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Recently, Liu et al. (2011) studied the stability of a class of neutral stochastic delay differential equations with Poisson jumps
(NSDDEwWP]Js) by fixed points theory. To the best of our knowledge to date, there are not any numerical methods that have been
established for NSDDEwPJs yet. In this paper, we will develop the Euler-Maruyama method for NSDDEwPJs, and the main aim is
to prove the convergence of the numerical method. It is proved that the proposed method is convergent with strong order 1/2 under
the local Lipschitz condition. Finally, some numerical examples are simulated to verify the results obtained from theory.

1. Introduction

Neutral stochastic delay differential equations (NSDDEs)
have recently been studied intensively by, for instance, Kol-
manovskii et al. [1, 2], Mao et al. [3-6], Luo et al. [7],
Zhou and Hu [8], and Luo [9]. However, explicit solutions
can hardly be obtained for NSDDEs; as a result, several
numerical schemes have been developed to produce approx-
imate solutions for NSDDEs. For example, Wu and Mao
[10] studied the numerical solutions of NSDDEs. Zhang
and Gan [11] considered the mean square convergence of
one-step methods for NSDDEs. Zhou and Wu [12] studied
the convergence of numerical solutions to neutral stochas-
tic delay differential equations with Markovian switching.
Poisson jumps are becoming increasingly used to model
real-world phenomena in different fields such as economics,
finance, biology, and physics. There is an extensive literature
concerned with Poisson jumps. For example, Wang et al.
(13, 14] studied the semi-implicit Euler method for stochastic
differential delay equation with jumps (SDDEw]Js) and the
convergence of numerical solutions to stochastic differential
delay equations with Poisson jump and Markovian switching
(SDDEwWPJMSs). Li et al. [15, 16] discussed the convergence
of the numerical solutions for SDDEw]s and SDDEwPJMSs.
Luo [17] considered the comparison principle and stability

of SDDEwWPJMSs. Therefore it is natural and necessary to
incorporate jumps in the neutral stochastic delay differential
equations. However, the study of neutral stochastic delay
differential equations with Poisson jumps is less by far.
Cen and Zhou [18] investigated convergence of numerical
solutions to neutral stochastic delay differential equation
with Poisson jump and Markovian switching. Liu et al
[19] studied the stability of NSDDEwP]s by using fixed
points theory. Luo and Taniguchi [20] proved the existence
and uniqueness for non-lipschitz stochastic neutral delay
evolution equations driven by Poisson jumps. However, there
are not any numerical methods that have been established for
NSDDEwP]s yet. Therefore, in this paper, we first prove the
Euler-Maruyama method applied to NSDDEwP]s converges
to the true solution under local Lipschitz condition.

The outline of the paper is as follows. In Section 2 we
will introduce some necessary notations and assumptions,
and then the Euler-Maruyama method is used to define the
numerical solutions for NSDDEwPJs. Section 3 will present
several useful lemmas. In Section 4, we state our main result;
that is, the numerical solutions will converge to the true
solutions of NSDDEwP]s under the local Lipschitz condition.
At last, some numerical examples are given to verify the
results obtained from the theory.



2. Preliminaries and the
Euler-Maruyama Approximation

Let (Q, #, P) be a complete probability space with filtration
{F,}i=0» which satisfies the usual conditions, that is, the
filtration is continuous on the right and %, contains all P-
null sets. Let C([a,b]; R") denote the family of functions ¢
from [a,b] to R" that are right-continuous and have limits
on the left; C([a,b]; R") is equipped with the norm [|§| =
SUp,<;p|¢(#)], where | - | is the Euclidean norm in R", that
is, |x| = VaTx (x € R").If A is a vector or matrix, its trace
norm is denoted by |A| = +/trace(AT A), while its operator
norm is denoted by [|All = sup{|Ax| : |x| = 1}.Let p > 0
denote by L‘ZJO([—T, 0]; R") the family of all %, measurable,

C([a, b]; R")-valued random variables & such that E||€||” < co.
For simplicity, we also denote by a A b = min{a, b} that
aV b = max{a, b}.

In this paper, we consider the n-dimensional neutral
stochastic delay differential equations with Poisson jumps

dx@)-G(x(t-1))]
=fx@),x(t-1)dt+g(x@),x(t—-1)dW (t)

1

+h(x(t),x(-1))dN (1), o

x () =§(),

te[0,T],

t €[-1,0],

where 7 is a positive fixed delay, and &(¢) € Lpgo([—‘r, 0]; R™),
W(t) is a d-dimensional standard Wiener process which
is #,-adapted, and N(t) is a scalar Poisson process with
intensity A. Assume that W(t) and N(¢) are independent of
F o- Moreover the functionsG : R” — R”, f: R"xR" — R”,
g:R"XR" - R™ h:R"xR" - R".

The stochastic integral is defined in the It6 sense, and the
integral version of (1) is frequently expressed as

x(t)-G(x(t-1))
S E(0)-G(x(-D) + jofoc(s),x(s—r))ds
¢ (2)
+ Lg(x(s),x(s—f))dW(s)

+Jth(x(s),x(s—‘r))dN($)-
0

We can now define the Euler-Maruyama approximate
solution for NSDDEwP]s.

Given a step-size A € (0,1) which satisfies A = 7/m
for an integer m, let t, = kA for k > 0. Compute the
discrete approximation y, = x(t;) by setting y, = x(t,) and
performing

Yir1 — G (yk+1—m)
= % =G (Vo) + [ (Vo Vo) A (3)

+ 9 (V> Yeem) AWi + B (Vi Vo) AN
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if t, < 0, we have y, = &(t;). Moreover, the increments
AW, := W(t;,;) — W(t;) are independent Gaussian random
variables with mean 0 and variance A; AN, := N(t;,;)—-N(t;)
are independent Poisson distributed random variables with
mean AA and variance AA.

Let y(t) = y, ¥t = T) = Yy t € [t try), With
initial values y(¢) = &(¢) on [-7,0]. The continuous Euler-
Maruyama approximate solution y(t) is to be interpreted as
the stochastic integral

y(s),y(s—1))ds

(G(7(t-1)+£(0)-G(E(-1)
+

y) =9 +
+

(5),7(s=1)dN(t), tel0,T],
t €[-1,0].

(4)

J,
j99(~(s),y(5_1))dwm
J o

L£(D),

Itis not difficult to see that y(t,) = y(t,) = y; thatis, y(t)
and ¥(t) coincide with the discrete solution at the grid points.
In this paper, the following hypotheses are imposed on

(1).
(H1) The Local Lipschitz Condition. There is a positive con-

stant C; such that, for all x;, x,, y;, ¥, € R" with |x;| V |x,| V
|y1| \% |}’2| <d,

|f Geo ) = £ (o 3| Vg (e 1) = 9 (32 )|
v |k (xl,yl)—h(xz,y2)|2 (5)
<Cy (|x1 - x2|2 + |y - )’zlz)-
(H2) The Constractive Mapping. There is a positive constant
K € (0, 1) such that, for all x, y € R"
IG(x)-G(y)| <Kl|x-y|. (6)

(H3) The Linear Growth Condition. There isa L > 0 such that
forall x,y € R"

[f ) +19 (e ) + 1 (e ) < L(1+ |+ 7))
(7)

Remark 1. Condition (H3) can be replaced by condition (HI).

In fact, from (5) and inequality la* + b*| < 2(ld%| + |¥Y),
it is easy to obtain

1f s )P <2f (6.9) - £ 0,0 +2|f 0,0
< 2C, (IxP* + [y[*) + 2| £ (0,0)° (8)

<L, (1 + |x|2 + |y|2);
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similarly,
19 (6, )| < Ly (1+ 17 + |y[),

(e p)[P < Ly (1+ 12+ |y),

)

where
Ly =2(Cav[f (0,0 v]|g(0,0) VIn(0,07). (10)
From (6), we obtain

IG (x)” < 2IG (x) = G (0)” +2IG (0)
< 2K%|x]* + 2|G (0))? (11)
<Ky (1+]x),

where K, = 2(K? v |G(0)[%).

Recently we have studied the existence and uniqueness
of solutions to neutral stochastic functional differential equa-
tions with Poisson jumps [21]. In an analogous way, we may
establish the following existence and uniqueness conclusion
that under assumptions (H1)-(H2), (1) has a unique solution
x(t)ont > -T.

3. Lemmas and Corollaries

In this section, we first establish a few lemmas under local
Lipschitz condition. For each d > 0, define the stopping times
oy :=inf {t > 0,|y (t)| > d},

vy :=inf{t >0, |x (¢)| = d}, (12)

Pd = 'Vd AN Gd'
(As usual we set inf @ = 00.)

Lemma 2. Under (HI1)-(H2), for any p > 2, there exists a
constant A > 0 independent of A, such that

E< sup |x(t)|p)VE< sup |y(t)|P> < A. 13)
—1<t<T —7<t<T

Proof. First, we prove the p-moment of the exact solution of
(1) is finite. For any ¢, € [0, T], we obtain

E( sup |x(t)|p) < E”E"p +E [ sup |x (t)|p] ) (14)
—T<t<t o<ts<t,
From (2) and inequality

(a+b+ct+d+e+ f)f
(15)
<67 (lal” +1bIF + [cl? + |dIF + lel” +|£]7),

we get

E [ sup |x(t)IP]

0<t<t,

<6’ 'E [ sup |G (x (¢ —T))|p]

0<t<t,

+ 6" E[E(0)|" + 6" E|G ¢ (-1)|*

3
[ t p
+6/'E sup J f(x(s),x(s—1))ds ]
L o<t<t, 1Jo
[ t p
+6/'E sup J gx(s),x(s—1))dW (s) ]
| o<t<t, 1Jo
[ t P
+6/'E sup J h(x(s),x(s—1))dN (s) ]
| o<t<t,1Jo
(16)

By condition (H2) and inequality (a + b)? < 277" (|a|” + |b|?),
then for any t € [0, T], we have

IG (x (t = 1)IP
< 2" G (x (t - 1) - G O)” + 2P |G (0)IF
< 2P KP)x (£ - 1)IP + 277 (G (0)°

<L,(1+|x@-1)F),

where L, = 2P71(K? v |G(0)|). Thus for any ¢, € [0,T],

E [ sup |G (x (t —T))lp]

0<t<t,

SLP(1+E[sup |x(t—'r)|p]) (18)
0<tst,

£LP(1+E[sup |x(t—r)|P]>.
0<t<T

Similarly
E Li‘fg |G (& (—‘r))lp] <L,(1+E[E]P). 9

By the Holder inequality and (8), then for any ¢, € [0, T], we

get
|

<! Jt E|f (x(s),x (s —)[Fds
0

Itf(x(s),x(s—f))ds

0

E[ sup

o0<t<t,

t

< TP J (1+Elx () + Elx (s - T)|2)P/2ds
0

t p/2 (20)

< TP*ILZ/ZJ <1 +2E sup |x(v)|2> ds
0

—T<V<S$

t P/Z
< TP_ILZ/ZZP/Z J <1 +E sup |x (v)|2> ds
0

—T<Y<s

ty
<1772, <T + J E sup |x(v)|Pds>.
0

—T<V<s



Now, we use H to denote that a generic constant may change
between occurrences. Using the Burkholder-Davis-Gundy
inequality for the two martingale integral terms, we have

|

SHJt1 E|g(x(s),x(s—1))|’ds (21)
0

J gx(s),x(s—1))dW (s)

E[sup
0

o<t<t,

< (L,)"*H (T + J

Similarly, for the jump integral term, we have
|

Jth(x (s),x(s—1))dN (s)
0

E sup |x (v)lpds>

—T<Y<s

Jth(x(s),x(s—r))dN(s)
0

E[ sup

0<t<t,

:E[sup

o<t<t,

t p
+/\J- h(x(s),x(s—1))ds ]
0

Jth(x (s),x(s—1))dN (s)
0

<2"'E [ sup

p
0<t<t,

p] (22)

Jth(x(s),x(s—r))ds
0

+ 2P \PE [ sup

0<t<t,

<2 'y Jtl Elh(x(s), x (s — 7))[Pds
0

+@TYPAP jtl Elh(x(s), x (s — 7))|"ds
0
< (2L,)"? [277'H + @) A7]

f
X <T+J E sup |x(v)|Pds>.

0 —T<V<s

By the above inequalities, we can obtain

E( sup Ix(t)lp)
—T<t<t,

< E||E||p +E [ sup |x(t)|p]

o<t<t,

< EJE|" + 6" EJe]” + 6L, (1+ EJE]")

+6P_1LP(1+E[ sup |x(t)|p]> (23)

—T<t<t;
+677 (TP (2Ly)" + (2L,)"°H

+(2L,)* 2P H + (2Ld)P/2(2T)P‘1AP)

t
X <T+ J E sup |x (v)lpds>;
0

—T<V<s
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that is,

E( sup |x(t)|p>
—T<t<t;

< (20,6 + (1+6" (1+L,)) g’
+6P7 (2L, (TP + (277 + 1) HT + TPZP*IAP))

x(1-6"1,)"

(
+(6P YaL,)? (17! (2P‘1+1)H+(2T)P‘1AP))
x (

1-677'L )7

t
xj E sup |x (v)[Pds
0

—T<V<S

t
<q+tg J E sup |x (v)|Pds,
0 —T<Y<Ss
(24)
where

= (2Lp6p71 + (1 +6 (1 + Lp)) E[g]”
+ 677 (2L )P (TP + (277 + 1) HT + TPZP_lAP))

x(1-6"1,)",

6= (67 2L)" (177 + (227 + 1) H + 1) N))

p-1 -
x(1-6"7'L,)
(25)
The Gronwall inequality shows that
E< sup |x(t)|P> <qe?T= A, (26)
—7<t<T

Then we can prove in the same way that the Euler-Maruyama
approximate solution to (1) has the property that

E( sup |y (t)|p> <A, (27)

—T<t<T

So, we can obtain

E( sup |x(t)|P) VE< sup |y(t)|p> < A, (28)
—7<t<T —1<t<T

by letting A=A, V A,. O

Lemma 3. Under (H1)-(H2),

( sup |y t/\pd)| ) <C,, Vtel[-1,T], (29)
—1<t<T

where C, is a positive constant independent of A.
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Proof. For any t, € [0,T], we have

E(mmlyuA%nﬂ
—T<t<t;

< E|g|° + E( sup |y (t/\pd)|2) :
ost<t,

By (4) and inequality
(a+b+c+d+e+f)2
<6 (1af” + 16 + Icf” +1dI* +1el* + |fT’)

and (11) then we have

E( sup |J’(t/\Pd)|2)

o<t<t,

< 6E [ sup |G (7 (t A py - T))|2]

0<t<t,

+6E[E ()| + 6E|G (£ (-1))[*

tApy 2

+6E | sup J f(7 (), y(s—1))ds ]

L o<t<t, 1 Jo

[ tNPa 2
+6E | sup J g7 (), y(s—1))dW (s) ]

Lost<t,1Jo

[ tA\Pa 2
+6E | sup J h(y(s),y(s—1))dN (s) ]

Lo<t=t, | Jo

<6K,E [1 + sup |7 (t A py —T)|2:|

o<t<t,

+6E[E]” + 6K, (1 + E[¢]*)

[ tA\Pa 2
+6E | sup J f(7@s), y(s—1))ds ]
Lost<t, 1o
[ tApy 2
+6E | sup J g(7(s), 7 (s = 1)) dW (s) ]
Lost<t, 1o
[ tApy 2
+6E | sup J h(¥(s),y(s—1))dN (s) ]
Lost<t, 1o

Using the Cauchy-Schwarz inequality, Fubini’s Theorem, and

(8),
]

tApy _ _ 2
<TE [ sup L If (7(s), 7 (s =) ds]

0<t<t,

J " S, 75— 1) ds

0

E[sup

o<t<t,

tiAPa
steg| [ (Lo + 5 o) o]

tl
<TL, <T+2 J-O E( sup |y(v)|2>ds) :
—T<V<sApy

Then by the Doob martingale inequality and (8), we have

tApy 2
| g(7<s>,7(s—r>)dw<s>]

E [ sup
0<t<t,

(30)
APy
§4E“ ’ Ig(?(s),?(s—f))lzds]
0 t (34)
1\Pa
§4LdE“ (1+I7(s)|2+|57(5—f)|2)d5]

0

t
<4L, (T+2J’0 E( supA |y(v)|2>d5)'
—T<VSSApy

For the jump integral, we can transform to the compensated
Poisson process

(31)

N (t) = N (¢) - At, (35)

which is a martingale, and use the isometry

|

b
[[h©.56-m e

]

b 2
[ 0565

(36)

(32) to obtain

]

APy _
| @ 56-m)aN e

0

tApPg
[ rG©. 6=

0

E[ sup

0<t<t,

=E[sup

o<t<t,
2]
2 ]
| :|

tApg
A TGO Fe-0)ds

0

< ZE[ sup

o<t<t;

tAPa _
|, nG©.76-maNe

+2)°E [ sup

o<t<t;

APy
L h(¥(s),y(s—1))ds
|

+ 2A>TE U:Apd [ (7 (), 7 (s~ T))|2d5]

LiAP4 _
SSE[ L h(y(s),y(s—1))dN (s)

W e[ o sl

S(8/\+2A2T)Ld(T+2r1E< sup |y(v)|2)ds).
0

—T<SV<SApy
(37)



Inserting (33)-(37) into (32) gives

E( sup |y(t/\Pd)|2)

o<t<t,

<6K,E [1 + sup |j7(t/\pd—‘r)|2]

o<t<t,
+6E|E]* + 6K, (1 + EJE]°)

+6(T+4+8/\+2A2T)Ld

t
><(T+ZJ E( sup |y(v)|2>ds).
0 —TSVSSApy

Substitute the above inequality into (30), the result is

E( sup |y(t/\Pd)|2)

—T<t<t;

< 55+ sup e )

<t<t,
< 12K, + (6K, +7) E|}¢|’

+ 6K E sup |7 (A py—7)|°

o<t<t,

+6(T+4+8/\+2}L2T)Ld

t
x(T+2J- E( sup |y(v)|2>d5)
0 —T<VSSAp4

< 12K, + (6K, +7) E|l¢|*

+6K,E sup |y (tApy)|’

—T<t<t;
+6(T+4+8/\+2A2T)LdT

+12(T+4+81+2)°T) L,

f
XJ E< sup |y(1//\pd)|2>ds.
0

—T<V<S

The Gronwall inequality shows that

E ( sup [ (£ Pd)|2)

—T<t<
< (12K, + (6K, +7) E|}¢|*
+6 (T +4+81+21°T) L,T)
x (1-6K,)"
% e12(T+4+8)L+2/\2T)LdT/(1—6K1)
=C,.

This is the desired result.
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Corollary 4. Under (H1)-(H2),

Ely (t)|2 <C,, Vite[-,TApy, (41)

where C, is a positive constant independent of A.

Lemma 5. Under (HI)-(H2), for any t € [0,T], there exists a
constant C; > 0 independent of A, such that
(38) "
J Ely (s) - 7 (s)'ds < C,A. (42)
0

Proof. For any t € [0,T A p;], there exists an integer k such
that t € [t;, t;,,). By the definition of y(t) and y(t), we have

yO) =G t-1)+E0)-GE(-1)

+J. f(7(s),y(s—1))ds
0
+ [ 9G©.76-maw

N L R (), (s -1) AN (1),

(43)
) = G(Yim) +£(0) -G (E(-1))

kA
[ 1@ Fe-0a
0
kA
9) +[ 90©.76-maw e

kA
+L h(7(9).7(s - 1) dN ().

It is clear that y(t) = y, and ¥(t — 1) = y;_,,, and thus
t
yO-570= [ 17O 56-n)d
[ 966 76-naw e

+Jthﬁmg,7@—r»dN(ﬂ (44)
kA

=f(7),7(s-1)(t-t;)
+g(7(s), 7 (s =) (W) -W(t;))
+h(7(s),y7(s—1)(N#) - N(t)).

Then applying the inequality (a + b + o) <3(lal*+1b* +|c*)
and (8), we have

(40)
ly -7
<3|f (5 (s), 7 (s — 1) A°
+3lg (79,7 =W O - W ()l

O +3h(7(s), 7 (s —D)IN (@) - N (1)
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7 -2)

x (A% + W @) - W (1)

<3L,(1+[F @) +

+|N (@) -

2
N ()| ) .

(45)
Then by Corollary 4 and the Lyapunov inequality [22]

EI ly (s) - 7 ()| ds
0
tApy B 2 B 2

<SLE| (L pOf + 76 -of)
—N(tk)lz)ds
l7t-0")E

(46)

N(tk)lz)ds

APy _ 2 _ 2
<3L,E L (1+[7@F +[-0f)

(&% + W () - W ()" +

tA\pg o n
£3Ldj E(l+|y(t)| +
0

(A + W) -w ()| +

IN (1)

IN () -

X (A2 +mA + AA) ds

<3L,T(142C)(A+m+A)A

< C,A.
Let C; = 3L,T(1 + 2C,)(1 + m + A); the lemma is therefore
complete. O
4. Main Result

Theorem 6. Under assumptions (HI)-(H2), the Euler-Mar-
uyama approximate solution (4) converges to the exact solution
of the NSDDEwP]Js (1) in the sense that

A—0

lim E [ sup |x (t) - y(t)| ] (47)

Proof. Lete(t) = x(t) — y(t); it is easy to see that

E [ sup |e (t)|2]

0<t<T

2
=E |: sup |e (t)| I{ad>T,vd>T}:|
0<t<T

2
+E |: sup |€ (t)l I{ad<Torvd<T}:|
0<t<T

=E [ sup le <t)|21{,,d>n] (48)

0<t<T

2
+E |: sup |€ (t)l I{ad<Torvd<T}:|
0<t<T

<E[sup le (£ A pa)|* ]
0<t<T

+E [ sup |e (£)] Igd<Torvd<T}]
0<t<T

where 1 is the indicator function of set A.

Recall the Young inequality, for 1/p + 1/qg =1 (p,q > 0);
we have

b (a(Sl/p)P p

ab < a(Sl/pm < + W
p Cl
= Q + b— Ya,b,6 > 0.
p q(sq/P

Thus for any 6 > 0, we have

[ sup le (£)] I{ad<T0rvd<T}]

0<t<T

< 2?:SE[suple(t)I”]+ﬂp{ffﬂzST°r vy < T}.

0<t<T 52/(P=2)
(50)
By Lemma 2, then
|;V (Ud)|p
P{O'd < T} =E |:I{GdST} ar
(51)
A
<lp t)|?
| el s 5
Similarly, the result can be derived for v, as
A
so that
2A
Plog<Torvy<T}<P{oy;<T}+P{v; <T}<=.
(53)
Using these bounds along with
E [ sup |e (t)|P]
0<t<T
_ 54
gzpl( [sup|x(t)|p]+E[sup|y(t)|P]> (54)
0<t<T 0<t<T
<2fA
in (50) gives
) 2PT18A 2(P-2)A
E [OSSI:STle (t)l I{adsTorvdST}:| p + P62/(P_2)dp'
(55)

Now we bound the first term on the right-hand side of
(48). By the definition of x(t) and y(t), we have

x(tEApg) =y (EApy)

=G(x(tnps=7)-G(F(EAPs—7))

APy
+L fx(s),x(s=1)-f(F(s),y(s—1))ds



tApg
+L g(x(s),x(s-1)-g(¥(s),y(s—1))dW (s)

IApg
+L h(x(s),x(s—1)—h(7(s),y(s—7))dN(s).
(56)
For ease of exposition, we abbreviate
G()=G G(y(s-1),
f©)=fx(s),xs=1) - f(7(5),7(s— 1),
gs)= g(7(s),7(s-1),
-h(¥(s),y(s—1).

(x(s=71) -

(57)
g(x(s),x(s-1)) -

h(s)=h(x(s),x(s— 1))
Thus, for any t € [0,T7],

E sup |x (tApg) =y (A pa)|°

0<t<t,

Jmpd f(s) ds ’

< 4E sup 'G (t)| + 4E sup
0
) (58)

0<t<t, 0<t<t,

tA\pg
+ 4E sup L g (s)dW (s)

0<t<t,

tApPy 2
+ 4E sup J h(s)dN (s)| .
0

0<t<t,

By the process of Lemma 5 and (45), we can get

Esup |y (tnpa) =7 (A pa)l

(59)
<3L,(1+2C,) (A2 +mA + AA).

By condition (H2) and (59), we have

Esup |G(x(tAp-7) -G (F(EAp-1))

o<t<t,

<2Esup |G(x(tApy -

0<t<t,

) =Gy (tnps-7))

+2Esup |G (y (A ps— 7)) = G (7(t A py— )

o<t<t,

<2K*Esup |x(tAp;—1) - y(tAps— 1)

o<t<t,

+2K°Esup |y (A pg —7) = (EA g~ )

0<t<t

<2K’Esup |x (tApy—7) =y (tAps—T)|
o<t<t,

+6K’Ly (1+2C,) (A* + mA + AA)

<2KE sup |x (£ A pg) = y (EA pg)l°

0<t<t,

+6K2Ly (1+2C,) (A* + mA +24).
(60)
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By Cauchy-Schwarz inequality and condition (HI) and
Lemma 5, we get

tApg
J fx(s),x(s—1))

0

E sup

0<t<t,

2

~f(F(s),y(s-1)ds

5A\P4
<7 [ If @ s= - £ (79 6 ds

< TC4E

XL (|x(s) y(s)| |x(s—‘r)—)7(s—‘r)|2)ds
1Py 2 o

<a1CE [ (@ -y OF +1y© - ) ds

tl
< 4TC, J-o E [ sup |x (v A py) —y(v/\Pd)l2 ds

0<v<s

+4TC,C,A.
(61)

Similarly, by Burkholder-Davis-Gundy inequality and (8), we

have
tApPa
| "o
0

—g(7(),7(s—1))dW (s)

E sup

0<t<t,

(x(s),x(s— 1))

2

LAPg
< 4E L |9 (x(s),x(s =) = g(7(s), 7 (s - 1)|"ds

< 4C,E
J‘tl/\Pd _ 5 _ 2
x . (|x(s)—y(s)| +|x(s—r)—y(s—r)|)ds
L APg 2 _ P
<16CE [ (I -y OF + y© - 7O ds

t
<16C, L E [ sup |x (VA pa) -y (v A p)| | ds

0<y<s

+16C,C,A.
(62)

Then by (37) and condition (HI) and Lemma 5, we get

2

Jmpd B (x (s), x (s — 7)) AN (s)

0

E sup

o<t<t,

) HNPa 2
<(8A+21 T)E“O (7). 7(s - 7)) dS]



Mathematical Problems in Engineering
= (8A+2)°T)E
tiAPg _ _ 5
XHO |h(x(s),x(s=1) = h(F(s), 7 (s 1)) ds]

< (81 +21°T) C4E

EAP4
<[ (-7 OF +lx -0 - 5o ds

<4 (81 +21°T) C4E

tAP4
< L (5 =y O +]y(s) - 7 ) ds

<4(81+21°T)Cy

0 0<v<s

tl
xJ- E[sup|x(v/\p,,l)—y(v/\pd)|2 ds

+4(81+21°T) C,C,A.
(63)

Taking (60)- (63) into (58), we obtain

2
Esup |x(tApg) =y (tApy)l

o<t<t;

< 8K°E sup |x (t A py) = y (A pa)|°

o<t<t,

+24K°L, (1+2C,) (A* + mA +2A)

ty
+16TC, L E Lsup Ix(vApg) =y (A Pd)|2:| ds
<y<s

+16TC4C,A

t

+64C, Ll E [ sup |x (v A py) —y(v/\pd)|2] ds

0<v<s
+64C,C5A + 16 (81 +2A°T) C,
t s
XJ E[sup|x(v/\pd)—y(v/\pd)| ]ds
0 0<v<s

+16 (81 +2A°T) C,C5A. o
64

Therefore

Esup |e(t A py)|°

0<t<t,
< ((24K°L, (1+2G,) (A +m + 1)
+[16T + 64 + 16 (81 + 2°T)] C,C;)

x (1-8K%) ") A

[16T + 64 + 16 (81 + 2A°T) | C,

+
1 - 8K?

t
. L F [ sup [x (v A pg) = y (VA py)[* | ds.

0<v<s

(65)
That is, for K> < 1/8

2 2
E sup |e (t A Pd)|2 < C4e[16T+64+16(8A+2/\ T)]TC,/(1-8K?) ,
0<t<T A

(66)
where
C, = (24K’L; (1+2C,) (A+m+ 1)

+[16T + 64 +16 (81 +2A°T)| C,C5)  (67)

-1

x (1-8K?)
Taking (55) and (66) into (48), we have

E [ sup |e(t)|2] <E [ sup |e (t/\pd)|2]

0<t<T 0<t<T

2
+E [ sup |e (t)l I{od<Torvd<T}
0<t<T

] (68)

< C4e[16T+64+16(8A+2/\2T)]TC,1/(1—8K2)A

2PYI5A  2(P-2)A
+ +
p P§2(P-2gp’

Given any € > 0, we can choose ¢ sufficiently small for

p+l
S (69)
P 3
and then choose d sufficient large for
2(P-2)A ¢
PoHPgp = 3’ 70)
and finally choose A so that
C4e[16T+64+16(8A+2/\2T)]TCd/(1—8K2) A < € ) 71)
Thus, E[supOStST|e(t)|2] < ¢&. The proof is completed. O

5. Numerical Examples

In this section, we present some numerical examples in
support of our previous theoretical results.

Example 1. First we consider the following linear NSDDEw-
PJs:

d[x(t)—0.5x(t—1)]

= [<9x () + 7x (t — 1)] dt + x (t — 1) dW (¢)
72
+05x(t-1)dAN (), tel[0,T], 7

x(t)=t+1, te[-1,0].
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1.2

—— Numerical solutions
—— Exact solutions

F1GURE 1: The exact solution and the numerical method approxima-
tions for Example 1.

10° //

107 B

1/2

1072

107 F

1074 L
107 1072 107!

A

FIGURE 2: The convergence rate of the Euler-Maruyama method for
Example 1.

First, we illustrate the strong convergence of the Euler-
Maruyama method for NSDDEs with Poisson jumps. We
choose T = 10 and A = 10. To the best of our knowledge,
there are not any analytical solutions available for Example 1.
Therefore, we use the Euler-Maruyama method to compute
an “explicit solution” with step-size A = 27'° in our
experiments. We draw the numerical solution obtained from
the Euler-Maruyama method with step-size A = 27 in
Figure 1. The data used in the figure is obtained by the mean
square of data by 1000 trajectories; that is w; : 1 < i < 1000;
¥, = 1/1000 Zilffo |y, (w;)|?; t, denotes the mesh point. From
the figure, we can see that the exact solutions and numerical
solutions match well.

To show the strong convergence order of the Euler-
Maruyama method, we apply the Euler-Maruyama method
to Example 1. Then simulating the numerical solutions with

Mathematical Problems in Engineering

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20
t

n

FIGURE 3: The Euler-Maruyama method approximations for
Example 2 with step-sizes A = 27 (upper), A = 27° (middle), and
A = 27" (lower).

10° .

1073 F

1073 1072 107!
A

FIGURE 4: The convergence rate of the Euler-Maruyama method for
Example 2.

5 different step-sizes h = 2P"'A for 1 < p<5A-= 2714,
The mean-square errors ¢ = 1/1000 Zilffo |y, (w;) — x(T)J?
all measured at time T = 10 are estimated by trajectory
averaging. We plot our approximation to /¢ against A on a
log-log scale in Figure 2. For reference a dashed line of slope
one-half is added. It clearly shows that the Euler-Maruyama
method for Example 1 is convergent with order 1/2.

Example 2. Consider the following nonlinear NSDDEwP]s:

d[x(t) - 0.5x(t—1)]

= [-12x° (1) + 10x (t = 1)] dt + x (£ - 1) AW ()
(73)
+01x(t-1)dN (), te(0,T],

x(t)=t+1, te][-71,0].
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We fix T = 20 and A = 1 for Example 2. The same as
Figure 1, the data used in Figure 3 is obtained by the mean
square of data by 1000 trajectories. In Figure 3, we show
the numerical simulation of Example 2 by Euler-Maruyama
method at step-sizes A = 276 (upper), A = 278 (middle),
A = 2710 (lower).

Figure 4 also illustrates that the Euler-Maruyama method
for Example 2 is convergent with order 1/2.
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