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Hammerstein model has been popularly applied to identify the nonlinear systems. In this paper, a Hammerstein-type neural
network (HTNN) is derived to formulate the well-known Hammerstein model. The HTNN consists of a nonlinear static gain in
cascade with a linear dynamic part. First, the Lipschitz criterion for order determination is derived. Second, the backpropagation
algorithm for updating the network weights is presented, and the stability analysis is also drawn. Finally, simulation results show
that HTNN identification approach demonstrated identification performances.

1. Introduction

Identification of nonlinear dynamic systems has been one of
the most interesting research areas in engineering. Similar as
the well-known Wiener model, Hammerstein model is also
well known and themost widely used formodeling of various
processes [1, 2], which comprises of a static nonlinear block
preceding a dynamic linear one [3]. This type of model was
called block-oriented nonlinear model [4]. Different from
black-box models, the block-oriented model was regarded as
gray-box model which has clear physical interpretation, and
its steady-state part describes the gain of the system [5]. The
major drawback of these classic identification techniques is
that they could have many constraints for nonlinear systems
with time-varying parameters and uncertainties.

It has been proven that neural networks (NN) can
generally approximate any smooth nonlinear function well
[2, 3]. During the last decade, they have been successfully
and efficiently applied to identify and control the nonlinear
systems due to high adaptation, self-organization, and fast
parallel processing of real-time information. However, for
general neural networks, the model structures have no
relation with the physical nature of the process and the
model parameters have no physical interpretation, similar to

black-box models [5]. Therefore, many works were focused
on integrating NN with Wiener or Hammerstein models.
As a result, the model structures and the model parameters
of NN have clear physical interpretation while the well-
developed classic identification methodologies would have
adaptive abilities.

There are two ways to integrate NN with Wiener or
Hammerstein models. One is to use NN to formulate the sys-
tem static nonlinearities of Wiener or Hammerstein models.
Chen et al. [6] used a simple linear model to represent the
dynamic part and a neural network to represent the nonlinear
static part. The dynamic linear part was replaced by Laguerre
filters and the nonlinear static part was described as a neural
network [2]. Tötterman andToivonen [7] used support vector
regression to identify nonlinear Wiener systems. The linear
block was expanded in terms of Laguerre or Kautz filters,
and the static nonlinear block was determined using support
vectormachine regression. Saha et al. [8] developed aWeiner-
type nonlinear black-box model for capturing dynamics of
open loop stable MIMO nonlinear systems, where quadratic
polynomials and NN were used for constructing the non-
linear output map. The models were then used in nonlinear
model predictive control [8]. Al-Duwaish et al. [9] used a
hybrid model consisting of a linear autoregressive moving
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average (ARMA) model and a NN to, respectively, represent
the dynamic linear block and the static nonlinear element of
Wiener model. The other one is to formulate the Wiener or
Hammerstein model entirely by a multilayer NN; that is, the
dynamic linear block and static nonlinear block of Wiener or
Hammersteinmodel are both represented by theNN. Janczak
[4] designed a NN to formulate the Hammerstein model,
which was composed of one hidden layer with nonlinear
nodes and one linear output node. Wu et al. [10] proposed
a Hammerstein neural network compensator to identify a
dynamic process. Peng and Dubay [11] proposed a Wiener-
type neural network to identify nonlinear dynamic processes.
However, most of those investigations did not give the system
order determination or stability analysis.

In this paper, a multilayer neural network is used
to formulate the traditional Hammerstein model, which
is called Hammerstein-type neural network (HTNN). The
HTNN formulates the Hammerstein model with a nonlinear
static block in cascade with a linear dynamic block, the
weights in which are corresponding with the parameters of
Hammerstein model. Then, an identification methodology
based on HTNN is presented and applied to nonlinear SISO
systems. To determine the order and weights of HTNN, the
Lipschitz criterion and backpropagation (BP) algorithm are
derived, respectively. Furthermore, the stability analysis is
drawn. Finally, the proposed identification method is tested
on several nonlinear plants.

In [2, 6–9], neural networks were used to formulate
the system static nonlinearities of Wiener or Hammerstein
models, while in our design, a multilayer neural network
is used to formulate the Hammerstein model entirely; that
is, the dynamic linear block and static nonlinear block of
Hammerstein model were both represented by the neural
network. In this way, the parameters of Hammerstein model
can be obtained by training HTNN using an adequate
training algorithm.Moreover, themodel order determination
and convergence stability are also drawn.

The rest of this paper is organized as follows. In Section 2,
Hammerstein model is described. The design of the HTNN
for identification is given in Section 3, the Lipschitz criterion
is presented for order determination, and the learning algo-
rithm is analyzed.The convergence analysis ofHTNN is given
in Section 4.The simulation results are given in Section 5.The
conclusions are drawn in Section 6.

2. Hammerstein Model

Many industrial processes can be described byWiener model
or Hammerstein models [1]. As shown in Figure 1, a general
Hammerstein model consists of a nonlinear static block and
a linear dynamic block.The nonlinear static block is given by

𝑥 (𝑡) = 𝑓 (𝑢 (𝑡)) , (1)

where 𝑢(𝑡) is the input variable; 𝑓(⋅) represents the nonlinear
component of the Hammerstein model; 𝑥(𝑡) is a nonmea-
sured intermediate variable that does not necessarily have a
physical meaning.

Linear dynamic blockNonlinear static blocku(t) x(t) y(t)

G(q−1)f(·)

Figure 1: The generally Hammerstein model.

And the linear dynamic block can be described as
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where 𝑦(𝑡) is the output variable; 𝑞
−1 is the unit delay

operator; 𝑛
𝑎

and 𝑛
𝑏

are the orders of the linear dynamics and
generally 𝑛
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≤ 𝑛
𝑎

.
There are many methods to identify the model param-

eters of Wiener model or Hammerstein model, such as the
least squares method or its recursive version [12], max-
imum likelihood methods [13], correlation methods [14],
linear optimizationmethods [15], andnonlinear optimization
methods [2]. In this study, a multilayer neural network is
designed to formulate the Hammerstein model. Therefore,
the parameters of the Hammerstein model can be directly
obtained through training the multilayer neural network by
the BP training algorithm.

3. System Identification Using
Hammerstein-Type Neural Network

A general neural network can be regarded as a black-
box model [5]. In this section, a Hammerstein-type neural
network (HTNN) is designed to formulate the Hammerstein
model entirely. To determine the minimal model order, an
order determination method based on Lipschitz quotients
[16] is utilized. And for weights updating, the BP algorithm
is presented.

3.1. Hammerstein-Type Neural Network. As shown in
Figure 2, a multilayer neural network called Hammerstein-
type neural network is designed, which consists of a
nonlinear static element and a single linear node with two
tapped delay lines forming the model of the linear dynamic
element.

In Figure 2, 𝑢(𝑡) is the input variable, 𝑦(𝑡) is the output
variable, and 𝑥(𝑡) is a nonmeasured intermediate variable
that does not necessarily have a physical meaning. Λ

𝑖, 𝑖 =

1, 2, . . . , 𝑝, means the order of input 𝑢, the parameters 𝑎
𝑖

, ̂𝑏
𝑗

,
and 𝑐
𝑘

mean the weights of HTNN, and 𝑞
−1 is the unit delay

operator. Giving an input signal 𝑢(𝑡), initial condition of 𝑥(𝑡)

and 𝑦(𝑡) (𝑡 ≤ 0), and initial values of 𝑎
𝑖

, ̂
𝑏
𝑗

, and 𝑐
𝑘

, we can
obtain the HTNN output 𝑦(𝑡) (𝑡 > 0).
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Figure 2: The structure of Hammerstein-type neural network.

As shown in Figure 2, a polynomial function is used in
the nonlinear static block, the output of hidden layer 𝑥(𝑡) can
be expressed as

𝑥 (𝑡) = 𝑓 (𝑢 (𝑡)) =
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(𝑡) , (4)

and the output 𝑦(𝑡) can be expressed as
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where 𝑐
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for 𝑘 = 1, . . . , 𝑝, ̂
𝑏
𝑗

for 𝑗 = 1, . . . , 𝑛
𝑏

, and 𝑎
𝑖

for 𝑖 = 1, . . . , 𝑛
𝑎

are the weights of HTNN, which are
associated with the parameters of Hammerstein model in
(1) and (2). As a result, the parameters of the Hammerstein
model can be expressed directly as theweights of the dynamic
neural network.Then, the identifiedHammersteinmodel can
be obtained by training HTNN using an adequate training
algorithm.

3.2. Model Order Determination. Usually, before training a
neural network, it is important to determine how many
neurons are in the network. In the HTNN, the structure
of linear dynamic part is determined by 𝑛

𝑎

and 𝑛
𝑏

. As the
most popular statistical model selection criterion, Akaike
information criterion (AIC) [17] is a common method to
determine the model order. However, the AIC for model
order determination is usually subjected to a complex opti-
mization process. The Lipschitz quotients criterion, which
was proposed by He and Asada [16], can be utilized to
determine the model order by analyzing the input-output
data. Peng and Dubay [11] introduced the Lipschitz quotients
criterion to determine the model order in a Wiener neural
network.

Consider a general nonlinear SISO dynamic system,
which can be described as

𝑦 (𝑡) = 𝑔 (𝑦 (𝑡 − 1) , . . . , 𝑦 (𝑡 − 𝑛
𝑏
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)) ,

(6)

where 𝑦(𝑡) and 𝑢(𝑡) are the output and input variables of
the nonlinear dynamic system, and 𝑛

𝑏

and 𝑛
𝑎

are the true
orders of the output and input, respectively;𝑔(⋅) is a nonlinear
function assumed to be continuous and smooth.

Rewriting (6) in a compact form gives
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1
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) , (7)

where 𝑛 = 𝑛
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is the number of input variables; let
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, 𝜒
2
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]
T. To reconstruct the nonlinear function

𝑔(⋅) from the input-output data pairs [𝜒(𝑖), 𝑦(𝑖)]
𝑁set
𝑖=1

, where
𝑁set is the number of data sets used for the model order
determination. Define the Lipschitz quotient 𝐿
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where |𝜒(𝑖) − 𝜒(𝑗)| is the distance of two points in the input
space and |𝑦(𝑖) − 𝑦(𝑗)| is the difference between 𝑔(𝜒(𝑖)) and
𝑔(𝜒(𝑗)). For data points with a small distance |𝜒(𝑖) − 𝜒(𝑗)|

between them, the Lipschitz quotient 𝐿
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where 𝛿𝑦 = 𝑦(𝑖) − 𝑦(𝑗) and 𝛿𝜒
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= 𝜒
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represents the number of
input variables in (7). According to the investigation in He
and Asada [16], the values of 𝐿

(𝑛)

𝑖𝑗

can be used as indicator
when one or more input variables are missing or in the case
when one or more redundant input variables are included.
For instance, if one of input variables, 𝜒
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, is missing from the
input set, the Lipschitz quotient 𝐿
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To avoid the effect of measurement noise, the following
index [16] is utilized to determine an appropriate order:
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), and parameter 𝑚
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0.02𝑁set. For testing purposes, the stop criterion can be
defined as [18]
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where 𝜖 > 0 is a prespecified threshold.
It should be noted that the number of nodes in the

nonlinear layer, 𝑝, is chosen manually. This is because, from
empirical experience, formost cases, 3 ≤ 𝑝 ≤ 6 can be chosen
[11].
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3.3. Learning Algorithm. During the neural network learning
procedures, the weights are updated by the BP algorithm. An
error function can be defined as

𝐽 (w, 𝑡) =

1

2

(𝑦 (𝑡) − 𝑦 (𝑡))
2

=

1

2

𝑒(𝑡)
2

, (12)

where 𝑒(𝑡) = 𝑦(𝑡) − 𝑦(𝑡) is the identification error; 𝑦(𝑡) and
𝑦(𝑡) are the actual system output and the neural network
output, respectively. Let w be the weights, which consist of
the parameters 𝑐

𝑘

, ̂
𝑏
𝑗

, and 𝑎
𝑖

. Applying the steepest descent
method, the optimization target is characterized to minimize
the error function equation (12) with respect to the weights of
the network. Consider
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where 𝜂 is the training rate.
Considering the element of 𝑦(𝑡−𝑗) also being function of
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can be calculated as
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According to (17) and (18), the partial derivative of the
HTNN output 𝑦(𝑡) to weights 𝑐
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According to (14), the update law of 𝑐
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calculated as
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where the partial derivatives in (20), (21), and (22) are shown
in (16), (15), and (19), respectively. From the above analysis,
the structure of the system identification using the HTNN is
shown in Figure 3.

4. Convergence Analysis

In the training procedures of HTNN, a proper choice of
training rate 𝜂 is usually required in the update rules of
(20)–(22). Too small 𝜂 guarantees convergence but with slow
training speed, while too big 𝜂 leads to being unstable. In this
section, the approach on selecting properly 𝜂 is developed.

A discrete type Lyapunov function can be defined as [19]

𝑉 (𝑡) =

1

2

𝑒
2
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Therefore, the time change of the Lyapunov function can
be obtained as
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The error difference can be represented as

𝑒 (𝑡 + 1) = 𝑒 (𝑡) + Δ𝑒 (𝑡) = 𝑒 (𝑡) + (

𝜕𝑒 (𝑡)

𝜕𝑤

)

T
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From the update rule of (13), we have
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Theorem 1. Assume that 𝜂 is the learning rate for the weights
of HTNN and 𝛽max is defined as 𝛽max = max

𝑡

‖𝛽(𝑡)‖, where
𝛽(𝑡) = 𝜕𝑦(𝑡)/𝜕𝑤 and ‖ ⋅ ‖ is the Euclidean norm. Then, the
convergence is guaranteed if 𝜂 is satisfied as

0 < 𝜂 <

2

𝛽
2

max
. (27)
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Figure 3: Model identification using HTNN.

Proof. According to (23)-(24), Δ𝑉(𝑡) can be represented as

Δ𝑉 (𝑡) = Δ𝑒 (𝑡) [𝑒 (𝑡) +

Δ𝑒 (𝑡)

2

]

= (

𝜕𝑒 (𝑡)

𝜕𝑤

)

T
𝜂𝑒 (𝑡)

𝜕𝑦 (𝑡)

𝜕𝑤

⋅ [𝑒 (𝑡) +

1

2

(

𝜕𝑒 (𝑡)

𝜕𝑤

)

T
𝜂𝑒 (𝑡)

𝜕𝑦 (𝑡)

𝜕𝑤

] .

(28)

Substituting the equation 𝜕𝑒(𝑡)/𝜕𝑤 = −𝜕𝑦(𝑡)/𝜕𝑤 into (28)
yields

Δ𝑉 (𝑡) = −𝜂𝑒
2

(𝑡)










𝜕𝑦 (𝑘)

𝜕𝑤










2

+

1

2

𝜂
2

𝑒
2

(𝑡)










𝜕𝑦 (𝑡)

𝜕𝑤










4

. (29)

Define 𝛽max = max
𝑡

‖𝛽(𝑡)‖, where 𝛽(𝑡) = 𝜕𝑦(𝑡)/𝜕𝑤; we obtain

Δ𝑉 (𝑡) = −

1

2





𝛽 (𝑡)






2

𝜂 (2 − 𝜂




𝛽 (𝑡)






2

) 𝑒
2

(𝑡)

≤ −

1

2





𝛽 (𝑡)






2

𝜂 (2 − 𝜂𝛽
2

max) 𝑒
2

(𝑡) .

(30)

Since 𝑉(𝑡) > 0 for all time 𝑡, the convergence of training
algorithm means Δ𝑉(𝑡) < 0. Referring to (30), it implies that
(27) is satisfied. It should be pointed that optimal convergence
via maximum learning rate corresponds to 𝜂

∗

= 1/𝛽
2

max,
which is the upper half of the limit in (27).

5. Simulation Examples

In this section, three examples are utilized to illustrate the
HTNN identifier. The first is a Hammerstein process which
is utilized to demonstrate the HTNN of fitting the Ham-
merstein model. The second and the third are a nonlinear

dynamic system and an industry process, which are utilized
to demonstrate the HTNN can be used to identify nonlinear
dynamic systems and processes, respectively.

The implementation procedure of the HTNN for nonlin-
ear system identification is itemized as follows.

Step 1. Select the input-output variables 𝑢(𝑡) and 𝑦(𝑡) and the
structures (𝑛

𝑎

and 𝑛
𝑏

) of the HTNN according to Section 3.2.

Step 2. Select the order 𝑝 of polynomial function; note that
the value range of integer 𝑝 is 3 ≤ 𝑝 ≤ 6.

Step 3. Model the nonlinear system using HTNN as in (4)
and (5), and train the HTNN using the training datasets
according to (20)–(22) to obtain the weights 𝑎

𝑖

, ̂𝑏
𝑗

, and 𝑐
𝑘

.

Step 4. Calculate the error function 𝐽 in (12). If 𝐽 is less than a
limiting value within a given number of training iterations, it
means that the model can be accepted; otherwise go to Step 2
to reselect the value of integer 𝑝.

Example 1. Nonlinear Hammerstein model identification is
as follows.

The following Hammerstein model is described as

𝑥 (𝑡) = 𝑢 (𝑡) − 0.4𝑢(𝑡)
2

+ 0.1𝑢(𝑡)
3

;

𝑦 (𝑡) = 1.4138𝑦 (𝑡 − 1) − 0.6065𝑦 (𝑡 − 2) + 0.1044𝑥 (𝑡 − 1)

+ 0.0883𝑥 (𝑡 − 2) .

(31)

A total of 1000 data pairs of an i.i.d. uniform sequence
within the limits [−0.5, 0.5] were generated to train the
HTNN. In the order determination procedure, firstly, it gives
the input 𝜒

1

= 𝑦(𝑡 − 1) and computes the Lipschitz quotient
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Figure 4: Values of the order determination.

𝐿
(1,0)

= +∞ and then sets 𝜒
2

= 𝑢(𝑡−1); the Lipschitz quotient
𝐿
(1,1)

= 85.55. For 𝜒
3

= 𝑦(𝑡 − 2) and 𝜒
4

= 𝑢(𝑡 − 2), the
corresponding Lipschitz quotients 𝐿

(2,1)

= 6.312 and 𝐿
(2,2)

=

1.853 are decreased significantly. Then it sets 𝜒
5

= 𝑦(𝑡 − 3),
𝜒
6

= 𝑢(𝑡 − 3), and 𝜒
7

= 𝑦(𝑡 − 4), the corresponding Lipschitz
quotients 𝐿

(3,2)

= 1.452, 𝐿(3,3) = 1.002, and 𝐿
(4,3)

= 0.9799 are
not significantly different from 𝐿

(2,2), and the stop criterion
equation (11) is satisfied, where the threshold is chosen as
𝜖 = 0.5. Figure 4 shows the values of the Lipschitz quotients
for different order; the best order of the system is (2,2); that
is, 𝑛
𝑎

= 2 and 𝑛
𝑏

= 2. From (31), the true order of the system
is (2,2).

In this case, the number of neurons in nonlinear static
block is chosen as 𝑝 = 3. According to the convergence
analysis, 𝛽max = 2.534; therefore, the learning rate can be
chosen as 𝜂 = 0.16. The initial parameters in (21)–(23) are
𝑦(𝑡) = 0, 𝑥(𝑡) = 0, 𝜕𝑦(𝑡)/𝜕𝑎

𝑖

= 0, 𝜕𝑦(𝑡)/𝜕
̂
𝑏
𝑗

= 0, and
𝜕𝑦(𝑡)/𝜕𝑐

𝑘

= 0 as 𝑡 ≤ 0. Then, the testing input signal 𝑢(𝑡) =

0.5 sin(𝑡) is used to verify the identification performance of
the HTNN. Figure 5 illustrates the output of the plant and the
HTNN. And the mean square error (MSE) is 1.497 × 10

−3

with 7 tunable parameters using the proposed HTNN.

Example 2. Nonlinear dynamic system identification is as
follows.

The following process is a nonlinear dynamic process
formulated in a discrete form as [20]

𝑦 (𝑡) = 0.5 (𝑦 (𝑡 − 1) + 𝑢 (𝑡 − 1) 𝑒
−3|𝑦(𝑡−1)|

) . (32)

A total of 500 data pairs which are generated by inputs
with a sinusoidal function 1.05 sin(𝜋𝑡/45) are utilized to train
the network.

Similar as Example 1, the values of the Lipschitz quotients
are 𝐿
(1,0)

= +∞, and 𝐿
(1,1)

= 41.45, 𝐿
(2,1)

= 2.761, 𝐿
(3,1)

=

1.596, 𝐿
(2,2)

= 1.389, 𝐿
(3,2)

= 1.157, 𝐿
(3,3)

= 0.9093, 𝐿
(4,3)

=

0.6388.The stop criterion ends at 𝐿
(3,1); it implies that the best

order of the system is (3,1). Figure 6 shows the values of the
Lipschitz quotients for different orders.

Table 1: Comparison among several neural networks for identifica-
tion.

Network Parameters MSE
HTNN 7 1.828 × 10

−3

CReNN 51 4.784 × 10
−2

DFNN 39 1.325 × 10
−3

SHM-LS 7 0.2625
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Figure 5: Outputs of the plant (solid) and HTNN (dotted).

In this case, the number of neurons in linear dynamic
block is chosen as 𝑛

𝑎

= 3, 𝑛
𝑏

= 1 and the number of neurons
in nonlinear static block is chosen as 𝑝 = 3. According to the
convergence analysis, 𝛽max = 2.108; therefore, the learning
rate can be chosen as 𝜂 = 0.22. The testing input signal 𝑢(𝑡) =

sin(2𝜋𝑡)/10 is used to verify the identification performance
of the HTNN.

The proposed HTNN was compared to several neural
network based identification methods, the Controllable-
Canonical-Form-Based Recurrent Neurofuzzy Network
(CReNN) [21] and the Dynamic Fuzzy Neural Network
(DFNN) [22]. As for the DFNN model, it is a fuzzy model
of three rules, where the two-dimensional input space was
partitioned to three clusters and a Gaussian membership
function was assigned to each cluster. Also, using least square
(LS) algorithm, a standard Hammerstein model (SHM) with
𝑛
𝑎

= 3, 𝑛
𝑏

= 1, and 𝑝 = 3, which is shown in (1) and (2),
was applied to identify the nonlinear system for comparison.
As shown in Table 1, the results illustrate that the proposed
HTNN has the least number of parameters with lower
MSE value. Figure 7 shows the output of the plant, the
standard Hammerstein model with least square algorithm
(SHM-LS), and the HTNN identifier. It can be seen that the
standard Hammerstein model with least square algorithm
(SHM-LS) can not identify the complex nonlinear system
well.
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Figure 6: Values of the order determination.
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Figure 7: Outputs of the plant (solid), HTNN (dotted), and SHM-
LS (dash).

Example 3. Identification for an industry process is as fol-
lows.

The proposed HTNN was also used to identify a typical
industry process, a continuous stirred tank reactor (CSTR).
An irreversible first-order reaction is part of the CSTR, which
has the dimensionless mass and energy balances. The system
is described by the following equation [23, 24]:

d𝐶
𝐴

d𝑡

=

𝑄

𝑉

(𝐶
𝐴𝑓

− 𝐶
𝐴

) − 𝑘
0

𝐶
𝐴

𝑒
−𝐸/RT

d𝑇

d𝑡

=

𝑄

𝑉

(𝑇
𝑓

− 𝑇) −

Δ𝐻

𝜌𝐶
𝑝

𝑘
0

𝐶
𝐴

𝑒
−𝐸/RT

+

𝑈𝐴

𝑉𝜌𝐶
𝑝

(𝑇
𝑐

− 𝑇) ,

(33)
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Figure 8: Values of the order determination.

Table 2: Model parameters of CSTR process.

Variables Description Values
𝑄 Volumetric flow rate 10 (L⋅min−1)

𝑉 Reactor volume 10 (L)
𝜌 Density of reaction mixture 1000 (g⋅L−1)
𝐶
𝐴𝑓

Feed concentration 1.0 (mol⋅L−1)
𝑇
𝑓

Feed temperature 350 (K)
𝐶
𝑝

Specific heat capacity 1.0 (J⋅g−1 K−1)
Δ𝐻 Heat of reaction −1.0 × 10

5 (J⋅mol−1)

𝑘
0

Arrhenius preexponential
constant 5.33685 × 10

7 (min−1)

𝐸/𝑅
Activation energy/gas law

constant 6000 (K)

𝑈𝐴 Heat transfer term 5000 (J⋅min−1 K−1)

where the description and value of each variable are given
in Table 2. Two state variables of the model are the reactant
concentration 𝐶

𝐴

and the reactor temperature 𝑇. The control
objective is to control the reactant concentration𝐶

𝐴

, through
themanipulation of the coolant temperature𝑇

𝑐

. Note that the
reactor temperature 𝑇 is not controlled for this simulation.
Therefore, the output variable and manipulated variable are
given by 𝑦(𝑡) = 𝐶

𝐴

and 𝑢(𝑡) = 𝑇
𝑐

, respectively. For
practicability, the coolant temperature𝑇

𝑐

is constrained to the
ranges [273.0, 373.0].

The above model is used to generate a series of input-
output time-series data. The sampling time of the process
measurements is set to 0.1min. From Figure 8, the stop
criterion ends at 𝐿

(2,1)

= 2.333, indicating that the best order
of the system is (2,1); that is, 𝑛

𝑎

= 2 and 𝑛
𝑏

= 1. The number
of neurons in nonlinear static block 𝑝 = 4. According to the
convergence analysis, 𝛽max = 2.856; therefore, the learning
rate can be chosen as 𝜂 = 0.15, and the initial parameters
in (21)–(23) are the same as Example 1. The nonlinear part of
HTNN is sensitive to the data between −1 and 1; however,
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Figure 9: Training results, outputs of the plant (solid curve) and
HTNN (dotted curve) and multilayer neural network (dash curve).

the input values (𝑇
𝑐

) are within [273.0, 373.0]. Therefore, it is
necessary to normalize the input signals as follows:

𝑢 (𝑡) =

𝑇
𝑐

(𝑡) − 273.0

373.0 − 273.0

−

373.0 − 𝑇
𝑐

(𝑡)

373.0 − 273.0

. (34)

The normalized data is then used to train the HTNN; the
training results are shown in Figure 9. The models were then
tested on a set of data produced from an input with random
amplitude; a common multilayer neural network with 5
hidden neurons [25] was also developed for comparison. As
shown in Figure 9, the HTNN gives a good fit to this data.

6. Conclusions

In this paper, by formulated Hammerstein model, a Ham-
merstein-type neural network was developed for identifying
nonlinear SISO systems, where theweights are corresponding
with the parameters of Hammerstein model. To determine
the model order and the parameters of the Hammerstein
model, the Lipschitz quotients and the backpropagation
training algorithm were used to determine the model order
and update the weights in the network, respectively, and
the stability was also analyzed. The HTNN was tested on
several nonlinear systems to demonstrate the identification
performances.
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