
, . . . , 𝑒

󸀠

𝑛
) .

(53)

The proof is completed.

Theorem 23. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVD-

HFEs and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the aggregation-

associated weight vector, such that 𝑤
𝑗
> 0 and ∑𝑛

𝑗=1
𝑤
𝑗
= 1;

then

IVDHFEOWA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) ≤ IVDHFOWA (𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
) .

(54)

This theorem can be proved similar to Theorem 18.

Definition 24. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

IVDHFEs, let 𝑒
𝜎(𝑗)

be the 𝑗th largest of them, and let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the aggregation-associated weight vec-

tor, such that 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1; then an interval-

valued dual hesitant fuzzy Einstein ordered weighted geo-
metric (IVDHFEOWG) operator is a mapping IVDHFE-
OWG: 𝐸𝑛 → 𝐸, where

IVDHFEOWG (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨂

𝑗=1

𝑒
𝑤
𝑗

𝜎(𝑗)

= ⋃

[𝛾
𝐿

𝜎(𝑗)
,𝛾
𝑈

𝜎(𝑗)
]∈ℎ̃
𝜎(𝑗)
,[𝜂
𝐿

𝜎(𝑗)
,𝜂
𝑈

𝜎(𝑗)
]∈𝑔
𝜎(𝑗)

{{

{{

{

{{

{{

{

[
[

[

2∏
𝑛

𝑗=1
(𝛾
𝐿

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝐿

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(𝛾
𝐿

𝜎(𝑗)
)

𝑤
𝑗

,

2∏
𝑛

𝑗=1
(𝛾
𝑈

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑈

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(𝛾
𝑈

𝜎(𝑗)
)

𝑤
𝑗

]
]

]

}}

}}

}

,

{{

{{

{

[
[

[

∏
𝑛

𝑗=1
(1 + 𝜂

𝐿

𝜎(𝑗)
)
𝑤
𝑗

−∏
𝑛

𝑗=1
(1 − 𝜂

𝐿

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(1 + 𝜂

𝐿

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(1 − 𝜂

𝐿

𝜎(𝑗)
)

𝑤
𝑗

,

∏
𝑛

𝑗=1
(1 + 𝜂

𝑈

𝜎(𝑗)
)
𝑤
𝑗

−∏
𝑛

𝑗=1
(1 − 𝜂

𝑈

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(1 + 𝜂

𝑈

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(1 − 𝜂

𝑈

𝜎(𝑗)
)

𝑤
𝑗

]
]

]

}}

}}

}

}}

}}

}

,

(55)

where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that 𝑒

𝜎(𝑗−1)
≥ 𝑒
𝜎(𝑗)

for all 𝑗 = 2, 3, . . . , 𝑛.

Especially, if𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the IVDHFE-

OWG operator reduces to the IVDHFEG operator in (49).

Theorem 25. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVD-

HFEs and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the aggregation-

associated weight vector, such that𝑤
𝑗
∈ [0, 1] and∑𝑛

𝑗=1
𝑤
𝑗
= 1;

then

𝐼𝑉𝐷𝐻𝐹𝑂𝑊𝐺(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

≤ 𝐼𝑉𝐷𝐻𝐹𝐸𝑂𝑊𝐺(𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) .

(56)

This theorem can be proved similar to Theorem 18.

3.4. Interval-Valued Dual Hesitant Fuzzy Hybrid Aggregation
Operators Based on Einstein Operations. From Definitions
14–24, we can see that the IVDHFEWA and IVDHFEWG
operators only weight the importance of interval-valued dual
hesitant fuzzy argument itself, while the IVDHFEOWA and
IVDHFEOWG operators only weight the importance of
ordered position of each argument. Therefore, weights rep-
resent different aspects in both weighted aggregation (IVD-
HFEWA and IVDHFEWG) operators and ordered weighted
aggregation (IVDHFEOWA and IVDHFEOWG) operators.
To solve this drawback, in what follows, we will propose some
interval-valued dual hesitant fuzzy Einstein hybrid aggrega-
tion operators, which weight both the given interval-valued
dual hesitant fuzzy arguments and their ordered positions.
Motivated by the hybrid aggregation operators [45], which
consider both the given arguments and their ordered posi-
tions, in what follows, we will propose some interval-valued
dual hesitant fuzzy Einstein hybrid aggregation operators.
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Definition 26. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of

IVDHFEs, let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector of

𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) with 𝜔

𝑗
∈ [0, 1], ∑𝑛

𝑗=1
𝜔
𝑗
= 1, and let 𝑛 be

the balancing coefficientwhich plays a role of balance; then an

interval-valued dual hesitant fuzzy Einstein hybrid averaging
(IVDHFEHA) operator is a mapping 𝐸𝑛 → 𝐸 with the
aggregation-associated weight vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇,

such that 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1:

IVDHFEHA (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨁

𝑗=1

(𝑤
𝑗
̇𝑒
𝜎(𝑗)

)

= ⋃

[ ̇𝛾
𝐿

𝜎(𝑗)
, ̇𝛾
𝑈

𝜎(𝑗)
]∈ℎ̇
𝜎(𝑗)
,[ ̇𝜂
𝐿

𝜎(𝑗)
, ̇𝜂
𝑈

𝜎(𝑗)
]∈ ̇𝑔
𝜎(𝑗)

{{

{{

{

{{

{{

{

[
[

[

∏
𝑛

𝑗=1
(1 + ̇𝛾

𝐿

𝜎(𝑗)
)
𝑤
𝑗

−∏
𝑛

𝑗=1
(1 − ̇𝛾

𝐿

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(1 + ̇𝛾

𝐿

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(1 − ̇𝛾

𝐿

𝜎(𝑗)
)

𝑤
𝑗

,

∏
𝑛

𝑗=1
(1 + ̇𝛾

𝑈

𝜎(𝑗)
)
𝑤
𝑗

−∏
𝑛

𝑗=1
(1 − ̇𝛾

𝑈

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(1 + ̇𝛾

𝑈

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(1 − ̇𝛾

𝑈

𝜎(𝑗)
)

𝑤
𝑗

]
]

]

}}

}}

}

,

{{

{{

{

[
[

[

2∏
𝑛

𝑗=1
( ̇𝜂
𝐿

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(2 − ̇𝜂

𝐿

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
( ̇𝜂
𝐿

𝜎(𝑗)
)

𝑤
𝑗

,

2∏
𝑛

𝑗=1
( ̇𝜂
𝑈

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(2 − ̇𝜂

𝑈

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
( ̇𝜂
𝑈

𝜎(𝑗)
)

𝑤
𝑗

]
]

]

}}

}}

}

}}

}}

}

,

(57)

where ̇𝑒
𝜎(𝑗)

is the 𝑗th largest of interval-valued dual hesitant
fuzzy weighted arguments ̇𝑒

𝑖
( ̇𝑒
𝑖
= 𝑛𝜔
𝑖
𝑒
𝑖
), (𝑖 = 1, 2, . . . , 𝑛).

𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of 𝑒

𝑗
and 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the aggregation-associated weight vector,

such that 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

Especially, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the IVD-

HFEHA operator reduces to the IVDHFEWA operator in
(16). If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

𝑇, then the IVDHFEHA oper-
ator reduces to the IVDHFEOWA operator in (51).

Theorem 27. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVD-

HFEs, let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector of 𝑒

𝑗

(𝑗 = 1, 2, . . . , 𝑛), with 𝜔
𝑗
∈ [0, 1], ∑𝑛

𝑗=1
𝜔
𝑗
= 1, and let

𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the aggregation-associated weight

vector, such that 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1; then

𝐼𝑉𝐷𝐻𝐹𝐸𝐻𝐴 (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) ≤ 𝐼𝑉𝐷𝐻𝐹𝐻𝐴(𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
) .

(58)

This theorem can be proved similar to Theorem 18.

Definition 28. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVD-

HFEs, let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector of 𝑒

𝑗

(𝑗 = 1, 2, . . . , 𝑛), with 𝜔
𝑗
∈ [0, 1], ∑𝑛

𝑗=1
𝜔
𝑗
= 1, and let 𝑛 be

the balancing coefficientwhich plays a role of balance; then an
interval-valued dual hesitant fuzzy Einstein hybrid geometric
(IVDHFEHG) operator is a mapping 𝐸𝑛 → 𝐸 with the
aggregation-associated weight vector 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇,

such that 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1:

IVDHFEHG (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
)

=

𝑛

⨂

𝑗=1

̈𝑒
𝑤
𝑗

𝜎(𝑗)

= ⋃

[ ̈𝛾
𝐿

𝜎(𝑗)
, ̈𝛾
𝑈

𝜎(𝑗)
]∈ℎ̈
𝑗
,[ ̈𝜂
𝐿

𝜎(𝑗)
, ̈𝜂
𝑈

𝜎(𝑗)
]∈ ̈𝑔
𝑗

{{

{{

{

{{

{{

{

[
[

[

2∏
𝑛

𝑗=1
( ̈𝛾
𝐿

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(2 − ̈𝛾

𝐿

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
( ̈𝛾
𝐿

𝜎(𝑗)
)

𝑤
𝑗

,

2∏
𝑛

𝑗=1
( ̈𝛾
𝑈

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(2 − ̈𝛾

𝑈

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
( ̈𝛾
𝑈

𝜎(𝑗)
)

𝑤
𝑗

]
]

]

}}

}}

}

,

{{

{{

{

[
[

[

∏
𝑛

𝑗=1
(1 + ̈𝜂

𝐿

𝜎(𝑗)
)
𝑤
𝑗

−∏
𝑛

𝑗=1
(1 − ̈𝜂

𝐿

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(1 + ̈𝜂

𝐿

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(1 − ̈𝜂

𝐿

𝜎(𝑗)
)

𝑤
𝑗

,

∏
𝑛

𝑗=1
(1 + ̈𝜂

𝑈

𝜎(𝑗)
)
𝑤
𝑗

−∏
𝑛

𝑗=1
(1 − ̈𝜂

𝑈

𝜎(𝑗)
)
𝑤
𝑗

∏
𝑛

𝑗=1
(1 + ̈𝜂

𝑈

𝜎(𝑗)
)

𝑤
𝑗

+∏
𝑛

𝑗=1
(1 − ̈𝜂

𝑈

𝜎(𝑗)
)

𝑤
𝑗

]
]

]

}}

}}

}

}}

}}

}

,

(59)
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where ̈𝑒
𝜎(𝑗)

is the 𝑗th largest of interval-valued dual hesitant
fuzzy weighted arguments ̈𝑒

𝑖
( ̈𝑒
𝑖
= 𝑒
𝑛𝜔
𝑖

𝑖
), (𝑖 = 1, 2, . . . , 𝑛).

𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of 𝑒

𝑗
and 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the aggregation-associated weight vector,

such that 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1.

Especially, if 𝑤 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the IVD-

HFEHG operator reduces to the IVDHFEWG operator in
(49). If 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)

𝑇, then the IVDHFEHG
operator reduces to the IVDHFEOWG operator in (55).

Theorem 29. Let 𝑒
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of IVD-

HFEs, let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector of 𝑒

𝑗
(𝑗 =

1, 2, . . . , 𝑛), with 𝜔
𝑗
∈ [0, 1],∑𝑛

𝑗=1
𝜔
𝑗
= 1, and let 𝑤 = (𝑤

1
, 𝑤
2
,

. . . , 𝑤
𝑛
)
𝑇 be the aggregation-associated weight vector, such that

𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1; then

𝐼𝑉𝐷𝐻𝐹𝐻𝐺 (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
) ≤ 𝐼𝑉𝐷𝐻𝐹𝐸𝐻𝐺 (𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
) .

(60)

This theorem can be proved similar to Theorem 18.

4. An Approach to MADM with
Interval-Valued Dual Hesitant
Fuzzy Information

In this section, we apply the aggregation operators proposed
above to multiattribute decision making with interval-valued

dual hesitant fuzzy information. Let 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
}

be a finite set of 𝑚 alternatives, let 𝐶 = {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑛
} be

the set of 𝑛 attributes, and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the

weight vector of attributes𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑛) with 𝜔

𝑗
∈ [0, 1]

and ∑𝑛
𝑗=1

𝜔
𝑗
= 1. Suppose that 𝐸 = (𝑒

𝑖𝑗
)
𝑚×𝑛

is an interval-
valued dual hesitant fuzzy matrix, where 𝑒

𝑖𝑗
= {ℎ̃
𝑖𝑗
, 𝑔
𝑖𝑗
} is in

the form of IVDHFE given for alternative𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑚)

with respect to attribute 𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑛), with ℎ̃

𝑖𝑗
=

⋃
[𝛾
𝐿

𝑖𝑗
,𝛾
𝑈

𝑖𝑗
]∈ℎ̃
𝑖𝑗

{[𝛾
𝐿

𝑖𝑗
, 𝛾
𝑈

𝑖𝑗
]} and 𝑔

𝑖𝑗
= ⋃
[𝜂
𝐿

𝑖𝑗
,𝜂
𝑈

𝑖𝑗
]∈𝑔
𝑖𝑗

{[𝜂
𝐿

𝑖𝑗
, 𝜂
𝑈

𝑖𝑗
]}. Then, to

determine the most desirable alternative(s), the IVDHFEWA
operator is utilized to develop a multiattribute decision
making method with interval-valued dual hesitant fuzzy
information by the following steps.

Step 1. Obtain the interval-valued dual hesitant fuzzy matrix.
The decision makers provide their evaluations about alter-
native 𝐴

𝑖
under attribute 𝐶

𝑗
, denoted by the interval-

valued dual hesitant fuzzy elements 𝑒
𝑖𝑗

= {ℎ̃
𝑖𝑗
, 𝑔
𝑖𝑗
} =

{⋃
[𝛾
𝐿

𝑖𝑗
,𝛾
𝑈

𝑖𝑗
]∈ℎ̃
𝑖𝑗

{[𝛾
𝐿

𝑖𝑗
, 𝛾
𝑈

𝑖𝑗
]}, ⋃
[𝜂
𝐿

𝑖𝑗
,𝜂
𝑈

𝑖𝑗
]∈𝑔
𝑖𝑗

{[𝜂
𝐿

𝑖𝑗
, 𝜂
𝑈

𝑖𝑗
]}}, (𝑖 = 1, 2, . . . , 𝑚;

𝑗 = 1, 2, . . . , 𝑛).

Step 2. Compute overall assessments of alternatives. Utilize
the IVDHFEWA operator to aggregate all the rating values
𝑒
𝑖𝑗
(𝑗 = 1, 2, . . . , 𝑛) of the 𝑖th line and get the overall rating

value 𝑒
𝑖
corresponding to alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑚);

that is,

𝑒
𝑖
= IVDHFEWA (𝑒

𝑖1
, 𝑒
𝑖2
, . . . , 𝑒

𝑖𝑛
)

=

𝑛

⨁

𝑗=1

𝜔
𝑗
𝑒
𝑖𝑗

= ⋃

[𝛾
𝐿

𝑖𝑗
,𝛾
𝑈

𝑖𝑗
]∈ℎ̃
𝑖𝑗
,[𝜂
𝐿

𝑖𝑗
,𝜂
𝑈

𝑖𝑗
]∈𝑔
𝑖𝑗

{

{

{

{

{

{

[

[

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑖𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑖𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝐿

𝑖𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝐿

𝑖𝑗
)
𝜔
𝑗

,

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑖𝑗
)
𝜔
𝑗

−∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑖𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(1 + 𝛾

𝑈

𝑖𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(1 − 𝛾

𝑈

𝑖𝑗
)
𝜔
𝑗

]

]

}

}

}

,

{

{

{

[

[

2∏
𝑛

𝑗=1
(𝜂
𝐿

𝑖𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝐿

𝑖𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝐿

𝑖𝑗
)
𝜔
𝑗

,

2∏
𝑛

𝑗=1
(𝜂
𝑈

𝑖𝑗
)
𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝜂

𝑈

𝑖𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
(𝜂
𝑈

𝑖𝑗
)
𝜔
𝑗

]

]

}

}

}

}

}

}

,

(61)

where 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of attributes

𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑛), such that 𝜔

𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
=

1. Note that 𝑒
𝑖
is in the forms of IVDHFEs, and it can be

denoted by 𝑒
𝑖
= {ℎ̃
𝑖
, 𝑔
𝑖
}, ℎ̃
𝑖
= ⋃
[𝛾
𝐿

𝑖
,𝛾
𝑈

𝑖
]∈ℎ̃
𝑖

{[𝛾
𝐿

𝑖
, 𝛾
𝑈

𝑖
]}, and 𝑔

𝑖
=

⋃
[𝜂
𝐿

𝑖
,𝜂
𝑈

𝑖
]∈𝑔
𝑖

{[𝜂
𝐿

𝑖
, 𝜂
𝑈

𝑖
]}.

Step 3. Compare the score values 𝑆 (𝑒
𝑖
) of overall assess-

ments values 𝑒
𝑖
(𝑖 = 1, 2, . . . , 𝑚) using score function by

𝑆 (𝑒
𝑖
) =

1

2
(

1

𝑙 (ℎ̃
𝑖
)

∑

[𝛾
𝐿

𝑖
,𝛾
𝑈

𝑖
]∈ℎ̃
𝑖

(𝛾
𝐿

𝑖
+ 𝛾
𝑈

𝑖
)

−
1

𝑙 (𝑔
𝑖
)

∑

[𝜂
𝐿

𝑖
,𝜂
𝑈

𝑖
]∈𝑔
𝑖

(𝜂
𝐿

𝑖
+ 𝜂
𝑈

𝑖
)) ,

(62)

where 𝑙(ℎ̃
𝑖
) and 𝑙(𝑔

𝑖
) are the numbers of interval values in

ℎ̃
𝑖
and 𝑔

𝑖
, respectively. If 𝑆 (𝑒

𝑖
) = 𝑆 (𝑒

𝑡
), then we need to

calculate the accuracy values 𝑃 (𝑒
𝑖
) and 𝑃 (𝑒

𝑡
) of alternatives

𝐴
𝑖
and 𝐴

𝑡
(𝑖, 𝑡 = 1, 2, . . . , 𝑚) by the following:

𝑃 (𝑒
𝑖
) =

1

2
(

1

𝑙 (ℎ
𝑖
)

∑

[𝛾
𝐿

𝑖
,𝛾
𝑈

𝑖
]∈ℎ̃
𝑖

(𝛾
𝐿

𝑖
+ 𝛾
𝑈

𝑖
)

+
1

𝑙 (𝑔
𝑖
)

∑

[𝜂
𝐿

𝑖
,𝜂
𝑈

𝑖
]∈𝑔
𝑖

(𝜂
𝐿

𝑖
+ 𝜂
𝑈

𝑖
)) .

(63)
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Step 4. Rank all feasible alternatives 𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑚)

according to Theorem 8 and select the most desirable alter-
native(s).

Step 5. End.

5. Illustrative Example

5.1. An Example. In this section, a MADM problem adapted
from [34] is used to illustrate the developed procedure. In
[34], Wang and Lee considered a software selection problem
in which the alternatives are the software packages to be
selected and the criteria are the attributes under consid-
eration. The manger of a computer center at a university
wishes to select a new information system to improve work
productivity. After preliminary screening, four alternatives
𝐴
𝑖
(𝑖 = 1, 2, 3, 4) remain on the candidate list. And

three attributes are under consideration: (1) the cost of the
hardware/software investment (𝐶

1
), (2) the contribution to

the performance of the organization (𝐶
2
), and (3) the effort

to transfer from the current system (𝐶
3
). The weight vector

of attributes 𝐶
𝑗
(𝑗 = 1, 2, 3) is 𝜔 = (0.35, 0.25, 0.4)

𝑇. The
experts evaluate the software packages 𝐴

𝑖
(𝑖 = 1, 2, 3, 4) with

respect to attributes 𝐶
𝑗
(𝑗 = 1, 2, 3) and the evaluations are

expressed in the form of IVDHFE. In what follows, we use
the MADMmethod proposed in Section 4 to select the most
desirable software package(s).

Step 1. Determine the interval-valued dual hesitant fuzzy
matrix 𝐸 = (𝑒

𝑖𝑗
)
4×3

shown in Table 1, where 𝑒
𝑖𝑗
is the

evaluation value about the alternative 𝐴
𝑖
with respect to the

attribute 𝐶
𝑗
and it is in the form of IVDHFE.

Step 2. Utilize (61) to aggregate all the rating values 𝑒
𝑖𝑗
of

alternative 𝐴
𝑖
(𝑖 = 1, 2, 3, 4) on all attributes 𝐶

𝑗
(𝑗 = 1, 2, 3)

into overall assessment values 𝑒
𝑖
(𝑖 = 1, 2, 3, 4), which are

shown as follows:

𝑒
1
= {{[0.3000, 0.4663] , [0.3410, 0.4663] ,

[0.3410, 0.5101] , [0.3257, 0.4663] ,

[0.3659, 0.4663] , [0.3659, 0.5101] ,

[0.3359, 0.5000] , [0.3758, 0.5000] ,

[0.3758, 0.5419] , [0.3610, 0.5000] ,

[0.4000, 0.5000] , [0.4000, 0.5419] ,

[0.3743, 0.5368] , [0.4129, 0.5368] ,

[0.4129, 0.5765] , [0.3986, 0.5368] ,

[0.4363, 0.5368] , [0.4363, 0.5765]} ,

{[0.1523, 0.3000] , [0.2000, 0.3000] ,

[0.1694, 0.3229] , [0.2218, 0.3229] ,

[0.1523, 0.3324] , [0.2000, 0.3324] ,

[0.1694, 0.3573] , [0.2218, 0.3573]}} ;

𝑒
2
= {{[0.2975, 0.3986] , [0.3758, 0.4761] ,

[0.4181, 0.5193] , [0.2730, 0.3986] ,

[0.3526, 0.4761] , [0.3958, 0.5193] ,

[0.3370, 0.4401] , [0.4129, 0.5141] ,

[0.4537, 0.5551] , [0.3131, 0.4401] ,

[0.3905, 0.5141] , [0.4323, 0.5551]} ,

{[0.2311, 0.3729] , [0.2717, 0.3729] ,

[0.2759, 0.4235] , [0.3229, 0.4235]}} ;

𝑒
3
= {{[0.3171, 0.4761] , [0.3616, 0.5193] ,

[0.4106, 0.5684] , [0.3659, 0.5000] ,

[0.4086, 0.5419] , [0.4554, 0.5892] ,

[0.3928, 0.5265] , [0.4345, 0.5668] ,

[0.4799, 0.6122] , [0.3526, 0.4761] ,

[0.3958, 0.5193] , [0.4432, 0.5684] ,

[0.4000, 0.5000] , [0.4414, 0.5419] ,

[0.4865, 0.5892] , [0.4261, 0.5265] ,

[0.4663, 0.5668] , [0.5101, 0.6122]} ,

{[0.1280, 0.3000] , [0.1688, 0.3000] ,

[0.1523, 0.3229] , [0.2000, 0.3229] ,

[0.1488, 0.3613] , [0.1956, 0.3613] ,

[0.1767, 0.3878] , [0.2311, 0.3878]}} ;

𝑒
4
= {{[0.3659, 0.5101] , [0.4554, 0.5598] ,

[0.3928, 0.5362] , [0.4799, 0.5840] ,

[0.4000, 0.5765] , [0.4865, 0.6211] ,

[0.4261, 0.6000] , [0.5101, 0.6427] ,
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Table 1: Interval-valued dual hesitant fuzzy decision matrix.

𝐶
1

𝐶
2

𝐶
3

𝐴
1

{{[0.3, 0.4], [0.4, 0.5], [0.5, 0.6]},
{[0.2, 0.3], [0.2, 0.4]}}

{{[0.3, 0.5], [0.4, 0.5]},
{[0.2, 0.3], [0.3, 0.4]}}

{{[0.3, 0.5], [0.4, 0.5], [0.4, 0.6]},
{[0.1, 0.3], [0.2, 0.3]}}

𝐴
2 {{[0.4, 0.5], [0.5, 0.6]}, {[0.3, 0.4]}}

{{[0.3, 0.4], [0.2, 0.4]},
{[0.2, 0.3], [0.4, 0.5]}}

{{[0.2, 0.3], [0.4, 0.5], [0.5, 0.6]},
{[0.2, 0.4], [0.3, 0.4]}}

𝐴
3

{{[0.3, 0.5], [0.4, 0.5]},
{[0.2, 0.3], [0.3, 0.5]}}

{{[0.2, 0.4], [0.4, 0.5], [0.5, 0.6]},
{[0.1, 0.3], [0.2, 0.4]}}

{{[0.4, 0.5], [0.5, 0.6], [0.6, 0.7]},
{[0.1, 0.3], [0.2, 0.3]}}

𝐴
4

{{[0.3, 0.4], [0.4, 0.6],
[0.5, 0.8]}, {[0.1, 0.2]}}

{{[0.4, 0.5], [0.5, 0.6]},
{[0.2, 0.3], [0.2, 0.4]}}

{{[0.4, 0.6], [0.6, 0.7]},
{[0.1, 0.2], [0.1, 0.3]}}

[0.4363, 0.6635] , [0.5193, 0.7007] ,

[0.4614, 0.6832] , [0.5419, 0.7186]} ,

{[0.1193, 0.2218] , [0.1193, 0.2610] ,

[0.1193, 0.2396] , [0.1193, 0.2814]}} .

(64)

Step 3. Compare the magnitude of the different overall
assessments values 𝑒

𝑖
(𝑖 = 1, 2, 3, 4) using score function

according to (62):

𝑆 (𝑒
1
) = 0.1882; 𝑆 (𝑒

2
) = 0.0907;

𝑆 (𝑒
3
) = 0.2229; 𝑆 (𝑒

4
) = 0.3512.

(65)

Step 4. Rank all the alternatives 𝐴
𝑖
(𝑖 = 1, 2, 3, 4) according

toTheorem 8. Since 𝑆 (𝑒
4
) > 𝑆 (𝑒

3
) > 𝑆 (𝑒

1
) > 𝑆 (𝑒

2
), then the

ranking of the alternatives is shown as follows: 𝐴
4
≻ 𝐴
3
≻

𝐴
1
≻ 𝐴
2
. Therefore, the most desirable alternative is 𝐴

4
.

5.2. Comparison with Other Methods. To test the validity of
the proposed method, the evaluation results in Section 5.1
are compared with that from the other method proposed by
Ju et al. [29]. The main difference between the two methods
is due to the aggregation process. Specifically, in the process
of aggregating the attributes’ values, the method proposed in
this paper uses the IVDHFEWA operator that is based on the
Einstein 𝑡-norms and 𝑡-conorms, while themethod presented
in [29] uses the IVDHFWA operator that is based on the
algebraic 𝑡-norms and 𝑡-conorms.

Therefore, if we use the IVDHFWA operator instead
of the IVDHFEWA operator in Step 2 in Section 5.1, the
aggregated results 𝑒

𝑖
(𝑖 = 1, 2, 3, 4) with respect to the rating

values 𝑒
𝑖𝑗
(𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, 3) are shown as follows:

𝑒
1
= {{[0.3000, 0.4671] , [0.3419, 0.4671] ,

[0.3419, 0.5126] , [0.3265, 0.4671] ,

[0.3667, 0.4671] , [0.3667, 0.5126] ,

[0.3368, 0.5000] , [0.3764, 0.5000] ,

[0.3764, 0.5427] , [0.3618, 0.5000] ,

[0.4000, 0.5000] , [0.4000, 0.5427] ,

[0.3778, 0.5376] , [0.4150, 0.5376] ,

[0.4150, 0.5771] , [0.4013, 0.5736] ,

[0.4371, 0.5376] , [0.4371, 0.5771]} ,

{[0.1516, 0.3000] , [0.2000, 0.3000] ,

[0.1677, 0.3224] , [0.2213, 0.3224] ,

[0.1516, 0.3318] , [0.2000, 0.3318] ,

[0.1677, 0.3565] , [0.2213, 0.3565]}} ;

𝑒
2
= {{[0.3004, 0.4013] , [0.3764, 0.4767] ,

[0.4203, 0.5214] , [0.2766, 0.4013] ,

[0.3553, 0.4767] , [0.4006, 0.5214] ,

[0.3436, 0.4463] , [0.4150, 0.5160] ,

[0.4561, 0.5573] , [0.3213, 0.4463] ,

[0.3951, 0.5160] , [0.4377, 0.5573]} ,

{[0.2305, 0.3722] , [0.2711, 0.3722] ,

[0.2741, 0.4229] , [0.3224, 0.4229]}} ;

𝑒
3
= {{[0.3195, 0.4767] , [0.3674, 0.5214] ,

[0.4214, 0.5734] , [0.3667, 0.5000] ,

[0.4113, 0.5427] , [0.4615, 0.5924] ,

[0.3950, 0.5271] , [0.4375, 0.5675] ,
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[0.4855, 0.6145] , [0.3553, 0.4767] ,

[0.4006, 0.5214] , [0.4518, 0.5734] ,

[0.4000, 0.5000] , [0.4422, 0.5427] ,

[0.4898, 0.5924] , [0.4267, 0.5271] ,

[0.4671, 0.5675] , [0.5126, 0.6145]} ,

{[0.1275, 0.3000] , [0.1682, 0.3000] ,

[0.1516, 0.3224] , [0.2000, 0.3224] ,

[0.1469, 0.3587] , [0.1938, 0.3587] ,

[0.1747, 0.3855] , [0.2305, 0.3855]}} ;

𝑒
4
= {{[0.3667, 0.5216] , [0.4615, 0.5655] ,

[0.3950, 0.5390] , [0.4855, 0.5891] ,

[0.4000, 0.5771] , [0.4898, 0.6230] ,

[0.4267, 0.6000] , [0.5216, 0.6435] ,

[0.4371, 0.6682] , [0.5214, 0.7042] ,

[0.4622, 0.6862] , [0.5427, 0.7203]} ,

{[0.1189, 0.2213] , [0.1189, 0.2603] ,

[0.1189, 0.2378] , [0.1189, 0.2797]}} .

(66)

Similarly, the score function values of the 𝑒
𝑖
(𝑖 = 1, 2, 3, 4)

can be calculated according to (62); the results are shown as
follows:

𝑆 (𝑒
1
) = 0.1897; 𝑆 (𝑒

2
) = 0.0946;

𝑆 (𝑒
3
) = 0.2266; 𝑆 (𝑒

4
) = 0.3544.

(67)

Obviously, the ranking order of the four alternatives is
𝐴
4
≻ 𝐴
3
≻ 𝐴
1
≻ 𝐴
2
, which is exactly the same as that

obtained in Section 5.1.
It is interesting to point out that the score values

obtained by the IVDHFEWA operator are smaller than those
obtained by the IVDHFWAoperator, which is consistent with
Theorem 18.

From the above analysis, we can clearly find that the
proposed approach is effective. In addition,when the decision
makers show some kind of pessimistic attitude towards the
decision making problems, they can choose the IVDHFEWA
operator, which has more merits in characterizing the pes-
simistic attitude than the IVDHFWA operator.

6. Conclusions

The traditional dual hesitant fuzzy aggregation operators
are generally suitable for aggregating information taking the
form of numerical numbers, and yet they will fail in dealing
with interval-valued dual hesitant fuzzy information. In this
paper, we investigate the MADM problems in which the
attribute values take the form of interval-valued dual hesitant
fuzzy information. Firstly, we propose some operational laws
for IVDHFEs based on Einstein operations.Then, we develop
some interval-valued dual hesitant fuzzy Einstein aggregation
operators: the IVDHFEWA operator, IVDHFEWG operator,
IVDHFEOWA operator, and IVDHFEOWG operator. Some
desirable properties of these operators and the relationship
between the developed operators and the existing ones are
investigated. To emphasize the importance of ordered posi-
tion of each argument and the importance of the argument
itself, we also proposed the IVDHFEHA operator and IVD-
HFEHG operator, respectively. In addition, we put forward
an approach to deal with MADM problems under interval-
valued dual hesitant fuzzy setting. Finally an illustrated exam-
ple is given to show the developedmethod, and a comparison
analysis is also conducted to demonstrate the effectiveness
and superiority of the proposed approach. All the aggregation
operators proposed in this paper are based on the assumption
that the attributes in a given set are independent; that is, we
only consider the addition of the importance of individual
elements. However, inmany practical situations, the elements
in a set are usually correlative.Therefore, how to deal with the
situations inwhich the arguments in a question are correlative
is our future work.
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