
Research Article
Adaptive Randomness: A New Population Initialization Method

Weifeng Pan,1 Kangshun Li,2 Muchou Wang,3 Jing Wang,4 and Bo Jiang1

1 School of Computer Science and Information Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
2 College of Information, South China Agricultural University, Guangzhou, Guangdong 510642, China
3Wenzhou University Library, Wenzhou University, Wenzhou, Zhejiang 325035, China
4 School of Software and Communication Engineering, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013, China

Correspondence should be addressed to Weifeng Pan; panweifeng1982@gmail.com

Received 2 August 2014; Accepted 15 October 2014; Published 13 November 2014

Academic Editor: Erik Cuevas

Copyright © 2014 Weifeng Pan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Population initialization is a crucial task in population-based optimization methods, which can affect the convergence speed and
also the quality of the final solutions. Generally, if no a priori information about the solutions is available, the initial population
is often selected randomly using random numbers. This paper presents a new initialization method by applying the concept of
adaptive randomness (AR) to distribute the individuals as spaced out as possible over the search space. To verify the performance
of AR, a comprehensive set of 34 benchmark functions with a wide range of dimensions is utilized. Conducted experiments
demonstrate that AR-based population initialization performs better than other population initialization methods such as random
population initialization, opposition-based population initialization, and generalized opposition-based population initialization in
the convergence speed and the quality of the final solutions. Further, the influences of the problem dimensionality, the new control
parameter, and the number of trial individuals are also investigated.

1. Introduction

Evolutionary algorithms (EAs) are population-based stochas-
tic optimization algorithms. For each optimization problem,
they maintain a set of candidate solutions to play the role
of individuals in a population, perform crossover and muta-
tion operations on this set to generate different solutions,
and use a fitness function to determine the environment
within which the solutions live. In the last decade, EAs
have been applied successfully to solve many real-world and
benchmark optimization problems. However, as population-
based algorithms, EAs such as the genetic algorithm (GA)
[1] and differential evolution (DE) [2, 3] all have common
drawbacks—long computational time and premature conver-
gence, especially when the solution space is hard to explore.

Since reducing computation time needed to reach opti-
mal solutions and improve the quality of the final solutions
would be beneficial, many efforts have been already done.
However, most of the work mainly focused on the introduc-
tion and improvement of selection mechanisms, crossover
and mutation operators, parameter adjustments, and some

other hybrid strategies. If no information about the solution
is available, the most commonly used method to generate
the initial population is random initialization. Little work
has been done on the population initialization, even though
it is a crucial task in EAs and can affect the convergence
speed and also the quality of the final solution. Maaranen
et al. [4] used quasirandom sequences to generate the initial
population for GAs. The experimental results showed that
their approach could improve the quality of the final solutions
but with no noteworthy improvement for convergence speed.
Rahnamayan et al. [5] proposed an opposition-based popula-
tion initializationmethod, which achieved a fast convergence
speed. Wang et al. [6] presented a population initialization
method based on space transformation search (in their
following work, such a method is renamed as generalized
opposition-based initialization [7]). Experimental results
showed that their approach when combined with other
strategies outperformed the traditional random initialization
and opposition-based initialization.

This paper proposes a new approach for population
initialization by employing the adaptive randomness (AR) to

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 975916, 14 pages
http://dx.doi.org/10.1155/2014/975916

2 Mathematical Problems in Engineering

improve the quality of the final solutions and also accelerate
the convergence speed. AR initialization is an enhanced
version of random initialization. It is simple and easy to
be implemented. The main idea of AR is to make use
of the difference between individuals to make them more
evenly spread over the entire search space and then a better
approximation for the current candidate solution is obtained.
Although this paper only embeds the AR for population
initialization of classical DE, the idea is general enough to
be applied to all other EAs. Experimental results on 34
well-known benchmark problems show that the proposed
approach performs better than the random initialization,
opposition-based initialization, and generalized opposition-
based initialization both in the quality of the final solutions
and the convergence speed.

The remainder of this paper is organized as follows:
in Section 2, the concept of AR is briefly explained. In
Section 3, the classical DE is briefly reviewed. In Section 4,
the proposed AR-based population initialization algorithm is
presented. Experimental results are given in Section 5 with
focus on the test functions used, parameter setting, results,
and results’ analysis. In Section 6, we conclude the work and
all benchmark functions are listed in the appendix.

2. Adaptive Randomness

Traditionally, EAs imitate natural evolution in a population.
The population is a set of candidate solutions to an optimiza-
tion problem, making us consider several solutions at the
same time. The population evolves from one generation to
another as the individuals are crossbred and mutated until
the predefined criteria are satisfied. If no a priori information
about the solution is available, the initial population is often
selected randomly using randomnumbers [4]. Obviously, the
computation time is directly related to the distance of the
random numbers from optimal solutions [5].

In practice, random numbers cannot be generated algo-
rithmically. The algorithmically generated numbers (usually
called pseudorandom numbers) only try to imitate random
numbers. However, it is usually more important that the
numbers are as evenly distributed as possible than that they
imitate random numbers [4], for they provide much more
information about the fitness function.This forms the basis of
our approach for population initialization, namely, adaptive
randomness (AR).

AR slightlymodifies the random initialization by control-
ling the individuals that can come into the initial population.
When adding a new individual to the initial population, AR
needs to make sure that the individual should not be too
close to any of the previous individuals already in the initial
population.

To achieve this, AR should maintain two sets of indi-
viduals, that is, partial initial population (PP) and set of
trial individuals (ST). Before concentrating on AR-based
population initialization, we define the two sets first.

Definition 1. Let 𝑃(ps) = {𝑋
1
, 𝑋
2
, . . . , 𝑋ps} be the initial

population of a specific optimization method, where ps is
the population size and 𝑋

𝑖
(𝑖 = 1, 2, . . . , ps) is the candidate

solution in a 𝐷-dimensional space. Then PP is defined by
PP ⊆ 𝑃.

Definition 2. ST(𝑘) = {𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑘
} is the set of 𝑘 trial

individuals such that ST ∩ PP = 0. Each trial individual
𝑌
𝑖
(𝑖 = 1, 2, . . . , 𝑘) is randomly chosen from the 𝐷-dimen-

sional search space and 𝑘 is the predefined number of trial
individuals.

Obviously trial individuals are those individuals that are
randomly generated from the search space but have not been
added into PP.

To distribute the individuals in PP as spaced out as
possible, when adding a new individual into PP, AR first
generates 𝑘 trial individuals to form ST and then the trial
individual that is farthest away from all individuals in PP is
selected to be added into PP. Such a process is repeated until
the number of individuals in PP reaches ps.

In AR the distance between every pair of individuals
𝑋
𝑖
(𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥
𝑖𝐷

) ∈ PP and 𝑌
𝑗
(𝑦
𝑗1

, 𝑦
𝑗2

, . . . , 𝑦
𝑗𝐷

) ∈ ST is
calculated by Euclidean distance as

𝑑 (𝑋
𝑖
, 𝑌
𝑗
) =

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖
, 𝑌
𝑗

󵄩󵄩󵄩󵄩󵄩
= √
𝐷

∑
𝑡=1

(𝑥
𝑖𝑡

− 𝑦
𝑗𝑡

)
2

. (1)

So when adding a new individual into PP the trial
individual 𝑌

𝑛
∈ ST will be chosen such that for all 𝑗 ∈

{1, 2, . . . , 𝑘},

min
1≤𝑖≤|PP|

𝑑 (𝑋
𝑖
, 𝑌
𝑛
) ≥ min
1≤𝑖≤|PP|

𝑑 (𝑋
𝑖
, 𝑌
𝑗
) , (2)

where |PP| counts the number of individuals in PP and min
returns the minimum value in a set of values. The rationale
for using (2) is to evenly distribute the individuals in initial
population by maximizing the minimum distance between
the trial individual selected and the individuals already in PP.

Figure 1 gives a simple example to show you how to select
the trial individual to update PP. Assume that PP already
has two individuals (i.e., 𝑋

1
and 𝑋

2
) and we generate ST

with two (suppose that 𝑘 = 2) trial individuals (i.e., 𝑌
1
and

𝑌
2
). According to (1), we can obtain 𝑑(𝑋

1
, 𝑌
1
) = 7.076722,

𝑑(𝑋
2
, 𝑌
1
) = 4.060788, 𝑑(𝑋

1
, 𝑌
2
) = 5.507268, and 𝑑(𝑋

2
, 𝑌
2
) =

3.2. So min({𝑑(𝑋
1
, 𝑌
1
), 𝑑(𝑋

2
, 𝑌
1
)}) = 𝑑(𝑋

2
, 𝑌
1
) = 4.060788

and min({𝑑(𝑋
1
, 𝑌
2
), 𝑑(𝑋

2
, 𝑌
2
)}) = 𝑑(𝑥

2
, 𝑌
2
) = 3.2. Since

𝑑(𝑋
2
, 𝑌
1
) > 𝑑(𝑋

2
, 𝑌
2
), the trial individual 𝑌

1
will be added

into PP.
Before introducing the AR-based population initializa-

tion algorithm, the classical DE is briefly reviewed in the
following section.

3. Brief Review of the Classical DE

DE, firstly proposed by Storn and Price in [2, 3], is a
population-based stochastic optimization algorithm and has
been successfully used in both benchmark test functions and
real-world applications. It is simple yet effective and robust. A
plethora of experimental studies show its better performance
than other EAs.

The proposed algorithm is also based on this DE scheme.
Let us assume that 𝑋

𝑖
(𝑡) (𝑖 = 1, 2, . . . , ps) is the 𝑖th individual

Mathematical Problems in Engineering 3

8

7

7

6

6

5

5

4

4

3

3
2

21

d(X2, Y1) = 4.060788

X2(3.1, 5.2)

d(X1, Y1) = 7.076722

X1(1.5, 2.5)

d(X1, Y2) = 5.507268

Y2(6.3, 5.2)

d(X2, Y2) = 3.2

Y1(6.3, 7.7)

Figure 1: Illustration of the selection of a trial individual into PP in
a two-dimensional space.

in population 𝑃(𝑡), where ps is the population size, 𝑡 is
the generation index, and 𝑃(𝑡) is the population in the 𝑖th
generation. The main idea of DE is to generate trial vectors.
Mutation and crossover are used to produce new trial vectors,
and selection determines which of the vectors will be success-
fully selected into the next generation.

For classical DE (DE/rand/1/bin), the mutation, cross-
over, and selection operators can be defined as follows.

Mutation. For each vector 𝑋
𝑖
(𝑡) in generation 𝑡, a mutant

vector 𝑉
𝑖
(𝑡 + 1) is defined by

𝑉
𝑖
(𝑡 + 1) = 𝑋

𝑖1
(𝑡) + 𝐹 (𝑋

𝑖2
(𝑡) − 𝑋

𝑖3
(𝑡))

𝑖 ̸= 𝑖
1

̸= 𝑖
2

̸= 𝑖
3
,

(3)

where 𝑖 = 1, 2, . . . , ps and 𝑖
1
, 𝑖
2
, and 𝑖

3
are randomly selected

integer indices from [1, ps]. Further, 𝑖 ̸= 𝑖
1

̸= 𝑖
2

̸= 𝑖
3
,

so the population size ps satisfies ps ≥ 4. 𝐹 ∈ [0, 2] is
a real number which determines the amplification of the
differential variation (𝑋

𝑖2
(𝑡)−𝑋

𝑖3
(𝑡)). Larger values of𝐹 result

in higher diversity in the generated population and lower
values in faster convergence.

Crossover. As many other EAs do, DE also takes a crossover
operation to increase the diversity of population and generate
the trial vectors. The trial vector can be defined as

𝑈
𝑖
(𝑡 + 1) = (𝑈

𝑖1
(𝑡 + 1) , 𝑈

𝑖2
(𝑡 + 1) , . . . , 𝑈

𝑖𝐷
(𝑡 + 1)) , (4)

where 𝐷 is the problem dimension. The classical DE uses the
DE/rand/1/bin scheme to generate the trial vector

𝑈
𝑖𝑗

(𝑡 + 1) = {
𝑉
𝑖𝑗

(𝑡 + 1) , if rand
𝑗

(0, 1) ≤ CR
𝑋
𝑖𝑗

(𝑡) , otherwise,
(5)

where CR ∈ [0, 1] is the predefined crossover probability,
rand
𝑗
(0, 1) is a random number within [0, 1] for the 𝑗th

dimension, and 𝑗 ∈ {1, 2, . . . , 𝐷} is a random parameter
index.

Selection. A greedy selection mechanism is used as

𝑋
𝑖
(𝑡 + 1) = {

𝑈
𝑖
(𝑡 + 1) , if 𝑓 (𝑈

𝑖
(𝑡 + 1)) ≤ 𝑓 (𝑋

𝑖
(𝑡))

𝑋
𝑖
(𝑡) , otherwise,

(6)

where 𝑓(⋅) is the fitness function. Without loss of generality,
this paper only considersminimization problems. If, and only
if, the trial vector 𝑈

𝑖
(𝑡 + 1) is better than 𝑋

𝑖
(𝑡) (i.e., 𝑓(𝑈

𝑖
(𝑡 +

1)) ≤ 𝑓(𝑋
𝑖
(𝑡))),𝑋

𝑖
(𝑡+1) is set to𝑈

𝑖
(𝑡+1); otherwise, the𝑋

𝑖
(𝑡+

1) remains unchanged; that is, 𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡). Hence the

population either gets better or remains the samewith respect
to the fitness function but never deteriorates.

Though there are many variants of DE [2, 3], to maintain
a general comparison, this paper only uses the classical DE in
the conducted experiments to demonstrate the improvement
of the convergence speed and the quality of the final solutions
by using AR-based population initialization.

4. The Proposed AR-Based Population
Initialization Algorithm

For a specific optimization problem, when lacking a priori
information about the solutions, the initial population is
usually created using random numbers. AR makes full use
of the distance information during the process of population
initialization. By applying the AR strategy, we can distribute
the individuals as spaced out as possible and obtain a
better approximation for the current candidate solutions. So
instead of using a pure random initialization, we propose the
following AR-based population initialization algorithm (see
Algorithm 1).

As is shown in Algorithm 1, PP is initially empty and
the first individual of PP is randomly chosen from the
search space. During population initialization, PP will be
incrementally updated with the individuals selected from ST
until the number of individuals in PP reaches the population
size ps.

The flowcharts of DE with random population initializa-
tion, opposition-based population initialization, generalized
opposition-based population initialization, and AR-based
population initialization are shown in Figure 2.

AR-based population initialization will be embedded in
the classical DE in Section 5 to show its effectiveness in the
improvement of the convergence speed and the quality of the
final solutions.

5. Empirical Study

To investigate the effectiveness of the proposed AR-based
population initialization algorithm in the improvement of
convergence speed and the final solution, we embedded it in
the classical DE and conducted controlled experiments. Our
experiments were carried out on a PC at 2.3 GHz with 2GB
of RAM.

In the following subsections, we provide details on the
test functions of our study (Section 5.1), parameter settings

4 Mathematical Problems in Engineering

Random population

Calculating generalized
opposite population

Selecting ps fittest
individuals from the set

DE

Random population

DE

Random population

Calculating opposite

Selecting ps fittest
individuals from the set

DE

AR-based population

DE

(a) (b) (c) (d)

population OP(ps) GOP(ps)

initialization P(ps) initialization P(ps) initialization P(ps) initialization P(ps)

{P(ps), OP(ps)} {P(ps), GOP(ps)}

Figure 2: DE with (a) random population initialization, (b) opposition-based population initialization, (c) generalized opposition-based
population initialization, and (d) AR-based population initialization.

(1) Set PP = 0, ST = 0, pps = 0

(2) Randomly generate an individual 𝑋 from a 𝐷-dimensional search space
(3) PP = PP ∪ {𝑋}

(4) pps++
(5) while pps ≤ ps do
(6) Randomly initialize ST = {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑘
} with 𝑘 trial individuals

(7) Select the trial individual 𝑌
𝑛
such that for all 𝑗 ∈ {1, 2, . . . , 𝑘}:

min
1≤𝑖≤|PP|

𝑑(𝑋
𝑖
, 𝑌
𝑛
) ≥ min
1≤𝑖≤|PP|

𝑑(𝑋
𝑖
, 𝑌
𝑗
)

(8) PP = PP ∪ {𝑌
𝑛
}

(9) pps++
(10) Set ST = 0

(11) end while
(12) return Set the final PP as the initial population P

Algorithm 1: AR-based population initialization algorithm.

(Section 5.2), and our experiment results and analysis (Sec-
tion 5.3).

5.1. Test Functions. In order to compare the convergence
speed and the quality of the final solutions of DE with
random population initialization (DEr), DE with opposition-
based population initialization (DEo), DE with generalized
opposition-based population initialization (DEgo), and DE
with AR-based population initialization (DEar), a compre-
hensive test set with 34 numerical benchmark functions is
employed. The test set includes well-known unimodal as
well as highly multimodal minimization problems [8, 9]. The
definition, the range of search space, and also the global
optimum(s) for each function are given in the appendix.
The dimensionality of these problems varies from 2 to 100,
covering a wide range of problem complexity.

5.2. Parameter Settings. For all the conducted experiments,
the parameters of the classical DE, namely, population size

(ps), differential amplification factor (𝐹), crossover probabil-
ity constant (CR), and maximum number of function calls
(MAXNFC), if no a change is mentioned, are fixed to 100,
0.5, 0.9, and 106, respectively. Such a setting follows the
suggestions given in the literature (e.g., [10–12]). And the
parameter 𝑘 of ST in AR-based population initialization is set
to 3 unless a change is mentioned.

5.3. Results and Analysis. The experiments are categorized
as follows. In Section 5.3.1, DEr, DEo, DEgo, and DEar are
compared in terms of convergence speed and robustness. In
Section 5.3.2, DEr, DEo, DEgo, and DEar are compared in
terms of the quality of the final solution. In Section 5.3.3,
the effect of problem dimensionality is investigated. In
Section 5.3.4, the effect of parameter 𝑘 is studied. All the
experiments are conducted 1,000 timeswith different random
seeds, and the average results throughout the optimization
runs are recorded. It should be noted that, in the experiments,
we find that for a small value of conducted times, the values
of evaluation times and the final solutions are not stable.

Mathematical Problems in Engineering 5

5.3.1. Comparison of DEr, DEo, DEgo, and DEar in Terms of
Convergence Speed and Robustness. By the suggestions in the
literature (e.g., [5, 6, 9]), we compare the convergence speed
of DEr, DEo, DEgo, and DEar by measuring the number of
function calls (NFC). For each optimization problem, NFC
is recorded when a specific algorithm reduces the best value
to a value smaller than the value-to-reach (VTR) before
meeting MAXNFC. In order to minimize the effect of the
stochastic nature of the algorithms, all the reported NFCs are
averaged over 1,000 independent trials. Obviously, a smaller
NFCmeans a higher convergence speed. In order to compare
the convergence speed between two specific algorithms, we
introduce another metric, acceleration rate (ARE), which is
defined as

ARE =
NFCalgA

NFCalgB
, (7)

where NFCalgA and NFCalgB are the NFCs for the two
algorithms algA and algB (algA and algB are all chosen from
{DEr,DEo,DEgo,DEar}). So ARE > 1 means that algB is
faster.TheVTR is set to 10−6 for all benchmark functions.The
same setting has been used in the literature (e.g., [13, 14]).

We also compare the robustness of DEr, DEo, DEgo, and
DEar by measuring the success rate (SR) [13]. In the current
work, a successful running means that a specific algorithm
successfully reaches the VTR for each test function in the
allowed MAXNFC. So SR can be calculated as

SR =
number of times reached VTR

total number of trials
. (8)

SR is a commonly used metric to characterize the robust-
ness of a specific algorithm; that is, a larger SRmeans that the
algorithm is more robust.

Further the average NFC (NFCavg), the average SR
(SRavg), and the average ARE (AREavg) over the 𝑛 test func-
tions are calculated as

NFCavg =
1

𝑛

𝑛

∑
𝑖=1

NFC
𝑖
,

AREavg =
1

𝑛

𝑛

∑
𝑖=1

ARE
𝑖
,

SRavg =
1

𝑛

𝑛

∑
𝑖=1

SR
𝑖
.

(9)

Table 1 summarizes the numerical results when solving
the 34 benchmark functions shown in the appendix.The best
result of NFC for each function is highlighted in boldface and
NFCavg, SRavg, and AREavg are shown in the last row. Since
comparing the algorithms with different SR values seems
meaningless, the reported average values are calculated only
on the functions where all the algorithms have the same
success rate.

As seen, DEar outperforms DEr on 22 test functions
(about 64.7% of the problems). Though DEr is faster than
DEar on 4 functions (i.e., 𝑓

6
, 𝑓
16
, 𝑓
26
, and 𝑓

31
), its SR is worse.

Except for 𝑓
6
, the rest 3 functions are functions with a low

dimensionality (𝐷 ≤ 10). DEar outperforms DEo on 22 test
functions (about 64.7%of the problems), whileDEo surpasses
DEar only on 4 functions (i.e., 𝑓

6
, 𝑓
18
, 𝑓
26
, and 𝑓

29
). Though

DEo is faster than DEar on 𝑓
6
and 𝑓

26
, its SR is worse. DEar

outperforms DEgo on 24 test functions (about 70.6% of the
problems), while DEgo surpasses DEar only on 𝑓

4
and 𝑓

6
.

Though DEgo is faster than DEar on 𝑓
6
, its SR is worse. All

the algorithms fail to solve 6 functions (i.e., 𝑓
19
, 𝑓
21
, 𝑓
22
, 𝑓
23
,

𝑓
24
, and 𝑓

25
). On 𝑓

15
and 𝑓

30
, only DEar can solve them with

a very small ARE while the other three algorithms all fail.
TheAREavg betweenDEr andDEar is 1.0116, whichmeans that
DEar is on average 1.16% faster than DEr. Similarly, DEar is on
average 1.52% faster than DEr and DEar is on average 1.38%
faster than DEgo.

So we can conclude that DEar shows better convergence
speed than the other 3 algorithms with the same parameter
settings and fixing the 𝑘 for the DEar (𝑘 = 3). Some
sample bar charts for the performance comparison of the 4
algorithms are given in Figure 3.

5.3.2. Comparison of DEr, DEo, DEgo, and DEar in Terms
of the Quality of Final Solutions. In this section, DEar is
comparedwithDEr,DEo, andDEgo with respect to the quality
of the final solutions. All the experiments were conducted
1,000 times, and the mean function error value and standard
deviation of the results are recorded. The results of the 4DE
algorithms on the 34 test problems are presented in Tables 2
and 3, where “Mean” indicates the mean function error value
and “Std. Dev.” stands for the standard deviation. The best
results among the 4DE algorithms are shown in boldface.

From the results, it can be seen that DEar achieves
better results than DEr, DEo, and DEgo on 24 test functions
(about 70.5% of the test functions). DEar achieves the same
performance as the DEgo on function 𝑓

26
, and they are both

much better than the other algorithms on this problem. For
the rest of the 9 functions, all the algorithms achieve the same
results.

To compare the performance of multiple algorithms on
the test suite, the average ranking of the Friedman test is
conducted by the suggestions considered in [7, 15]. Table 4
shows the average ranking of the 4 DE algorithms on
functions 𝑓

1
–𝑓
34
. These algorithms can be sorted by average

ranking into the following order: DEar, DEr, DEgo, and DEo.
It means that DEar and DEo are the best and worst ones
among the four algorithms, respectively. So as seen, although
opposition-based population initialization can accelerate the
convergence speed on some test problems, when compared
with DEr, it cannot improve the quality of the final solutions.
So if we want to obtain a high quality solution, opposition-
based population initialization cannot be used alone.

To investigate the significant differences between the
behavior of two algorithms, we conduct four tests, that is,
Nemenyi’s, Holm’s, Shaffer’s, and Bergmann-Hommel’s [7,
15]. For each test, we calculate the adjusted 𝑃 values on
pairwise comparisons of all algorithms. Table 5 shows the
results of adjusted 𝑃 values. Under the null hypothesis,
the two algorithms are equivalent. If the null hypothesis is
rejected, then the performances of these two algorithms are

6 Mathematical Problems in Engineering

Ta
bl
e
1:
C
om

pa
ris

on
of

co
nv
er
ge
nc
e
sp
ee
d
(N

FC
)a

nd
su
cc
es
sr

at
e
(S
R)

fo
rD

E
w
ith

ra
nd

om
po

pu
lat
io
n
in
iti
al
iz
at
io
n
(D

E r
),
w
ith

op
po

sit
io
n-
ba
se
d
po

pu
lat
io
n
in
iti
al
iz
at
io
n
(D

E o
),
w
ith

ge
ne
ra
liz
ed

op
po

sit
io
n-
ba
se
d
po

pu
lat
io
n
in
iti
al
iz
at
io
n
(D

E g
o)
,a
nd

w
ith

A
R-
ba
se
d
po

pu
lat
io
n
in
iti
al
iz
at
io
n
(D

E a
r).

𝐹
𝐷

D
E r

D
E o

D
E g

o
D
E a

r
A
RE

N
FC

SR
N
FC

SR
N
FC

SR
N
FC

SR
N
FC

D
E r

/N
FC

D
E a

r
N
FC

D
E o

/N
FC

D
E a

r
N
FC

D
E g

o
/N

FC
D
E a

r

𝑓
1

30
49
72
5

1
49
67
0

1
49
51
0

1
49

50
5

1
1.0

04
4

1.0
03
3

1.0
00
1

𝑓
2

30
55
65
0

1
55
73
5

1
55
62
0

1
55
53
0

1
1.0

02
2

1.0
03
7

1.0
01
6

𝑓
3

20
12
16
66

1
12
04

82
1

12
11
36

1
12
03
14

1
1.0

112
1.0

01
4

1.0
06

8
𝑓
4

30
32
76
70

1
32
71
85

1
32
45

00
1

32
65
30

1
1.0

03
5

1.0
02
0

0.
99
38

𝑓
5

10
23
05
25

0.
95

25
45
45

0.
95

23
71
75

0.
95

22
79
35

0.
95

1.0
114

1.1
16
7

1.0
40

5
𝑓
6

30
63
89
5

0.
98

62
49
0

0.
96

62
14
8

0.
96

64
72
5

1
0.
98
72

0.
96
55

0.
96
02

𝑓
7

30
117

51
1

116
45

1
116

98
1

11
62

1
1

1.0
11
2

1.0
02
1

1.0
06

6
𝑓
8

30
97
62
4

1
97
81
6

1
97
43
7

1
97
41
1

1
1.0

02
2

1.0
04

2
1.0

00
3

𝑓
9

2
31
80

1
31
50

1
31
93

1
31
37

1
1.0

13
7

1.0
04
1

1.0
17
9

𝑓
1
0

4
13
27
2

1
13
47
0

1
13
54
4

1
13
25
5

1
1.0

01
3

1.0
16
2

1.0
21
8

𝑓
1
1

2
15
25
0

1
15
48
8

1
15
38
0

1
15
22

0
1

1.0
02
0

1.0
17
6

1.0
10
5

𝑓
1
2

2
43
25

1
44

75
1

44
10

1
42

15
1

1.0
26
1

1.0
57
4

1.0
46
3

𝑓
1
3

30
81
64

1
81
57

1
81
53

1
81
29

1
1.0

04
3

1.0
03
4

1.0
03
0

𝑓
1
4

2
26
81

1
27
05

1
27
16

1
26

78
1

1.0
01
1

1.0
10
1

1.0
14
2

𝑓
1
5

4
—

0
—

0
—

0
15
41

0.
01

—
—

—
𝑓
1
6

10
33
03
2

0.
24

53
65
2

0.
36

50
06

0
0.
32

49
76
0

0.
36

0.
66
38

1.0
78
2

1.0
06

0
𝑓
1
7

30
25
01
84

1
25
08
48

1
25
14
08

1
24

97
12

1
1.0

01
9

1.0
04
5

1.0
06

8
𝑓
1
8

30
10
22
36

1
10
12
68

1
10
20
68

1
10
13
44

1
1.0

08
8

0.
99
93

1.0
07
1

𝑓
1
9

30
—

0
—

0
—

0
—

0
—

—
—

𝑓
2
0

30
22
48
5

1
22
37
0

1
22
40
2

1
22
33
1

1
1.0

06
9

1.0
01
7

1.0
03
2

𝑓
2
1

30
—

0
—

0
—

0
—

0
—

—
—

𝑓
2
2

4
—

0
—

0
—

0
—

0
—

—
—

𝑓
2
3

4
—

0
—

0
—

0
—

0
—

—
—

𝑓
2
4

4
—

0
—

0
—

0
—

0
—

—
—

𝑓
2
5

4
—

0
—

0
—

0
—

0
—

—
—

𝑓
2
6

2
79
80

0.
97

79
23

0.
96

81
36

0.
98

80
61

0.
98

0.
99
00

0.
98
29

1.0
09
3

𝑓
2
7

2
85
6

1
85
9

1
83
9

1
80

1
1

1.0
68
7

1.0
72
4

1.0
47
4

𝑓
2
8

30
17
24
87

1
17
24
89

1
17
72
57

1
17
15
43

1
1.0

05
5

1.0
05
5

1.0
33
3

𝑓
2
9

2
49
52

1
47

81
1

49
24

1
48
45

1
1.0

22
1

0.
98
68

1.0
16
3

𝑓
3
0

5
—

0
21

0.
02

—
0

—
0

—
—

—
𝑓
3
1

5
28

39
6

0.
99

29
20
4

1
28
97
4

1
28
90
3

1
0.
98
25

1.0
10
4

1.0
02
5

𝑓
3
2

2
15
67

1
15
58

1
15
64

1
15
49

1
1.0

11
6

1.0
05
8

1.0
09
7

𝑓
3
3

2
63
86

1
63
05

1
63
09

1
62

30
1

1.0
25
0

1.0
12
0

1.0
12
7

𝑓
3
4

2
41
10

1
40

83
1

40
86

1
40

69
1

1.0
10
1

1.0
03
4

1.0
04

2
Av

er
ag
ev

al
ue
s

—
68
48
8

0.
99
77
27

69
50
4

0.
99
77
27

68
87
9

0.
99
77
27

68
08

7
0.
99
77
27

1.0
116

1.0
15
2

1.0
13
8

No
te
.Th

er
ep
or
te
d
av
er
ag
ev

al
ue
s(
th
el
as
tr
ow

)a
re

ca
lc
ul
at
ed

on
ly
on

th
ef
un

ct
io
ns

w
he
re

al
lt
he

al
go
rit
hm

sh
av
et
he

sa
m
es

uc
ce
ss
ra
te
(i.
e.,

al
lS
Rs

=
1a

nd
on

eS
R
=
0.
95
).

Mathematical Problems in Engineering 7

Table 2: Comparison among the 4 DE algorithms on test problems 𝑓
1
–𝑓
22
, where “Mean” indicates the mean function error value and “Std.

Dev.” stands for the standard deviation. The best results among the four algorithms are shown in boldface.

𝐷 DEr DEo DEgo DEar

𝑓
1

30 Mean 8.81228𝑒 − 009 8.81301𝑒 − 009 8.79674𝑒 − 009 8.77417e − 009
Std. Dev. 1.10323𝑒 − 009 8.84418𝑒 − 010 1.08043𝑒 − 009 8.7124𝑒 − 010

𝑓
2

30 Mean 9.04527𝑒 − 009 9.10281𝑒 − 009 9.06893𝑒 − 009 8.92437e − 009
Std. Dev. 7.96893𝑒 − 010 6.70026𝑒 − 010 7.70684𝑒 − 010 7.79631𝑒 − 010

𝑓
3

20 Mean 9.34818𝑒 − 009 9.39706𝑒 − 009 9.38949𝑒 − 009 9.33293e − 009
Std. Dev. 5.33216𝑒 − 010 4.83679𝑒 − 010 5.58047𝑒 − 010 5.48986𝑒 − 010

𝑓
4

30 Mean 9.26684𝑒 − 009 9.32035𝑒 − 009 9.3298𝑒 − 009 9.11962e − 009
Std. Dev. 7.17271𝑒 − 010 6.50894𝑒 − 010 5.82968𝑒 − 010 7.65305𝑒 − 010

𝑓
5

10 Mean 0.049748 0.049748 0.049748 0.049748
Std. Dev. 0.22248 0.22248 0.22248 0.22248

𝑓
6

30 Mean 0.000172542 0.00029585 0.000320462 8.80458e − 009
Std. Dev. 0.00122635 0.00146403 0.00159228 1.20596𝑒 − 009

𝑓
7

30 Mean 6.24585𝑒 − 009 6.62518𝑒 − 009 6.86516𝑒 − 009 6.20522e − 009
Std. Dev. 2.32947𝑒 − 009 2.28414𝑒 − 009 2.42006𝑒 − 009 2.35472𝑒 − 009

𝑓
8

30 Mean 9.3102𝑒 − 009 9.33032𝑒 − 009 9.2814𝑒 − 009 9.25572e − 009
Std. Dev. 4.90595𝑒 − 010 5.23764𝑒 − 010 6.79597𝑒 − 010 5.84208𝑒 − 010

𝑓
9

2 Mean 4.46327𝑒 − 009 4.39462𝑒 − 009 4.67599𝑒 − 009 4.31941e − 009
Std. Dev. 2.95843𝑒 − 009 3.02071𝑒 − 009 2.72012𝑒 − 009 2.98226𝑒 − 009

𝑓
10

4 Mean 6.27386𝑒 − 009 6.25378𝑒 − 009 6.40042𝑒 − 009 5.92566e − 009
Std. Dev. 2.57066𝑒 − 009 2.69058𝑒 − 009 2.27469𝑒 − 009 2.58577𝑒 − 009

𝑓
11

2 Mean 4.72646𝑒 − 009 4.63412𝑒 − 009 4.47891𝑒 − 009 3.90594e − 009
Std. Dev. 3.03952𝑒 − 009 2.74639𝑒 − 009 3.01052𝑒 − 009 2.94237𝑒 − 009

𝑓
12

2 Mean 4.65101𝑒 − 008 4.65101𝑒 − 008 4.65101𝑒 − 008 4.65101𝑒 − 008
Std. Dev. 0 0 0 0

𝑓
13

30 Mean 0 0 0 0
Std. Dev. 0 0 0 0

𝑓
14

2 Mean 5.04676𝑒 − 009 4.58853𝑒 − 009 4.67473𝑒 − 009 4.51194e − 009
Std. Dev. 2.87757𝑒 − 009 3.1021𝑒 − 009 2.83989𝑒 − 009 2.96938𝑒 − 009

𝑓
15

4 Mean 0.00967981 0.0121192 0.0154611 0.0047311
Std. Dev. 0.0461986 0.048523 0.0506461 0.0142838

𝑓
16

10 Mean 0.0320855 0.0287587 0.0247149 0.0239915
Std. Dev. 0.023079 0.0368454 0.0268588 0.0306438

𝑓
17

30 Mean 9.16118𝑒 − 009 9.11199𝑒 − 009 9.30319𝑒 − 009 9.10653e − 009
Std. Dev. 8.92376𝑒 − 010 8.15186𝑒 − 010 7.58129𝑒 − 010 8.8449𝑒 − 010

𝑓
18

30 Mean 9.34244𝑒 − 009 9.38564𝑒 − 009 9.42362𝑒 − 009 9.22727e − 009
Std. Dev. 5.34739𝑒 − 010 4.09769𝑒 − 010 4.70872𝑒 − 010 7.64185𝑒 − 010

𝑓
19

30 Mean 1.73273 2.07072 1.40319 1.38389
Std. Dev. 1.11967 2.26245 1.01423 1.17433

𝑓
20

30 Mean 0 0 0 0
Std. Dev. 0 0 0 0

𝑓
21

30 Mean 0.000697643 0.000727313 0.000740714 0.000656965
Std. Dev. 0.00020979 0.000291491 0.000261093 0.0001786

𝑓
22

4 Mean 0.00405371 0.00405371 0.00405371 0.00405371
Std. Dev. 8.89894𝑒 − 019 8.44228𝑒 − 019 8.89894𝑒 − 019 8.44228𝑒 − 019

8 Mathematical Problems in Engineering

Table 3: Comparison among the 4 DE algorithms on test problems 𝑓
23
–𝑓
34
, where “Mean” indicates the mean function error value and “Std.

Dev.” stands for the standard deviation. The best results among the four algorithms are shown in boldface.

𝐷 DEr DEo DEgo DEar

𝑓
23

4 Mean 10.1876 10.1876 10.1876 10.1876
Std. Dev. 5.46751𝑒 − 015 5.46751𝑒 − 015 5.31347𝑒 − 015 5.31347𝑒 − 015

𝑓
24

4 Mean 10.4503 10.4503 10.4503 10.4503
Std. Dev. 1.8225𝑒 − 015 1.8225𝑒 − 015 1.8225𝑒 − 015 1.8225𝑒 − 015

𝑓
25

4 Mean 10.6103 10.6103 10.6103 10.6103
Std. Dev. 1.8225𝑒 − 015 1.8225𝑒 − 015 1.8225𝑒 − 015 1.8225𝑒 − 015

𝑓
26

2 Mean 0.03 0.04 0.02 0.02
Std. Dev 0.171447 0.196946 0.140705 0.140705

𝑓
27

2 Mean 2.72741𝑒 − 009 2.94925𝑒 − 009 2.78605𝑒 − 009 2.63247e − 009
Std. Dev. 2.76876𝑒 − 009 2.8458𝑒 − 009 2.79248𝑒 − 009 2.76724𝑒 − 009

𝑓
28

30 Mean 9.28689𝑒 − 009 9.28566𝑒 − 009 9.28304𝑒 − 009 9.27877e − 009
Std. Dev. 6.31616𝑒 − 010 5.9591𝑒 − 010 6.40915𝑒 − 010 6.07695𝑒 − 010

𝑓
29

2 Mean 4.63641𝑒 − 009 4.15234𝑒 − 009 4.89748𝑒 − 009 3.94368e − 009
Std. Dev. 3.24716𝑒 − 009 3.01035𝑒 − 009 2.81979𝑒 − 009 2.7603𝑒 − 009

𝑓
30

5 Mean 0.0452575 0.0437805 0.043716 0.0430663
Std. Dev. 0.0220521 0.0262655 0.0233605 0.0220867

𝑓
31

5 Mean 0.00523817 6.93483𝑒 − 009 7.14794𝑒 − 009 6.31104e − 009
Std. Dev. 0.0523817 2.25948𝑒 − 009 2.13661𝑒 − 009 2.19293𝑒 − 009

𝑓
32

2 Mean 0 0 0 0
Std. Dev. 0 0 0 0

𝑓
33

2 Mean 4.70104𝑒 − 009 4.89609𝑒 − 009 4.7038𝑒 − 009 4.44655e − 009
Std. Dev. 2.89836𝑒 − 009 2.82738𝑒 − 009 3.08112𝑒 − 009 2.68808𝑒 − 009

𝑓
34

2 Mean 4.75055𝑒 − 009 4.73653𝑒 − 009 4.52236𝑒 − 009 4.23427e − 009
Std. Dev. 2.96249𝑒 − 009 3.10385𝑒 − 009 3.18058𝑒 − 009 2.89249𝑒 − 009

Table 4: Average ranking of the 4 DE algorithms.

Algorithm Ranking
DEar 3.5588235294117663
DEr 2.205882352941176
DEgo 2.1470588235294117
DEo 2.0882352941176463

significantly different. In this paper, we only discuss whether
the hypotheses is rejected at the 0.05 level of significance. As
we can see, all the four tests reject hypotheses 1–3.

Besides the above four tests, we also conduct Wilcoxon’s
test to recognize significant differences between the behavior
of two algorithms [7, 15]. Table 6 shows the 𝑃 values of
applying Wilcoxon’s test among DEar and the other three DE
algorithms.The 𝑃 values below 0.05 (the significant level) are
shown in boldface. From the results, it can be seen that DEar
is significantly better than DEr, DEo, and DEgo.

5.3.3. Scalability Test: Effect of Problem Dimensionality. The
performance ofmost EAs (includingDE) deteriorates quickly
with the growth of the dimensionality of the problem. The
main reason is that, in general, the complexity of the problem
(search space) increases exponentially with its dimension.
Here, we show a scalable test of DEar for 𝐷/2, 𝐷, and 2𝐷

for each scalable function in our test set. Table 7 summarizes
the comparison results of the four DE algorithms for 𝐷/2,
𝐷, and 2𝐷. From the results, it can be seen that DEar is
not always affected by the growth of dimensionality. For 𝑓

1
,

𝑓
2
, 𝑓
3
, 𝑓
7
, 𝑓
8
, 𝑓
17
, 𝑓
18
, 𝑓
21
, and 𝑓

28
, DEar achieves similar

performance when the dimension increases from 𝐷/2 to 2𝐷.
Theperformance ofDEar deteriorates quicklywith the growth
of dimension for five functions (𝑓

4
, 𝑓
5
, 𝑓
6
, 𝑓
19
, and 𝑓

20
). For

the remaining one function (𝑓
13
), the growth of dimension

does not affect the performance of DEar.

5.3.4. Effect of Different 𝑘 Settings. In DEar, a new control
parameter 𝑘 (the number of trial individuals) is added to DE’s
parameters (ps, 𝐹, and CR). Since 𝑘 denotes the number of
trial individuals, 𝑘 should be a positive integer. And when
𝑘 = 1, DEar is equal to DEr. So in our study we restrict 𝑘 to
the positive integers within the range of [2, ps]. Asmentioned
above, 𝑘 was fixed to 3 in all experiments. Such a value was
set without any effort to find an optimal value. However the
performance of DEar may be influenced by different settings
of 𝑘 values.

We investigate the correlation between 𝑘 and the quality
of the final solutions using the Spearman correlation [16]. We
repeat the conducted experiments in Section 5.3.3 for 𝑘 ∈

[10, 100] (since ps = 100) with step size of 10 (i.e., 1,000 trials
per function per 𝑘 ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}).

Mathematical Problems in Engineering 9

Table 5: Adjusted 𝑃 values.

𝑖 Hypothesis Unadjusted 𝑃 𝑃Neme 𝑃Holm

1 DEo versus DEar 2.6442139326214958𝑒 − 6 1.5865283595728974𝑒 − 5 1.5865283595728974𝑒 − 5
2 DEgo versus DEar 6.519075482494892𝑒 − 6 3.9114452894969356𝑒 − 5 3.2595377412474464𝑒 − 5
3 DEr versus DEar 1.5536056185614817𝑒 − 5 9.32163371136889𝑒 − 5 6.214422474245927𝑒 − 5
4 DEr versus DEo 0.7071142312899601 4.24268538773976 2.12134269386988
5 DEo versus DEgo 0.8509806870320539 5.1058841221923235 2.12134269386988
6 DEr versus DEgo 0.8509806870320561 5.105884122192337 2.12134269386988
𝑖 Hypothesis 𝑃Shaf 𝑃Berg

1 DEo versus DEar 1.5865283595728974𝑒 − 5 1.5865283595728974𝑒 − 5
2 DEgo versus DEar 1.9557226447484678𝑒 − 5 1.9557226447484678𝑒 − 5
3 DEr versus DEar 4.660816855684445𝑒 − 5 3.1072112371229634𝑒 − 5
4 DEr versus DEo 2.12134269386988 2.12134269386988
5 DEo versus DEgo 2.12134269386988 2.12134269386988
6 DEr versus DEgo 2.12134269386988 2.12134269386988

Table 6: Wilcoxon test between DEar and the other three DE
algorithms on functions 𝑓

1
–𝑓
34
. The 𝑃 values below 0.05 are shown

in boldface.

DEar versus 𝑃 values
DEr 0.000012
DEgo 0.000018
DEo 0.000012

For the limitation of space, we do not show all the results of
the final solutions; only the final solutions obtained on𝑓

2
and

𝑓
3
are shown in Table 8 for illustration. But almost a similar

behavior has been observed for all functions that the quality
of the final solution is better than that of DEr, DEo, and DEgo
when 𝑘 > 1.

Table 9 shows the Spearman correlation test results
between 𝑘 and the final solutions obtained on each test
function. As seen, there is not a significant correlation
between 𝑘 and the quality of the final solutions. It means
that 𝑘, like other control parameters of DE, has a problem-
oriented value. Since the larger the 𝑘 value is, the more
time to initialize the population is required, especially when
the dimensionality of the problem is also large. Our limited
experiments suggest to use a small value of 𝑘.

6. Conclusions

This paper employs the concept of adaptive randomness
(AR) for population initialization. The main idea of AR is
to make use of the difference between individuals to make
them more evenly spread over the search space and then
a better approximation for the current candidate solution
is obtained. In order to investigate the performance of the
AR-based population initialization, the classical DE has been
utilized. By embedding AR within DE, DEar was proposed.
Experiments are conducted on 34 benchmark functions. The
experimental results can be summarized as follows.

(i) DEar is compared with other DE algorithms such
as DE with random initialization (DEr), DE with

opposition-based learning (DEo), andDEwith gener-
alized opposition-based learning (DEgo) with respect
to the convergence speed and robustness. The results
demonstrate that DEar performs better than the other
three DE algorithms at least on 64.7% of the test
functions. Although the other three DE algorithms
outperform DEar on some functions, their success
rates are always worse.

(ii) DEar is further compared with DEr, DEo, and DEgo
with respect to the quality of the final solutions. The
results show that DEar performs better than the other
three DE algorithms on the majority (about 70.5%)
of test functions. And on the rest of functions, DEar
obtains no worse results than the results of the other
three DE algorithms. Statistical comparisons also
show that DEar is the best of the four DE algorithms.

(iii) A scalability test of DEar over 15 test functions with
different problem dimensions (𝐷/2, 𝐷, and 2𝐷) are
conducted. The 15 functions are scalable and chosen
from the 34 test functions.The results show that DEar
is not always affected by the growth of dimensionality.
For 9 functions, DEar achieves similar performance
when the dimension increases from 𝐷/2 to 2𝐷. For
5 functions, the performance of DEar deteriorates
quickly with the growth of dimension while for the
remaining 1 function, the growth of dimension does
not affect the performance of DEar.

(iv) The influence of 𝑘 (number of trial individuals) was
studied by investigating the Spearman correlation
between 𝑘 and the quality of the final solutions. The
results obtained on the 34 test functions show that
there is not a significant correlation between 𝑘 and
the quality of the final solutions. But the quality of the
final solution is better than that of the other three DE
algorithms when 𝑘 > 1.

The main motivation of the current work was the intro-
duction of the concept of adaptive randomness for population
initialization.Although this paper only embeds theARwithin

10 Mathematical Problems in Engineering

Table 7: Mean function error values of DEar for 𝐷/2, 𝐷, and 2𝐷 for each scalable function in our test set.

𝐹
DEar 𝐹

DEar

𝐷/2 𝐷 2𝐷 𝐷/2 𝐷 2𝐷

𝑓
1

8.22347𝑒 − 009 8.77417𝑒 − 009 9.09346𝑒 − 009 𝑓
13

0 0 0
𝑓
2

8.27444𝑒 − 009 8.92437𝑒 − 009 9.25353𝑒 − 009 𝑓
17

8.20248𝑒 − 009 9.10653𝑒 − 009 7.33223𝑒 − 006
𝑓
3

8.33435𝑒 − 009 9.33293𝑒 − 009 9.3625𝑒 − 009 𝑓
18

9.14822𝑒 − 009 9.22727𝑒 − 009 9.65751𝑒 − 009
𝑓
4

8.30962𝑒 − 009 9.11962𝑒 − 009 1.50496 𝑓
19

9.05241𝑒 − 009 1.38389 11.5557
𝑓
5

7.0724𝑒 − 009 0.049748 2.53715 𝑓
20

0 0 0.35
𝑓
6

8.04869𝑒 − 009 8.80458𝑒 − 009 0.000369811 𝑓
21

0.000222243 0.000656965 0.00434487
𝑓
7

5.81354𝑒 − 009 6.20522𝑒 − 009 6.63678𝑒 − 009 𝑓
28

8.92662𝑒 − 009 9.27877𝑒 − 009 9.54968𝑒 − 009
𝑓
8

9.00816𝑒 − 009 9.25572𝑒 − 009 9.64823𝑒 − 009
Note. The values of𝐷 for each test function are shown as those in Table 1.

Table 8: Final solutions obtained on 𝑓
2
and 𝑓

3
on interval [10, 100] of 𝑘 with step size of 10.

𝑘 = 10 𝑘 = 20 𝑘 = 30 𝑘 = 40 𝑘 = 50
𝑓
2

8.78572𝑒 − 009 8.85414𝑒 − 009 8.77919𝑒 − 009 8.7689𝑒 − 009 8.79035𝑒 − 009
𝑓
3

8.67476𝑒 − 009 8.8475𝑒 − 009 8.83617𝑒 − 009 8.85011𝑒 − 009 8.79553𝑒 − 009
𝑘 = 60 𝑘 = 70 𝑘 = 80 𝑘 = 90 𝑘 = 100

𝑓
2

8.83882𝑒 − 009 8.64561𝑒 − 009 8.75898𝑒 − 009 8.73418𝑒 − 009 8.8088𝑒 − 009
𝑓
3

8.74038𝑒 − 009 8.8981𝑒 − 009 8.81404𝑒 − 009 8.76988𝑒 − 009 8.80807𝑒 − 009

classical DE, the idea is general enough to be applied to all
other population-basedmethods (e.g., GA and PSO). Further
since AR is new, studies are still required to investigate its
benefits, weaknesses, and limitations. The current work can
be considered as a first step in applying AR.

Appendix

List of Benchmark Functions

The 34 test functions we employed are given below. All the
functions used in this paper are to be minimized.

(1) Sphere Model. Consider

𝑓
1

(𝑋) =

𝑛

∑
𝑖=1

𝑥
2

𝑖
, (A.1)

where 𝑥
𝑖

∈ [−5.12, 5.12] and the global optimum is 0 at (0,

0, . . . , 0). 𝑓
1
is a unimodal, scalable, convex, and easy func-

tion.

(2) Axis Parallel Hyperellipsoid. Consider

𝑓
2

(𝑋) =

𝑛

∑
𝑖=1

𝑖𝑥
2

𝑖
, (A.2)

where 𝑥
𝑖

∈ [−5.12, 5.12] and the global optimum is 0 at (0,

0, . . . , 0). 𝑓
2
is a unimodal, scalable, convex, and easy func-

tion.

(3) Schwefel’s Problem 1.2. Consider

𝑓
3

(𝑋) =

𝑛

∑
𝑖=1

(

𝑖

∑
𝑗=1

𝑥
𝑗
)

2

, (A.3)

where 𝑥
𝑖

∈ [−65, 65] and the global optimum is 0 at
(0, 0, . . . , 0). 𝑓

3
is a unimodal and scalable function.

(4) Rosenbrock’s Valley. Consider

𝑓
4

(𝑋) =

𝑛−1

∑
𝑖=1

[100 (𝑥
𝑖+1

− 𝑥
2

𝑖
)
2

+ (1 − 𝑥
𝑖
)
2

] , (A.4)

where 𝑥
𝑖

∈ [−2, 2] and the global optimum is 0 at (1, 1, . . . , 1).
𝑓
4
is a nonconvex unimodal function. Its optimum is inside a

long, narrow, parabolic shaped flat valley.

(5) Rastrigin’s Function. Consider

𝑓
5

(𝑋) = 10𝑛 +

𝑛

∑
𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
)) , (A.5)

where 𝑥
𝑖

∈ [−5.12, 5.12] and the global optimum is 0 at
(0, 0, . . . , 0). 𝑓

5
is highly mutimodel.

(6) Griewangk’s Function. Consider

𝑓
6

(𝑋) =

𝑛

∑
𝑖=1

𝑥2
𝑖

4000
−

𝑛

∏
𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1, (A.6)

where 𝑥
𝑖

∈ [−600, 600] and the global optimum is 0 at
(0, 0, . . . , 0).

(7) Sum of Different Powers. Consider

𝑓
7

(𝑋) =

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨
(𝑖+1)

, (A.7)

Mathematical Problems in Engineering 11

Table 9: Spearman’s correlation test results between 𝑘 and the final solutions on all the test functions.

SC SC SC SC SC SC
𝑓
1

−0.399 𝑓
7

0.394 𝑓
13

0.068 𝑓
19

−0.261 𝑓
25

−0.327 𝑓
31

−0.304
𝑓
2

−0.333 𝑓
8

0.576 𝑓
14

−0.124 𝑓
20

0.287 𝑓
26

−0.108 𝑓
32

0.196
𝑓
3

−0.018 𝑓
9

−0.321 𝑓
15

−0.120 𝑓
21

0.168 𝑓
27

−0.282 𝑓
33

0.292
𝑓
4

0.624 𝑓
10

−0.394 𝑓
16

0.317 𝑓
22

0.127 𝑓
28

−0.267 𝑓
34

−0.174
𝑓
5

−0.065 𝑓
11

−0.333 𝑓
17

0.258 𝑓
23

−0.157 𝑓
29

0.260
𝑓
6

0.060 𝑓
14

−0.245 𝑓
18

0.197 𝑓
24

−0.388 𝑓
30

−0.142
Note. SC denotes the correlation coefficient of the Spearman correlation test.

60

50

40

30

20

10

0
10 20 30 40 50

×103Number of function calls

f
1
(x
)

DEr
DEo

DEgo
DEar

(a) 𝑓1

×103Number of function calls

0.025

0.020

0.015

0.010

0.005

0.000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f
7
(x
)

DEr
DEo

DEgo
DEar

(b) 𝑓7

×103Number of function calls

300

250

200

150

100

50

0
1 2 3 4 5 6 7 8 9 10 11

f
15
(x
)

DEr
DEo

DEgo
DEar

(c) 𝑓13

×103Number of function calls

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

f
3
6
(x
)

1 2 3 4 5 6 7 8 9

DEr
DEo

DEgo
DEar

(d) 𝑓33

Figure 3: Some sample bar charts for the performance comparison of the 4DE algorithms. The values are calculated at every 1,000 function
calls.

12 Mathematical Problems in Engineering

where 𝑥
𝑖

∈ [−1, 1] and the global optimum is 0 at (0, 0, . . . , 0).
𝑓
7
is a unimodal and scalable function.

(8) Ackley’s Problem. Consider

𝑓
8

(𝑋) = −20 exp(−0.2√ ∑
𝑛

𝑖=1
𝑥2
𝑖

𝑛
)

− exp(
∑
𝑛

𝑖=1
cos (2𝜋𝑥

𝑖
)

𝑛
) + 20 + 𝑒,

(A.8)

where 𝑥
𝑖

∈ [−32, 32] and the global optimum is 0 at (0, 0,

. . . , 0).

(9) Beale’s Function. Consider

𝑓
9

(𝑋) = [1.5 − 𝑥
1

(1 − 𝑥
2
)]
2

+ [2.25 − 𝑥
1

(1 − 𝑥
2

2
)]
2

+ [2.625 − 𝑥
1

(1 − 𝑥
3

2
)]
2

,

(A.9)

where 𝑥
𝑖

∈ [−4.5, 4.5] and the global optimum is 0 at (3, 0.5).

(10) Colville’s Function. Consider

𝑓
10

(𝑋) = 100 (𝑥
2

− 𝑥
2

1
)
2

+ (1 − 𝑥
1
)
2

+ 90 (𝑥
4

− 𝑥
2

3
)
2

+ (1 − 𝑥
3
)
2

+ 10.1 ((𝑥
2

− 1)
2

+ (𝑥
4

− 1)
2

)

+ 19.8 (𝑥
2

− 1) (𝑥
4

− 1) ,

(A.10)

where𝑥
𝑖

∈ [−10, 10] and the global optimum is 0 at (1, 1, 1, 1).

(11) Easom’s Function. Consider

𝑓
11

(𝑋) = − cos (𝑥
1
) cos (𝑥

2
) exp (− (𝑥

1
− 𝜋)
2

− (𝑥
2

− 𝜋)
2

) ,

(A.11)

where 𝑥
𝑖

∈ [−100, 100] and the global optimum is 0 at (𝜋, 𝜋).
𝑓
11
is unimodal and its global minimum lays in a narrow area

relative to the search space.

(12) Six-Hump Camel Back Function. Consider

𝑓
12

(𝑋) = 4𝑥
2

1
− 2.1𝑥

4

1
+

1

3
𝑥
6

1
+ 𝑥
1
𝑥
2

− 4𝑥
2

2

+ 4𝑥
4

2
+ 1.0316285,

(A.12)

where 𝑥
𝑖

∈ [−5, 5] and the global optimum is 0 at
(0.0898, −0.7126) and (−0.0898, 0.7126). 𝑓

12
has six local

minima, two of them are global.

(13) Levy’s Function. Consider

𝑓
13

(𝑋) = sin2 (3𝜋𝑥
1
) +

𝑛−1

∑
𝑖=1

(𝑥
𝑖

− 1)
2

(1 + sin2 (3𝜋𝑥
𝑖+1

))

+ (𝑥
𝑛

− 1) (1 + sin2 (2𝜋𝑥
𝑛
)) ,

(A.13)

where 𝑥
𝑖

∈ [−10, 10] and the global optimum is 0 at (1, 1,

. . . , 1). 𝑓
13
has about 15𝑛 local minima.

(14) Matyas Function. Consider

𝑓
14

(𝑋) = 0.26 (𝑥
2

1
+ 𝑥
2

2
) − 0.48𝑥

1
𝑥
2
, (A.14)

where 𝑥
𝑖

∈ [−10, 10] and the global optimum is 0 at (0, 0). 𝑓
14

is unimodal.

(15) Perm Function. Consider

𝑓
15

(𝑋) =

𝑛

∑
𝑘=1

[

𝑛

∑
𝑖=1

(𝑖
𝑘

+ 0.5) ((
1

𝑖
𝑥
𝑖
)
𝑘

− 1)]

2

, (A.15)

where 𝑥
𝑖

∈ [−𝑛, 𝑛] and the global optimum is 0 at (1, 2, 3,

. . . , 𝑛). 𝑓
15
is unimodal.

(16) Michalewicz’s Function. Consider

𝑓
16

(𝑋) = −

𝑛

∑
𝑖=1

sin (𝑥
𝑖
) (sin(

𝑖𝑥2
𝑖

𝜋
))

2𝑚

+ 9.66015, (A.16)

where 𝑥
𝑖

∈ [0, 𝜋], 𝑚 = 10, 𝑛 = 10, and the global optimum is
0.

(17) Zakharov’s Function. Consider

𝑓
17

(𝑋) =

𝑛

∑
𝑖=1

𝑥
2

𝑖
+ (

𝑛

∑
𝑖=1

0.5𝑖𝑥
𝑖
)

2

+ (

𝑛

∑
𝑖=1

0.5𝑖𝑥
𝑖
)

4

, (A.17)

where 𝑥
𝑖

∈ [−5, 10] and the global optimum is 0 at
(0, 0, . . . , 0). 𝑓

17
is unimodal.

(18) Schwefel’s Problem 2.22. Consider

𝑓
18

(𝑋) =

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 +

𝑛

∏
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 , (A.18)

where 𝑥
𝑖

∈ [−10, 10] and the global optimum is 0 at (0, 0,

. . . , 0). 𝑓
18
is unimodal.

(19) Schwefel’s Problem 2.21. Consider

𝑓
19

(𝑋) = max {
󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨 , 1 ≤ 𝑖 ≤ 𝑛} , (A.19)

where 𝑥
𝑖

∈ [−100, 100] and the global optimum is 0 at (0, 0,

. . . , 0). 𝑓
19
is unimodal.

(20) Step Function. Consider

𝑓
20

(𝑋) =

𝑛

∑
𝑖=1

(⌊𝑥
𝑖

+ 0.5⌋)
2

, (A.20)

where 𝑥
𝑖

∈ [−100, 100] and the global optimum is 0 when
𝑥
𝑖

∈ [−0.5, 0.5].

(21) Noisy Quartic Function. Consider

𝑓
21

(𝑋) =

𝑛

∑
𝑖=1

𝑖𝑥
4

𝑖
+ random [0, 1) , (A.21)

Mathematical Problems in Engineering 13

where 𝑥
𝑖

∈ [−1.28, 1.28] and the global optimum is 0 at (0,

0, . . . , 0).

(22) Kowalik’s Function. Consider

𝑓
22

(𝑋) =

11

∑
𝑖=1

[𝑎
𝑖

−
𝑥
1

(𝑏2
𝑖

+ 𝑏
𝑖
𝑥
2
)

𝑏2
𝑖

+ 𝑏
𝑖
𝑥
3

+ 𝑥
4

]

2

, (A.22)

where 𝑥
𝑖

∈ [−5, 5], 𝛼 = [0.1957, 0.1947, 0.1735, 0.1600, 0.0844,
0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246], 𝑏−1 = [0.25,

0.5, 1, 2, 4, 6, 8, 10, 12, 14, 16], and the global optimum is
0.0003075 at (0.19, 0.19, 0.12, 0.14). 𝑓

22
is multimodal.

(23) Shekel 5 Problem. Consider

𝑓
23

(𝑋) = −

5

∑
𝑖=1

1

∑
4

𝑗=1
(𝑥
𝑗

− 𝑎
𝑖𝑗

)
2

+ 𝑐
𝑖

+ 10.1499, (A.23)

where

𝑥
𝑗

∈ [0, 10] ,

𝑐
𝑖

= [0.1, 0.2, 0.2, 0.4, 0.4] ,

𝑎
𝑖𝑗

=

[
[
[
[
[

[

4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

]
]
]
]
]

]

,

(A.24)

and the global optimum is 0 at (4, 4, 4, 4).

(24) Shekel 7 Problem. Consider

𝑓
24

(𝑋) = −

7

∑
𝑖=1

1

∑
4

𝑗=1
(𝑥
𝑗

− 𝑎
𝑖𝑗

)
2

+ 𝑐
𝑖

+ 10.3999, (A.25)

where

𝑥
𝑖

∈ [0, 10] ,

𝑐
𝑖

= [0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3] ,

𝑎
𝑖𝑗

=

[
[
[
[
[
[
[
[
[

[

4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3

]
]
]
]
]
]
]
]
]

]

,

(A.26)

and the global optimum is 0 at (4, 4, 4, 4).

(25) Shekel 10 Problem. Consider

𝑓
25

(𝑋) = −

10

∑
𝑖=1

1

∑
4

𝑗=1
(𝑥
𝑗

− 𝑎
𝑖𝑗

)
2

+ 𝑐
𝑖

+ 10.5319, (A.27)

where

𝑥
𝑖

∈ [0, 10] ,

𝑐
𝑖

= [0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3, 0.7, 0.5, 0.5] ,

𝑎
𝑖𝑗

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3

8 1 8 1

6 2 6 2

7 3.6 7 3.6

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(A.28)

and the global optimum is 0 at (4, 4, 4, 4).

(26) Tripod Function. Consider

𝑓
26

(𝑋) = 𝑝 (𝑥
2
) (1 + 𝑝 (𝑥

1
))

+
󵄨󵄨󵄨󵄨(𝑥
1

+ 50𝑝 (𝑥
2
) (1 − 2𝑝 (𝑥

1
)))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝑥
2

+ 50 (1 − 2𝑝 (𝑥
2
)))

󵄨󵄨󵄨󵄨 ,

(A.29)

where 𝑥
𝑖

∈ [−100, 100], 𝑝(𝑥) = 1 for 𝑥 ≤ 0; otherwise 𝑝(𝑥) =

0, and the global optimum is 0 at (0, −50).

(27) 4th De Jong. Consider

𝑓
27

(𝑋) =

𝑛

∑
𝑖=1

𝑖𝑥
4

𝑖
, (A.30)

where 𝑥
𝑖

∈ [−1.28, 1.28] and the global optimum is 0 at (0,

0, . . . , 0).

(28) Alpine Function. Consider

𝑓
28

(𝑋) =

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖 sin (𝑥
𝑖
) + 0.1𝑥

𝑖

󵄨󵄨󵄨󵄨 , (A.31)

where 𝑥
𝑖

∈ [−10, 10] and the global optimum is 0 at (0, 0,

. . . , 0). 𝑓
28
is multimodal and not symmetrical.

(29) Schaffer’s Function 6. Consider

𝑓
29

(𝑋) = 0.5 +
sin2√(𝑥2

1
+ 𝑥2
2
) − 0.5

1 + 0.01 (𝑥2
1

+ 𝑥2
2
)
2

, (A.32)

where 𝑥
𝑖

∈ [−10, 10] and the global optimum is 0 at (0, 0). 𝑓
29

is multimodal.

(30) Pathological Function. Consider

𝑓
30

(𝑋) =

𝑛−1

∑
𝑖=1

(0.5 +
sin2√(100𝑥2

𝑖
+ 𝑥2
𝑖+1

) − 0.5

1 + 0.001 (𝑥2
𝑖

− 2𝑥
𝑖
𝑥
𝑖+1

+ 𝑥2
𝑖+1

)
2

) ,

(A.33)

14 Mathematical Problems in Engineering

where 𝑥
𝑖

∈ [−100, 100] and the global optimum is 0 at (0,

0, . . . , 0). 𝑓
30
is multimodal and extremely complex.

(31) Inverted Cosine Wave Function. Consider

𝑓
31

(𝑋) = −

𝑛−1

∑
𝑖=1

(exp(
− (𝑥2
𝑖

+ 𝑥2
𝑖+1

+ 0.5𝑥
𝑖
𝑥
𝑖+1

)

8
)

× cos(4√𝑥2
𝑖

+ 𝑥2
𝑖+1

+ 0.5𝑥
𝑖
𝑥
𝑖+1

)) + 𝑛 − 1,

(A.34)

where 𝑥
𝑖

∈ [−5, 5] and the global optimum is 1 − 𝑛 at (0, 0,

. . . , 0). 𝑓
31
is multimodal.

(32) Aluffi-Pentini’s Problem. Consider

𝑓
32

(𝑋) = 0.25𝑥
4

1
− 0.5𝑥

2

1
+ 0.1𝑥

1
+ 0.5𝑥

2

2
+ 0.3523, (A.35)

where 𝑥
𝑖

∈ [−10, 10] and the global optimum is 0 at (−1.0465,

0).

(33) Becker and Lago Problem. Consider

𝑓
33

(𝑋) = (
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 − 5)
2

+ (
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨 − 5)
2

, (A.36)

where 𝑥
𝑖

∈ [−10, 10] and the global optimum is 0 at (±5, ±5).

(34) Bohachevsky 1 Problem. Consider

𝑓
34

(𝑋) = 𝑥
2

1
+ 2𝑥
2

2
− 0.3 cos (3𝜋𝑥

1
) 0.4 cos (4𝜋𝑥

2
) + 0.3,

(A.37)

where 𝑥
𝑖

∈ [−50, 50] and the global optimum is 0 at (0, 0).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (nos. 61202048 and 61202200), the
Commonwealth Project of Science and Technology Depart-
ment of Zhejiang Province (no. 2014C23008), the Zhe-
jiang Provincial Nature Science Foundation of China (no.
LY13F020010), and the Open Foundation of State Key Labo-
ratory of Software Engineering ofWuhanUniversity of China
(no. SKLSE-2012-09-21).

References

[1] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence, MIT Press, Cambridge, UK, 1992.

[2] R. Storn and K. Price, “Differential evolution: a simple and effi-
cient heuristic for global optimization over continuous spaces,”
Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[3] K. Price, R. Storn, and J. Lampinen, Differential Evolution—
A Practical Approach to Global Optimization, Springer, Berlin,
Germany, 2005.

[4] H.Maaranen, K.Miettinen, andM.M.Mäkelä, “Quasi-random
initial population for genetic algorithms,” Computers & Mathe-
matics with Applications, vol. 47, no. 12, pp. 1885–1895, 2004.

[5] S. Rahnamayan, H. R. Tizhoosh, andM.M. A. Salama, “A novel
population initialization method for accelerating evolutionary
algorithms,” Computers & Mathematics with Applications, vol.
53, no. 10, pp. 1605–1614, 2007.

[6] H. Wang, Z. Wu, Y. Liu, J. Wang, D. Jiang, and L. Chen,
“Space transformation search: a new evolutionary technique,”
in Proceedings of the 1st ACM/SIGEVO Summit on Genetic and
Evolutionary Computation (GEC ’09), pp. 537–544, Shanghai,
China, June 2009.

[7] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-
based differential evolution for solving high-dimensional con-
tinuous optimization problems,” Soft Computing, vol. 15, no. 11,
pp. 2127–2140, 2011.

[8] G. C. Onwubolu and B. V. Babu, New Optimiza tion Techniques
in Engineering, Springer, Berlin, Germany, 2004.

[9] J. Andre, P. Siarry, and T. Dognon, “An improvement of the
standard genetic algorithm fighting premature convergence in
continuous optimization,” Advances in Engineering Software,
vol. 32, no. 1, pp. 49–60, 2001.

[10] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.

[11] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made
faster,” IEEE Transactions on Evolutionary Computation, vol. 3,
no. 2, pp. 82–102, 1999.

[12] C.-Y. Lee and X. Yao, “Evolutionary programming using muta-
tions based on the Levy probability distribution,” IEEE Transac-
tions on Evolutionary Computation, vol. 8, no. 1, pp. 1–13, 2004.

[13] R. S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama,
“Opposition-based differential evolution,” IEEETransactions on
Evolutionary Computation, vol. 12, no. 1, pp. 64–79, 2008.

[14] P. N. Suganthan, N. Hansen, J. J. Liang et al., “Problem defi-
nitions and evaluation criteria for the CEC 2005 special session
on real-parameter optimization,” Tech. Rep. 2005005, Nanyang
Tech. Univ., Singapore and KanGAL, Kanpur Genetic Algo-
rithms Lab., IIT, Kanpur, India, May 2005.

[15] S. Garcia, A. Fernandez, J. Luengo, and F. Herrera, “Advanced
nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining:
experimental analysis of power,” Information Sciences, vol. 180,
no. 10, pp. 2044–2064, 2010.

[16] C. R. Kothari, Research Methodology: Methods and Techniques,
New Age International, New Delhi, India, 2007.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

