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This paper mainly discusses some dynamics asymptotic properties of autoregressive processes. By using the 𝑚-dependence of
random variables, we prove the least squares (LS) estimator of the unknown parameters satisfies the law of iterated logarithm.

1. Introduction

Autoregressive process is a basic model in engineering,
insurance, and business. It is a representation of a type of
random process; as such, it describes certain time-varying
processes in nature, engineering, and so forth. The autore-
gressive model specifies that the output variable depends
linearly on its own previous values. It is a special case of the
more general autoregressive-moving average (ARMA)model
of time series. For example, in engineering one considers a
dam, with input of random amounts at random times, and
a steady withdrawal of water for irrigation or power usage.
This model has a Markovian representation. It is well known
that stability problem is an important interest topic, which
explainswhy the stochastic systems always stay in “reasonable
values”: the dam does not overflow. The parameters in the
process have a direct relation to the system stability, so the
estimation of fixed coefficients and its dynamics behaviors are
very useful in engineering. There was a rich literature which
focused on the research (see Mann and Wald [1], Anderson
[2], Menneteau [3], Hwang and Choi [4], Hwang and Baek
[5], and Miao and Shen [6]). Recently, some attention has
been directed to random coefficient autoregressive models.
This way of handling the data allows for large shocks in the
dynamic structure of the model and also for some flexibility
in the features of the volatility of the series, which are not
available in fixed coefficient autoregressive models.

For simplicity, in this paper, we are concerned with some
dynamics behaviors (in probability language, we call it the law
of iterated logarithm) of the parameters estimation for the lin-
ear autoregressive model which is of practical importance, by
a different technique from the standard method. Define the
following first order autoregressive process (AR(1)) {𝑋

𝑡
, 𝑡 ≥
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By a simple calculation, we have
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It is well known that, in the stable (or, in other words,
asymptotically stationary) case, when 󵄨󵄨󵄨
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𝛽
1

󵄨
󵄨
󵄨
󵄨
< 1, ̂𝛽(𝑛)

1
is

asymptotically normal under the assumption that {𝜖
𝑖
} is a

sequence of i.i.d. random variables with mean zero and
variance 1; namely,
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) , (4)

where “⇒” denotes the convergence in distribution, although
it does not hold uniformly for |𝛽

1
| < 1 (see Anderson [2] and

Meyn and Tweedie [7]). In the unstable (or, in other words,
unit root) case when 𝛽

1
= 1, for the sequence ̂𝛽(𝑛)

1
, we have
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where {𝑤(𝑡) : 𝑡 ∈ [0, 1]} denotes a standard Wiener process.
In the explosive case, when |𝛽

1
| > 1, the sequence ̂𝛽(𝑛)

1
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not asymptotically normal. If, for example, 𝜖
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∼N(0, 1), then
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In general, the limit distribution depends on the distribution
of 𝜖
1
(see Basawa and Brockwell [8]).

In this paper, we consider the convergence rates of𝛽(𝑛)
0
→

𝛽
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1
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under some conditions. By constructing

an𝑚-dependent random variables sequence and applying an
approximation method along with a central limit theorem
for random variables, we prove the LS estimators of 𝛽

0
and

𝛽
1
satisfy the law of iterated logarithm. Our results can be

considered as an embodiment of Miao and Shen [6].
In the following statement, we have an assumption as

follows:
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2. Main Results

Themain result is as follows.
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3. Preliminary Lemmas

In order to proveTheorem 1, we need the following lemmas.
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Proof. Let 𝜆(𝑛) → ∞ and 𝜆(𝑛)/√𝑁
𝑛
→ 0 as 𝑛 → ∞. By

virtue of the moderate deviation principle for {𝜉
𝑛
}
𝑛≥1

(see pp
109, Dembo and Zeitouni [9]), we have
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for any closed set 𝐴 ⊆ R, and
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for any open set 𝐵 ⊆ R, where 𝐼(𝑥) = (1/2) 𝑥2𝜎−2. Let 𝐴 =
[𝑥, +∞) and 𝐵 = (𝑥, +∞). Set 𝜆(𝑛) = √2 log log 𝑛; we easily
get the claim by (9) and (10).

The following lemma is about Lévy’s inequality. For
completeness, we still give its proof.
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be a sequence of independent random
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Remark 4. A real number m(𝜉) is usually called the median
of r.v. 𝜉, if P(𝜉 ≥ m(𝜉)) ≥ 1/2 and P(𝜉 ≤ m(𝜉)) ≥ 1/2.

Lemma 5. Let {𝜉
𝑛
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be a sequence of independent random
variables with
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Proof. See Theorem 1.2 of Wittmann [10].
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Then it is not difficult to see that {𝐶
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For the proof of (18), the method is similar.
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where 𝑖.𝑜. denotes infinitely often occurring. Note that, for
any 𝜏 > 0, there exists an increasing integer sequence {𝑛
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, 𝑖.𝑜.) .

(28)

Set 𝑟 > 0 and let 𝜏 > 0 satisfy 𝛿/√1 + 2𝜏 > 𝑟. Thus

P(󵄨󵄨󵄨󵄨
󵄨
𝐴
∗

𝑛
− 𝐴
𝑛,𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝛿√2𝑛 log log 𝑛, 𝑖.𝑜.)

≤ P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
∗

𝑛
− 𝐴
𝑛,𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
≥ 𝑟√2𝑛

𝑘
log log 𝑛

𝑘
, 𝑖.𝑜.) .

(29)

Since |𝛽
1
| < 1, one has

𝐾
1
:=

+∞

∑

𝑖=𝑝+1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑖−𝑝

(𝑖 + 1) < ∞. (30)

Consequently,

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
∗

𝑛
− 𝐴
𝑛,𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝑟√2𝑛

𝑘
log log 𝑛

𝑘
)

≤ P(
𝑛−2

∑

𝑖=𝑝+1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑖−𝑝max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑡=𝑖+2

𝜖
𝑡
𝜖
𝑡−𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

𝑛−2

∑

𝑖=𝑝+1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑖−𝑝

(𝑖 + 1)

(1 −
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) 𝑟√2𝑛

𝑘
log log 𝑛

𝑘

𝐾
1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑝+1
)

≤

𝑛−2

∑

𝑖=𝑝+1

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑡=𝑖+2

𝜖
𝑡
𝜖
𝑡−𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

(𝑖 + 1) (1 −
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) 𝑟√2𝑛

𝑘
log log 𝑛

𝑘

𝐾
1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑝+1
) .

(31)

For any positive natural numbers 𝑖, 𝑝, and 𝑠, define

𝐴
𝑖+1
(𝑛)

= {2𝑞 (𝑖 + 1) + 𝑗 : 𝑞 ∈ N, 1 ≤ 𝑗 ≤ 𝑖 + 1}

∩ {1, . . . , 𝑛} ,

𝐵
𝑖+1
(𝑛)

= {(2𝑞 + 1) (𝑖 + 1) + 𝑗 : 𝑞 ∈ N, 1 ≤ 𝑗 ≤ 𝑖 + 1}

∩ {1, . . . , 𝑛} .

(32)

It is easy to see that {𝜖
𝑡
𝜖
𝑡−𝑖−1
}
𝑡∈𝐴
𝑖+1
(𝑛)

and {𝜖
𝑡
𝜖
𝑡−𝑖−1
}
𝑡∈𝐵
𝑖+1
(𝑛)

are
two sets of 𝑖.𝑖.𝑑. random variables. Let {𝜖

𝑡
𝜖
𝑡−𝑖−1
} be an 𝑖.𝑖.𝑑.

sequence of random variables with the same law as 𝜖
𝑡
𝜖
𝑡−𝑖−1

.
We have

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
∗

𝑛
− 𝐴
𝑛,𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝑟√2𝑛

𝑘
log log 𝑛

𝑘
)

≤

𝑛−2

∑

𝑖=𝑝+1

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑡∈𝐴
𝑖+1(𝑛)

𝜖
𝑡
𝜖
𝑡−𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

(𝑖 + 1) (1 −
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) 𝑟√2𝑛

𝑘
log log 𝑛

𝑘

2𝐾
1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑝+1
)

+

𝑛−2

∑

𝑖=𝑝+1

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑡∈𝐵
𝑖+1(𝑛)

𝜖
𝑡
𝜖
𝑡−𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

(𝑖 + 1) (1 −
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) 𝑟√2𝑛

𝑘
log log 𝑛

𝑘

2𝐾
1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑝+1
)

≤ 2

𝑛−2

∑

𝑖=𝑝+1

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑡=𝑖+2

𝜖
𝑡
𝜖
𝑡−𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

(𝑖 + 1) (1 −
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) 𝑟√2𝑛

𝑘
log log 𝑛

𝑘

2𝐾
1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑝+1
) .

(33)

Note that for any random variable 𝑋 with mean zero,
|m(𝑋)| ≤ √2Var𝑋. In fact,

P (|𝑋| ≥ √(2 + 𝜖)Var𝑋) ≤ (2 + 𝜖)−1 < 1
2

. (34)

By Lemma 3,

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑡=𝑖+2

𝜖
𝑡
𝜖
𝑡−𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

(𝑖 + 1) (1 −
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) 𝑟√2𝑛

𝑘
log log 𝑛

𝑘

2𝐾
1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑝+1
)
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≤ 2P(
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
𝑘

∑

𝑡=𝑖+2

𝜖
𝑡
𝜖
𝑡−𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

(𝑖 + 1) (1 −
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) 𝑟√2𝑛

𝑘
log log 𝑛

𝑘

2𝐾
1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑝+1
− √2𝑛

𝑘
𝜎
4
)

≤ 2P(
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛
𝑘

∑

𝑡=𝑖+2

𝜖
𝑡
𝜖
𝑡−𝑖−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

>

(𝑖 + 1) (1 −
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
) 𝑟
1
√2𝑛
𝑘
log log 𝑛

𝑘

2𝐾
1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

𝑝+1
) ,

(35)

where the second inequality holds for any fixed constant 𝑟
1
>

0 and enough large 𝑛
𝑘
. By Lemma 2, we further have

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
∗

𝑛
− 𝐴
𝑛,𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝑟√2𝑛

𝑘
log log 𝑛

𝑘
)

≤ 4

∞

∑

𝑖=1

exp{−
(𝑖 + 1) (1 −

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
)
2

𝑟
2

1

4𝐾
2

1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

2𝑝+2
log log 𝑛

𝑘
}

≤

4 exp {− (2 (1 − 󵄨󵄨󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
)
2

𝑟
2

1
/4𝐾
2

1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

2𝑝+2

) log log 𝑛
𝑘
}

1 − exp {− ((1 − 󵄨󵄨󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
)
2

𝑟
2

1
/4𝐾
2

1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

2𝑝+2

) log log 𝑛
𝑘
}

∼ 4 exp{−
(1 −
󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
)
2

𝑟
2

1

2𝐾
2

1

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

2𝑝+2
log log 𝑛

𝑘
} .

(36)

From (25), 𝑛
𝑘
∼ (1 + 𝜏)

𝑘 as 𝑘 → ∞. So

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
∗

𝑛
− 𝐴
𝑛,𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝑟√2𝑛

𝑘
log log 𝑛

𝑘
)

≤ 4(

1

𝑘 log (1 + 𝜏)
)

(1−|𝛽
1
|
2
)𝑟
2

1
/2𝐾
2

1
|𝛽
1
|
2𝑝+2

.

(37)

By virtue of |𝛽
1
| < 1 and 𝑝 → +∞, we easily see that (1 −

|𝛽
1
|
2
)𝑟
2

1
/2𝐾
2

1
|𝛽
1
|
2𝑝+2
> 1. Thus

∞

∑

𝑘=1

P(max
𝑛≤𝑛
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
∗

𝑛
− 𝐴
𝑛,𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
> 𝑟√2𝑛

𝑘
log log 𝑛

𝑘
) < +∞. (38)

Applying Borel-Cantelli Lemma, we get (24). This completes
the proof.

Lemma 8. Let 𝐵(1)
𝑛
= ∑
𝑛

𝑡=1
𝑋
𝑡−1

and 𝐵(2)
𝑛
= ∑
𝑛

𝑡=1
𝑋
2

𝑡−1
. Then

lim
𝑛→∞

𝐵
(1)

𝑛

𝑛

=

𝛽
0

1 − 𝛽
1

, 𝑎.𝑠.,

lim
𝑛→∞

𝐵
(2)

𝑛

𝑛

=

𝛽
2

0

(1 − 𝛽
1
)
2
+

𝜎
2

1 − 𝛽
2

1

, 𝑎.𝑠.

(39)

Proof. From (1), one can easily calculate

𝑋
𝑡−1
=

𝛽
0
(1 − 𝛽

𝑡−1

1
)

1 − 𝛽
1

+ 𝛽
𝑡−1

1
𝑋
0
+

𝑡−1

∑

𝑖=1

𝛽
𝑡−1−𝑖

1
𝜖
𝑖
, 𝑡 ≥ 2. (40)

Consequently,

𝐵
(1)

𝑛

= 𝑋
0

𝑛

∑

𝑡=1

𝛽
𝑡−1

1
+ 𝛽
0

𝑛

∑

𝑡=2

1 − 𝛽
𝑡−1

1

1 − 𝛽
1

+ [𝜖
1
(1 + 𝛽

1
+ ⋅ ⋅ ⋅ + 𝛽

𝑛−2

1
)

+ 𝜖
2
(1 + 𝛽

1
+ ⋅ ⋅ ⋅ + 𝛽

𝑛−3

1
) + ⋅ ⋅ ⋅ + 𝜖

𝑛−1
] .

(41)

Now for any 𝑛 ≥ 𝑘 + 1,

E [𝜖2
𝑘
(1 + 𝛽

1
+ ⋅ ⋅ ⋅ + 𝛽

𝑛−𝑘−1

1
)

2

] ≤

𝜎
2

(1 − 𝛽
1
)
2
, (42)

so the bracket of (41) divided by 𝑛 converges a.e. to 0, thanks
to Theorem 5.4.1 of Chung [12]. Furthermore,

lim
𝑛→∞

𝑋
0
(1 + 𝛽

1
+ ⋅ ⋅ ⋅ + 𝛽

𝑛−1

1
)

𝑛

= 0, a.s.,

lim
𝑛→∞

𝛽
0

𝑛

𝑛

∑

𝑘=2

1 − 𝛽
𝑘−1

1

1 − 𝛽
1

=

𝛽
0

1 − 𝛽
1

.

(43)

The former equality of (39) is obtained.
As to the later one, 𝐵(2)

𝑛
can be written as

𝛽
2

0

𝑛

∑

𝑡=2

(

1 − 𝛽
𝑡−1

1

1 − 𝛽
1

)

2

+ 𝑋
2

0

𝑛

∑

𝑡=1

𝛽
2(𝑡−1)

1

+ 2𝑋
0
𝛽
0

𝑛

∑

𝑡=2

𝛽
𝑡−1

1

1 − 𝛽
𝑡−1

1

1 − 𝛽
1

+ 2𝑋
0

𝑛

∑

𝑡=2

𝛽
𝑡−1

1
(

𝑡−1

∑

𝑖=1

𝛽
𝑡−1−𝑖

1
𝜖
𝑖
)

+

𝑛

∑

𝑡=2

(

𝑡−1

∑

𝑖=1

𝛽
𝑡−1−𝑖

1
𝜖
𝑖
)

2

.

(44)

Note that |𝛽
1
| < 1, one can see that

lim
𝑛→∞

1

𝑛

𝛽
2

0

𝑛

∑

𝑡=2

(

1 − 𝛽
𝑡−1

1

1 − 𝛽
1

)

2

=

𝛽
2

0

(1 − 𝛽
1
)
2
,

lim
𝑛→∞

1

𝑛

[𝑋
2

0

𝑛

∑

𝑡=1

𝛽
2(𝑡−1)

1
+ 2𝑋
0
𝛽
0

𝑛

∑

𝑡=2

𝛽
𝑡−1

1

1 − 𝛽
𝑡−1

1

1 − 𝛽
1

]

= 0.

(45)

The next to last term of (44) equals 2𝑋
0
∑
𝑛−1

𝑖=1
𝜖
𝑖
∑
𝑛−1−𝑖

𝑗=0
𝛽
𝑖+2𝑗

1
,

which yields the fact that the mean is zero and variance is
bounded by constant times 𝑛. Thus

lim
𝑛→∞

2𝑋
0

𝑛

𝑛

∑

𝑡=2

𝛽
𝑡−1

1

𝑡−1

∑

𝑖=1

𝛽
𝑡−1−𝑖

1
𝜖
𝑖
= 0. (46)
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The last step is to prove

lim
𝑛→∞

1

𝑛

𝑛

∑

𝑡=2

(

𝑡−1

∑

𝑖=1

𝛽
𝑡−1−𝑖

1
𝜖
𝑖
)

2

=

𝜎
2

1 − 𝛽
2

1

, a.s. (47)

By a simple calculation, one has

𝑛

∑

𝑡=2

(

𝑡−1

∑

𝑖=1

𝛽
𝑡−1−𝑖

1
𝜖
𝑖
)

2

=

𝑛−1

∑

𝑡=1

𝜖
2

𝑡

𝑛−1−𝑡

∑

𝑖=0

𝛽
2𝑖

1

+ 2

𝑛−2

∑

𝑗=1

𝜖
𝑗

𝑛−1

∑

𝑖=𝑗+1

𝜖
𝑖

𝛽
𝑖−𝑗

1
(1 − 𝛽

2(𝑛−𝑖)

1
)

1 − 𝛽
2

1

.

(48)

Note that {𝜖
𝑡
}
𝑡≥1

is a sequence of i.i.d. random variables and

𝑛−1−𝑡

∑

𝑖=0

𝛽
2𝑖

1
=

1 − 𝛽
2(𝑛−𝑡)

1

1 − 𝛽
2

1

. (49)

By virtue of the strong law of large numbers on independent
random variables (see Chung [12]), one has

lim
𝑛→∞

1

𝑛

𝑛−1

∑

𝑡=1

𝜖
2

𝑡

𝑛−1−𝑡

∑

𝑖=0

𝛽
2𝑖

1
= lim
𝑛→∞

𝜎
2

𝑛

𝑛−1

∑

𝑡=1

𝑛−1−𝑡

∑

𝑖=0

𝛽
2𝑖

1

=

𝜎
2

1 − 𝛽
2

1

, a.s.

(50)

The mean of the third term in (48) is zero and the variance is
less than

4𝜎
4

𝑛−2

∑

𝑗=1

𝑛−1

∑

𝑖=𝑗+1

𝛽
2𝑖−2𝑗

1

(1 − 𝛽
2

1
)
2
≤

4𝑛𝜎
4
𝛽
2

1

(1 − 𝛽
2

1
)
3
, (51)

which yields

lim
𝑛→∞

2

𝑛

𝑛−2

∑

𝑗=1

𝜖
𝑗

𝑛−1

∑

𝑖=𝑗+1

𝜖
𝑖

𝛽
𝑖−𝑗

1
(1 − 𝛽

2(𝑛−𝑖)

1
)

1 − 𝛽
2

1

= 0, a.s. (52)

So the proof of the lemma is completed.

4. Proof of Theorem 1

The proof is divided into four steps as follows.

Step 1. Let

𝐴
𝑛
=

𝑛

∑

𝑡=1

𝜖
𝑡
𝑋
𝑡−1
. (53)

Then 𝐴
𝑛
can be calculated by

𝐴
𝑛
= 𝜖
1
𝑋
0
+

𝑛

∑

𝑡=2

𝜖
𝑡
𝛽
0
+

𝑛

∑

𝑡=2

𝜖
𝑡
𝜖
𝑡−1
+

𝑛

∑

𝑡=2

𝛽
1
𝜖
𝑡
𝑋
𝑡−2

= ⋅ ⋅ ⋅

=

𝑛−2

∑

𝑖=0

𝑛

∑

𝑡=𝑖+2

𝛽
𝑖

1
𝜖
𝑡
𝜖
𝑡−𝑖−1

+ 𝛽
0

𝑛−2

∑

𝑖=0

𝑛

∑

𝑡=𝑖+2

𝛽
𝑖

1
𝜖
𝑡
+ 𝑋
0

𝑛

∑

𝑡=1

𝛽
𝑡−1

1
𝜖
𝑡

:= 𝐴
∗

𝑛
+ 𝛽
0
𝐵
∗

𝑛
+ 𝑋
0

𝑛

∑

𝑡=1

𝛽
𝑡−1

1
𝜖
𝑡
.

(54)

It is easily seen that

lim sup
𝑛→∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋
0
∑
𝑛

𝑡=1
𝛽
𝑡−1

1
𝜖
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

√2𝑛 log log 𝑛
= 0, a.s. (55)

Now we come to prove

lim sup
𝑛→∞

𝐴
∗

𝑛

√2𝑛 log log 𝑛
=

𝜎
2

√1 − 𝛽
2

1

, a.s. (56)

Indeed, set a nature number 𝑝 and define

𝐴
𝑛,𝑝

=

{
{

{
{

{

𝐴
𝑛,𝑝
= 𝐴
∗

𝑛
, if 𝑝 > 𝑛 − 2,

𝑝

∑

𝑖=0

𝑛

∑

𝑡=𝑖+2

𝛽
𝑖

1
𝜖
𝑡
𝜖
𝑡−𝑖−1
, if 𝑝 ≤ 𝑛 − 2.

(57)

Note that 𝐴∗
𝑛
is a linear combination of terms 𝜖

𝑡
(𝑗)𝜖
𝑡−𝑠
(𝑡(𝑗))

and E[𝜖
𝑡
(𝑗)𝜖
𝑡−𝑠
(𝑡(𝑗))] = 0 for any 𝑠 < 𝑡; we easily obtain

E[𝐴∗
𝑛
− 𝐴
𝑛,𝑝
] = 0. Furthermore, from Lemma 7,

lim sup
𝑝→∞

lim sup
𝑛→∞

√

1

2𝑛 log log 𝑛
󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
∗

𝑛
− 𝐴
𝑛,𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
= 0, a.s. (58)

Next, we let

𝐶
∗

𝑡,𝑝
=

𝑛

∑

𝑡=𝑝+2

𝐶
𝑡,𝑝
=

𝑛

∑

𝑡=𝑝+2

𝑝

∑

𝑖=0

𝛽
𝑖

1
𝜖
𝑡
𝜖
𝑡−𝑖−1
. (59)

Then the limit distribution of 𝐶∗
𝑡,𝑝
/√2𝑛 log log 𝑛 is the same

as that of 𝐴
𝑛,𝑝
/√2𝑛 log log 𝑛. Further,

lim sup
𝑝→∞

lim sup
𝑛→∞

1

√2𝑛 log log 𝑛
󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
𝑛,𝑝
− 𝐶
∗

𝑡,𝑝

󵄨
󵄨
󵄨
󵄨
󵄨
= 0, a.s. (60)

From (58) and (60), combining Lemma 6, we get (56).

Step 2. We claim that

lim sup
𝑛→∞

󵄨
󵄨
󵄨
󵄨
𝐵
∗

𝑛
− (∑
𝑛

𝑡=1
𝑋
𝑡−1
) (∑
𝑛

𝑡=1
𝜖
𝑡
)
󵄨
󵄨
󵄨
󵄨

𝑛√2𝑛 log log 𝑛
= 0, a.s. (61)



Mathematical Problems in Engineering 7

Note that

𝐵
∗

𝑛
=

𝑛−2

∑

𝑖=0

𝑛

∑

𝑡=𝑖+2

𝛽
𝑖

1
𝜖
𝑡
=

𝑛

∑

𝑡=2

1 − 𝛽
𝑡−1

1

1 − 𝛽
1

𝜖
𝑡
, (62)

and lim
𝑛→∞

((∑
𝑛

𝑡=1
𝑋
𝑡−1
) /𝑛) = (𝛽

0
/ (1 − 𝛽

1
)); we have

lim sup
𝑛→∞

󵄨
󵄨
󵄨
󵄨
𝐵
∗

𝑛
− (∑
𝑛

𝑡=1
𝑋
𝑡−1
) (∑
𝑛

𝑡=1
𝜖
𝑡
)
󵄨
󵄨
󵄨
󵄨

𝑛√2𝑛 log log 𝑛

= lim sup
𝑛→∞

󵄨
󵄨
󵄨
󵄨
󵄨
∑
𝑛

𝑡=2
(𝛽
0
𝛽
𝑡−1

1
/ (1 − 𝛽

1
)) 𝜖
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

√2𝑛 log log 𝑛
.

(63)

Since {𝜖
𝑡
}
𝑡≥1

is a sequence of i.i.d. randomvariables, one easily
checks that the sequence {(𝛽

0
𝛽
𝑡−1

1
/(1 − 𝛽

1
))𝜖
𝑡
} satisfies the

conditions of Lemma 5. Thus, (61) is obtained.

Step 3. We claim that

lim sup
𝑛→∞

− (∑
𝑛

𝑡=1
𝑋
𝑡−1
) (∑
𝑛

𝑡=1
𝜖
𝑡
) + 𝑛∑

𝑛

𝑡=1
𝜖
𝑡
𝑋
𝑡−1

𝑛√2𝑛 log log 𝑛

=

𝜎
2

√1 − 𝛽
2

1

, a.s.,
(64)

lim sup
𝑛→∞

(∑
𝑛

𝑡=1
𝑋
2

𝑡−1
) (∑
𝑛

𝑡=1
𝜖
𝑡
) − (∑

𝑛

𝑡=1
𝑋
𝑡−1
) (∑
𝑛

𝑡=1
𝜖
𝑡
𝑋
𝑡−1
)

𝑛√2𝑛 log log 𝑛

= √

𝜎
6

(1 − 𝛽
2

1
)
2
+ (

𝛽
0

1 − 𝛽
1

)

2

⋅

𝜎
4

1 − 𝛽
2

1

, a.s.

(65)

By (54), (55), and (61), we easily get (64). By virtue of
Lemma 8, (65) is equivalent to

lim sup
𝑛→∞

(((

𝛽
2

0

(1 − 𝛽
1
)
2
+

𝜎
2

1 − 𝛽
2

1

)

⋅

𝑛

∑

𝑡=1

𝜖
𝑡
−

𝛽
0

1 − 𝛽
1

(

𝑛

∑

𝑡=1

𝜖
𝑡
𝑋
𝑡−1
))

⋅ (√2𝑛 log log 𝑛)
−1

)

= √

𝜎
6

(1 − 𝛽
2

1
)
2
+ (

𝛽
0

1 − 𝛽
1

)

2

⋅

𝜎
4

1 − 𝛽
2

1

, a.s.

(66)

From (63), we can see that

lim sup
𝑛→∞

󵄨
󵄨
󵄨
󵄨
󵄨
(𝛽
2

0
/ (1 − 𝛽

1
)
2

)∑
𝑛

𝑡=1
𝜖
𝑡
− (𝛽
2

0
/ (1 − 𝛽

1
))∑
𝑛−2

𝑖=0
∑
𝑛

𝑡=𝑖+2
𝛽
𝑖

1
𝜖
𝑡

󵄨
󵄨
󵄨
󵄨
󵄨

√2𝑛 log log 𝑛

= 0, a.s.
(67)

So from (58) and (60), (65) is also equivalent to

lim sup
𝑛→∞

∑
𝑛

𝑡=1
((𝜎
2
/ (1 − 𝛽

2

1
)) − (𝛽

0
/ (1 − 𝛽

1
))∑
𝑝+1

𝑖=1
𝛽
𝑖−1

1
𝜖
𝑡−𝑖
) 𝜖
𝑡

√2𝑛 log log 𝑛

= √

𝜎
6

(1 − 𝛽
2

1
)
2
+ (

𝛽
0

1 − 𝛽
1

)

2

⋅

𝜎
4

1 − 𝛽
2

1

, a.s.

(68)

Similarly to the proof of Lemma 6, (68) can be easily derived.

Step 4. Since

√

𝑛

2 log log 𝑛
(
̂
𝛽
(𝑛)

0
− 𝛽
0
)

=

(∑
𝑛

𝑡=1
𝑋
2

𝑡−1
) (∑
𝑛

𝑡=1
𝜖
𝑡
) − (∑

𝑛

𝑡=1
𝑋
𝑡−1
) (∑
𝑛

𝑡=1
𝜖
𝑡
𝑋
𝑡−1
)

𝑛√2𝑛 log log 𝑛

⋅ (

∑
𝑛

𝑡=1
𝑋
2

𝑡−1

𝑛

− (

∑
𝑛

𝑡=1
𝑋
𝑡−1

𝑛

)

2

)

−1

,

√

𝑛

2 log log 𝑛
(
̂
𝛽
(𝑛)

1
− 𝛽
1
)

=

− (∑
𝑛

𝑡=1
𝑋
𝑡−1
) (∑
𝑛

𝑡=1
𝜖
𝑡
) + 𝑛∑

𝑛

𝑡=1
𝜖
𝑡
𝑋
𝑡−1

𝑛√2𝑛 log log 𝑛

⋅ (

∑
𝑛

𝑡=1
𝑋
2

𝑡−1

𝑛

− (

∑
𝑛

𝑡=1
𝑋
𝑡−1

𝑛

)

2

)

−1

.

(69)

By Lemma 8, together with (64) and (65), we obtain (7). This
completes the proof of the theorem.
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