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Particle swarmoptimization algorithm (PSO) is a global stochastic tool, which has ability to search the global optima.However, PSO
algorithm is easily trapped into local optima with low accuracy in convergence. In this paper, in order to overcome the shortcoming
of PSO algorithm, an improved particle swarm optimization algorithm (IPSO), based on two forms of exponential inertia weight
and two types of centroids, is proposed. Bymeans of comparing the optimization ability of IPSOalgorithmwithBPSO, EPSO,CPSO,
and ACL-PSO algorithms, experimental results show that the proposed IPSO algorithm is more efficient; it also outperforms other
four baseline PSO algorithms in accuracy.

1. Introduction

Particle swarm optimization (PSO) has been proposed origi-
nally byKennedy andEberhart in 1995,which is a population-
based stochastic optimization techniques inspired by social
behavior of bird flocking or fish schooling [1]. The PSO
algorithm is easy to implement and has been empirically
shown to perform well on many optimization problems [2–
5]. The development of PSO can be classified into three cate-
gories in general. The first category emphasizes the variants
of PSO mechanism itself, both in mathematics [6] and in
topology [7]. The second one hybridizes other optimization
techniques into PSO, such as ACO [8], GA [9, 10], Tabu
[11], and simulated annealing [12]. The third one leverages
the advantages of Chaos Maps, such as certainty, ergodicity,
and stochastic property [13]. The hybridization of chaos with
PSO has also become an active direction in recent research
activities [14, 15].

With the concept of the center of gravity in Physics,
Song et al. designed a centroid particle swarm based on each
particle’s best position and proposed a centroid PSO (CPSO)
algorithm [16] to enhance individual and group collaboration
and information sharing capabilities. Also, Gou et al. pro-
posed anACL-PSO algorithm [17] with a population centroid

based on every particle’s current position.Their experimental
results showed that ACL-PSO algorithm improved the global
searching capability and effectively avoided the premature
convergence. Inertia weight [18], in the form of linear
decreasing one, was embedded into the original PSOfirstly by
Shi and Eberhart [18]. Based on their work, a conclusion can
be drawn that a large inertia weight facilitates a global search
while a small one facilitates a local search. After that, different
kinds of inertia weights were introduced and expressed in
exponential formalities [19] or other nonlinear formalities
[20–22]. Recently, Ting et al. [23] proposed an exponential
inertia weight frame. After their carefully analysis of the
effect of local attractor and global attractor, they presented
suggestions for adjusting these attractors in order to improve
the performance of PSO algorithm.

In this paper, in order to prevent PSO from falling in
a local optimum, we propose an improved PSO algorithm
(IPSO) based on two forms of exponential inertia weight
proposed byTing et al. and two kinds of centroids, population
centroid and the best individual centroid, which are based on
a new weighted linear combination of each particle’s current
position and a linear combination of each particle’s best
position, respectively. Therein, the proposed IPSO algorithm
provides two velocity updating forms, which are selected
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by roulette wheel for every particle at each of evolution
iterations. Besides one particle’s own extreme position and
the global extreme position, one of velocity updating forms
is based on population centroid, another is based on best
individual centroid. By means of comparing its optimization
abilitywith other four PSOalgorithms, the experiment results
show that the proposed IPSO algorithm can reach more
excellent optima.

The remainder of this paper is organized as follows.
Basic PSO algorithm (BPSO) [18], exponential inertia weight
PSO (EPSO) [23], center PSO (CPSO) [16], and self-adaptive
comprehensive learning PSO (ACL-PSO) [17] are proposed
in Section 2.We present our improved PSO algorithm (IPSO)
model in Section 3. Section 4 shows our experimental results.
Finally, we conclude our work in the last section.

2. Background

Thebasic PSO (BPSO) algorithm is a useful tool for optimiza-
tion. Each particle’s position stands for a candidate solution to
the problem which will be solved. The BPSO, EPSO, CPSO,
and ACL-PSO are proposed below.

2.1. BPSO. Denote 𝑓, 𝑆 and 𝐶𝑆 as the fitness function, the
scale of swarm, and the maximum iteration number, respec-
tively. Let 𝑋

𝑖
(𝑡) = (𝑥(𝑡)

𝑖1
, . . . , 𝑥(𝑡)

𝑖𝑑
, . . . , 𝑥(𝑡)

𝑖𝐷
), V
𝑖
(𝑡) = (V(𝑡)

𝑖1
, . . . ,

V(𝑡)
𝑖𝑑

, . . . , V(𝑡)
𝑖𝐷

), and 𝑓(𝑡)
𝑖

= 𝑓 (𝑋
𝑖
(𝑡)) be the position, velocity,

and fitness of the 𝑖th particle at the 𝑡th iteration, respectively.
In addition, let 𝑓(𝑟)

𝑖
be the 𝑖th particle’s best fitness and let

𝑝
𝑖
be the corresponding position, St. 𝑟 = arg max

𝑡
{𝑓(𝑡)
𝑖

}.
Also, let 𝑓(𝑟)

𝑔
be the swarm’s best fitness and let 𝑝

𝑔
be the

corresponding position, St. 𝑔 = arg max
𝑖∈{1,2,...,𝑆}

{𝑓(𝑟)
𝑖

}.
In BPSO, tracking the two positions 𝑝

𝑔
and 𝑝

𝑖
, each

particle flows through the multidimensional searching space
to update its inertia weight, velocity, and position according
to (1)–(3), respectively. Consider

𝑤 (𝑡) = 𝑤max −
𝑡 × (𝑤max − 𝑤min)

𝐶𝑆
, (1)

V(𝑡+1)
𝑖𝑑

= 𝑤 (𝑡) V(𝑡)
𝑖𝑑

+ 𝑐
1
𝑟
1 (𝑡) (𝑝𝑖𝑑 − 𝑥(𝑡)

𝑖𝑑
) + 𝑐
2
𝑟
2 (𝑡) (𝑝𝑔𝑑 − 𝑥(𝑡)

𝑖𝑑
) ,

(2)

𝑥(𝑡+1)
𝑖𝑑

= 𝑥(𝑡)
𝑖𝑑

+ V(𝑡+1)
𝑖𝑑

. (3)

In (1), 𝑤(𝑡) stands for inertia weight at the 𝑡th iteration
and 𝑤max and 𝑤min are the initial inertia weight and the final
inertia weight, respectively. In (2), 𝑐

1
and 𝑐
2
are accommoda-

tion parameters and random numbers 𝑟
1
(𝑡) and 𝑟

2
(𝑡) belong

to the interval of 0 and 1.

2.2. EPSO. Inertia weight, which had been introduced firstly
by Shi and Eberhart is one of the important parameters in
PSO algorithm [18]. Since that, linearly decreasing inertia
weight and nonlinearly decreasing one have been used widely
in literature. Chauhan et al. [22] summarized different inertia
weight forms. However, there is no clear justification of how

this parameter can be adjusted to improve the performance
of PSO algorithm. In [23], Ting et al. have investigated
the property for an exponential inertia weight inspired by
adaptive crossover rate (ACR) used in differential evolution
algorithm. The ACR is defined as

CR = CR
0
⋅ 𝑒−𝑎(𝑡/𝐶𝑆)

𝑏

, (4)

where CR
0
is the initial crossover rate, 𝑡 is the current

generation number, and 𝐶𝑆 is the maximum number of
generations. The adaptive function for the crossover rate is
simply crafted based on the logic of high CR at the beginning
of run to prevent premature convergence and low CR at the
end of run to enhance the local search.This concept is exactly
the same for the case of inertia weight𝑤 in BPSO.Thus, Ting
et al. defined their exponential inertia weight as follows:

𝑤 (𝑡) = 𝑤max ⋅ 𝑒−𝑎(𝑡/𝐶𝑆)
𝑏

, (5)

where𝑤max is the initial inertia weight. Parameters 𝑎 and 𝑏 in
(5) are named the local search attractor and the global search
attractor, respectively. On the one hand, while parameter 𝑏 is
set to 1, parameter 𝑎 has the ability to push down the value of
𝑤. On the other hand, when 𝑏 is increased, it has the ability to
pull up the value of the𝑤. Note that when 𝑎 is zero, the inertia
weight becomes a static value𝑤max; when 𝑏 is zero, it is in fact
a static𝑤with the value approximate to 0.32 on condition that
𝑎 is set to 1.

Substituting (5) for (1) in BPSO algorithm, Ting et
al. proposed an exponential inertia weight PSO algorithm
(EPSO). After testing on 23 benchmark problems, they draw a
conclusion from simulation results that EPSO algorithm was
capable of global search and local search when 𝑏 > 𝑎 and
𝑎 > 𝑏, respectively. At the same time, their simulation results
showed that the EPSO algorithm had better performance in
comparison to the BPSO algorithm, which was used widely
in many significant works.

2.3. CPSO. In order to enhance interparticle cooperation
and information sharing capabilities, Song et al. proposed a
centroid PSO (CPSO) [16] algorithm. In CPSO algorithm, the
centroid of particle swarm is defined as (6), and (2) in BPSO
algorithm is substituted for (7). Consider

𝐶 =
1

𝑆

𝑆

∑
𝑖=1

𝑝
𝑖
, (6)

V(𝑡+1)
𝑖𝑗

= 𝑤 (𝑡) V(𝑡)
𝑖𝑗

+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑗
− 𝑥(𝑡)
𝑖𝑗

)

+ 𝑐
2
𝑟
2
(𝑝
𝑔𝑗

− 𝑥(𝑡)
𝑖𝑗

) + 𝑐
3
𝑟
3
(𝐶
𝑗
− 𝑥(𝑡)
𝑖𝑗

) .
(7)

In the abovementioned (7), 𝑐
3
is a positive constant

similar to 𝑐
1
and 𝑐
2
; 𝑟
3
is a random number between 0 and

1.
In this way, the running track of each particle is not

only interrelated with the individual best position and the
best position of the swarm but also interrelated with the
centroid of the whole particle swarm. Their experimental
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Algorithm. IPSO (𝑥min, 𝑥max, Vmin, Vmax, 𝑤max, 𝑐1, 𝑐2, 𝑐3, 𝐷, 𝑆, 𝐶𝑆)
Input: 𝑥min, 𝑥max, Vmin, Vmax, 𝑤max, 𝑐1, 𝑐2, 𝑐3, 𝐷, 𝑆, 𝐶𝑆
Output: 𝑝

𝑔
, 𝑓(𝑝
𝑔
)

Begin
(1) Initialize the parameters including population size 𝑆, 𝑥min, 𝑥max, Vmin, Vmax, 𝑤max, 𝑐1, 𝑐2, 𝑐3, the dimension size 𝐷,

the maximum iteration number 𝐶𝑆, and the current iterative count 𝑡 = 0
(2) Generate the initial population and initial velocity. The initial population and initial velocity for each

particle are randomly generated as follows:

Population =
[
[
[
[

[

𝑋
1
(𝑡)

𝑋
2
(𝑡)
...

𝑋
𝑆
(𝑡)

]
]
]
]

]

𝑋
𝑖
(𝑡) = (𝑥(𝑡)

𝑖1
, . . . , 𝑥(𝑡)

𝑖𝑑
, . . . , 𝑥(𝑡)

𝑖𝐷
) 𝑥(𝑡)
𝑖𝑑

∈ [𝑥min, 𝑥max] 𝑖 = 1, 2, . . . , 𝑆 𝑑 = 1, 2, . . . , 𝐷

Velocity =
[
[
[
[

[

V
1
(𝑡)

V
2
(𝑡)
...

V
𝑆
(𝑡)

]
]
]
]

]

V
𝑖
(𝑡) = (V(𝑡)

𝑖1
, . . . , V(𝑡)

𝑖𝑑
, . . . , V(𝑡)

𝑖𝐷
) V(𝑡)
𝑖𝑑

∈ [Vmin, Vmax] 𝑖 = 1, 2, . . . , 𝑆 𝑑 = 1, 2, . . . , 𝐷

where 𝑋
𝑖
(𝑡) and V

𝑖
(𝑡) are the position and velocity at the 𝑡th iteration for the 𝑖th particle,

respectively. 𝐷 is the dimension of each particle. 𝑥min, 𝑥max are the minimum and maximum value of
each point belonging to the 𝑑th dimension, respectively. Vmin, Vmax are the minimum and maximum
value of each point belonging to the 𝑑th dimension, respectively.

(3) Calculate the fitness value of each particle and record it as: 𝑓(𝑡)
𝑖

← 𝑓(𝑋
𝑖
(𝑡)), record the 𝑖th particle’s

best fitness and its corresponding position 𝑝
𝑖
as: 𝑓(𝑟)
𝑖

← 𝑓(𝑡)
𝑖
, 𝑝
𝑖
← 𝑋
𝑖
(𝑡), St. 𝑟 = arg min

𝑡

{𝑓(𝑡)
𝑖

}, 𝑖 = 1, . . . , 𝑆

(4) Calculate the population’s best fitness 𝑓(𝑟)
𝑔

and its corresponding position 𝑝
𝑔
, St. 𝑔 = arg min

𝑖∈{1,2,...,𝑆}

{𝑓(𝑟)
𝑖

}

(5) Compute population centroid by (9) with the weighted coefficient Pecent
𝑖
(𝑡) computed by (15),

compute best individual centroid by (6).
(6) For 𝑡 = 1 to 𝐶𝑆 do

(6.1) Compute 𝑅
𝑡
by (10), and generate a random number 𝑃 ∈ [0, 1];

(6.2) If 𝑃 ≤ 𝑅
𝑡

(6.2.1) Update 𝑤
2
(𝑡) by (19)

(6.2.2) For 𝑖 = 1 to 𝑆 do
Update V

𝑖
(𝑡) and 𝑋

𝑖
(𝑡) by (12) and (3) respectively, compute 𝑓(𝑡)

𝑖
← 𝑓(𝑋

𝑖
(𝑡))

If 𝑓(𝑡)
𝑖

< 𝑓(𝑟)
𝑖

then 𝑓(𝑟)
𝑖

← 𝑓(𝑡)
𝑖
, 𝑝
𝑖
← 𝑋
𝑖
(𝑡), 𝑟 = arg min

𝑡

{𝑓(𝑡)
𝑖

},
End If

End
Else
(6.2.3) Update 𝑤

1
(𝑡) by (19)

(6.2.4) For 𝑖 = 1 to 𝑆 do
Update V

𝑖
(𝑡) and 𝑋

𝑖
(𝑡) by (7) and (3) respectively, compute 𝑓(𝑡)

𝑖
← 𝑓(𝑋

𝑖
(𝑡))

If 𝑓(𝑡)
𝑖

< 𝑓(𝑟)
𝑖

then 𝑓(𝑟)
𝑖

← 𝑓(𝑡)
𝑖
, 𝑝
𝑖
← 𝑋
𝑖
(𝑡), 𝑟 = arg min

𝑡

{𝑓(𝑡)
𝑖

},
End If

End
End If

(6.3) Compute 𝑓(𝑟)
𝑔

and set 𝑝
𝑔
← 𝑋
𝑔
(𝑟), where 𝑔 = arg min

𝑖∈{1,2,...,𝑆}

{𝑓(𝑟)
𝑖

}

(6.4) Compute population centroid by (9) with the weighted coefficient Pecent
𝑖
(𝑡) computed by (15),

compute best individual centroid by (6).
(6.5) let 𝑡 = 𝑡 + 1

End
(7) output 𝑝

𝑔
, 𝑓(𝑝
𝑔
)

End

Algorithm 1: The execution process of IPSO algorithm.

results show that the CPSO algorithm not only enhances the
local searching efficiency and global searching performance
but also has an ability to avoid the premature convergence
problem effectively.

2.4. ACL-PSO. After introducing population centroid learn-
ing mechanism into the BPSO, Gou et al. proposed an ACL-
PSO algorithm [17] based on self-adapted comprehensive
learning. They defined the fitness proportion of the 𝑖th
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Table 1: Descriptions of four benchmark functions.

Function Mathematical formula Range and dim. Minima Characteristics

Griewank (𝑓
1
) 𝑓(𝑥) =

𝑛

∑
𝑖=1

𝑥2
𝑖

4000
−
𝑛

∏
𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1 [−600, 600]20 0 Highly multimodal

Rastrigin (𝑓
2
) 𝑓(𝑥) =

𝑛

∑
𝑖=1

(𝑥2
𝑖
− 10 cos (2𝜋𝑥

𝑖
)) + 10 [−5.12, 5.12]20 0 Highly multimodal

Rosenbrock (𝑓
3
) 𝑓(𝑥) =

𝑛−1

∑
𝑖=1

(100(𝑥
𝑖+1

− 𝑥2
𝑖
)
2

+ (𝑥
𝑖
− 1)
2

) [−30, 30]20 0 Multiple local optima

Sphere (𝑓
4
) 𝑓 (𝑥) =

𝑛

∑
𝑖=1

𝑥2
𝑖

[−5.12, 5.12]20 0 Unimodal convex

Table 2: Disjoint distribution of (𝑆, 𝑐
3
) for each function.

Function 𝑓
1

𝑓
2

𝑓
3

𝑓
4

𝑆

10 0.5 1 2 0.5
20 0.5 0.5 2 0.5
30 0.5 0.5 2 0.5

particle as (8), and the population centroid corresponding to
the 𝑡th iteration as (9). Consider

Pecent
𝑖 (𝑡) =

𝑓 (𝑋
𝑖 (𝑡))

∑
𝑆

𝑘=1
𝑓 (𝑋
𝑘 (𝑡))

, (8)

𝑝
𝑐 (𝑡) =

𝑆

∑
𝑖=1

Pecent
𝑖 (𝑡) ∗ 𝑋

𝑖 (𝑡) . (9)

Considering not only individual particle’s own previous
best position but also the evolution trend of populations, Gou
et al. proposed two different evolution strategies at different
evolution stage. Therein, 𝑝

𝑐
(𝑡) was used to guide the particle

searching direction at the early stage of evolution, while 𝑝
𝑔

was used to guide its direction at the later stage. To realize
these evolution strategies, they used (10) to compute 𝑅

𝑡
at the

𝑡th iteration and used a random number 𝑃 between 0 and 1
to compare with 𝑅

𝑡
. Consider

𝑅
𝑡
= 1 −

𝑡

𝐶𝑆
. (10)

If 𝑃 ≤ 𝑅
𝑡
, update the 𝑖th particle’s velocity by (11) or (12),

else by (2). Consider

V(𝑡+1)
𝑖𝑗

= 𝑤 (𝑡) V(𝑡)
𝑖𝑗

+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑗
− 𝑥(𝑡)
𝑖𝑗

) + 𝑐
2
𝑟
2
(𝑎
𝑖𝑗
∗ 𝑝
𝑐𝑗

− 𝑥(𝑡)
𝑖𝑗

) ,

(11)

V(𝑡+1)
𝑖𝑗

= 𝑤 (𝑡) V(𝑡)
𝑖𝑗

+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑗
− 𝑥(𝑡)
𝑖𝑗

)

+ 𝑐
2
𝑟
2
(𝑝
𝑔𝑗

− 𝑥(𝑡)
𝑖𝑗

) + 𝑐
3
𝑟
3
(𝑎
𝑖𝑗
∗ 𝑝
𝑐𝑗

− 𝑥(𝑡)
𝑖𝑗

) .
(12)

In the abovementioned formulas, inertia weight of ACL-
PSO was computed by the following:

𝑤 (𝑡) = 𝑤max ⋅ 𝑒−𝑡
2
/2, (13)

where random number 𝑎
𝑖𝑗
was in [1/𝑆, 1]. In addition, 𝑐

3
was

the weight coefficient of population centroid and 𝑟
3
was a

random number between 0 and 1. The item 𝑐
3
𝑟
3
(𝑎
𝑖𝑗

∗ 𝑝
𝑐𝑗

−

𝑥(𝑡)
𝑖𝑗

) was the entry of population centroid learning, which
reflected an individual particle’s social cognition learning and
thinking.

Compared to other four improved PSO algorithms in
terms of accuracy, convergence speed, and computational
complexity, ACL-PSO converged faster, resulting in more
robust and better optima [17].

3. Our Proposed Method IPSO

Define particle fitness𝑓 as object function directly, and adjust
the IPSO algorithm search mechanism as follows:

𝑔 = arg min
𝑖∈{1,2,...,𝑆}

{𝑓(𝑟)
𝑖

} , 𝑟 = argmin
𝑡

{𝑓(𝑡)
𝑖

} . (14)

Combining the above EPSO algorithm’s inertia weight,
CPSO and ACL-PSO algorithms’ population centroids, tak-
ing advantage of ACL-PSO algorithm’s evolution strategies,
we propose a new improvedPSOalgorithm (IPSO) as follows.

(1) Population Centroid and Best Individual Centroid. So as to
CPSO and ACL-PSO algorithms, their centroids are different
from each other. The centroid of CPSO algorithm is a linear
combination of each particle’s best position, while the other
is a weighted linear combination of each particle’s current
position. Taking advantage of the two centroids, we embed
them into BPSO to balance PSO algorithm’s performance of
local and global searching, anddenote themas best individual
centroid and population centroid, respectively.

If 𝑓(𝑋
𝑖
(𝑡)) is smaller, that is to say, the object value

is smaller at the 𝑡th iteration, then the particle’s current
position makes more contribution to the construction of
the population centroid corresponding to the same iteration.
Thus, in order to show the degree of importance of the
particle’s current position, 𝑋

𝑖
(𝑡), in the population centroid,

we define the 𝑖th particle proportion as (15) and compute the
population centroid 𝑝

𝑐
(𝑡) by (9). At the same time, (16) can

be obtained naturally. Consider

Pecent
𝑖 (𝑡) =

1

𝑆 − 1
[1 −

𝑓 (𝑋
𝑖 (𝑡))

∑
𝑆

𝑘=1
𝑓 (𝑋
𝑘 (𝑡))

] , (15)

𝑆

∑
𝑖=1

Pecent
𝑖 (𝑡) = 1. (16)
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Table 3: Parameter settings of different algorithms.

Algorithms Parameters
BPSO [18] 𝑤min = 0.4, 𝑤max = 0.9, 𝑐

1
= 𝑐
2
= 2, 𝑤(𝑡) = 𝑤max − (𝑤max − 𝑤min) ∗ 𝑡/𝐶𝑆

EPSO [23] 𝑤max = 0.9, 𝑐
1
= 𝑐
2
= 2, 𝑎 = 1, 𝑏 = 1

CPSO [16] 𝑤min = 0.4, 𝑤max = 0.9, 𝑐
1
= 𝑐
2
= 𝑐
3
= 1.4, 𝑤(𝑡) = 𝑤max − (𝑤max − 𝑤min) ∗ (𝑡/𝐶𝑆)

ACL-PSO [17] 𝑤max = 1.2, 𝑐
1
= 𝑐
2
= 𝑐
3
= 2, 𝑤(𝑡) = 𝑤max ∗ exp(−0.5 ∗ 𝑡 ∗ 𝑡)

IPSO 𝑤max = 0.9, 𝑐
1
= 𝑐
2
= 1.4, 𝑤

1
(𝑡) = 𝑤max ∗ exp(−(𝑡/𝐶𝑆)2), 𝑤

2
(𝑡) = 𝑤max ∗ exp(−2 ∗ 𝑡/𝐶𝑆)

Table 4: Comparison of the results of different PSO algorithms (𝐷 = 20).

Functions Algorithms Indicators
Min Mean Max Deviation ACIN

𝑓
1

BPSO 1.0397𝐸 + 00 5.3844𝐸 + 00 2.6224𝐸 + 01 4.9320𝐸 + 00 9.9424𝐸 + 02

EPSO 5.8010𝐸 − 01 1.0862𝐸 + 00 1.6439𝐸 + 00 2.1640𝐸 − 01 9.5420𝐸 + 02

CPSO 9.8400𝐸 − 01 3.3640𝐸 + 00 9.2279𝐸 + 00 2.0551𝐸 + 00 9.7812𝐸 + 02

ACL-PSO 2.0906𝐸 − 06 6.0700𝐸 − 02 5.8570𝐸 − 01 1.4610𝐸 − 01 9.9998𝐸 + 02

IPSO 0 0 0 0 5.5164𝐸 + 02

𝑓
2

BPSO 3.2302𝐸 + 01 8.0862𝑒 + 01 1.2456𝑒 + 02 2.0199𝐸 + 01 9.8684𝐸 + 02

EPSO 1.8100𝐸 + 01 5.7588𝐸 + 01 1.2552𝐸 + 02 2.3422𝐸 + 01 9.9958𝑒 + 02

CPSO 3.0708𝐸 + 01 6.3367𝐸 + 01 1.1899𝐸 + 02 2.0263𝐸 + 01 9.6404𝐸 + 02

ACL-PSO 1.3242𝐸 − 08 5.0000𝐸 − 03 4.5100𝐸 − 02 1.0100𝐸 − 02 1.0000𝐸 + 03

IPSO 0 0 0 0 5.4176𝐸 + 02

𝑓
3

BPSO 4.1348𝐸 + 01 3.7374𝐸 + 04 3.0661𝐸 + 05 6.1177𝐸 + 04 9.9250𝐸 + 02

EPSO 2.7485𝐸 + 01 5.6346𝐸 + 02 3.5538𝐸 + 03 8.1005𝐸 + 02 9.9520𝐸 + 02

CPSO 2.4717𝑒 + 01 1.7367𝐸 + 04 9.5022𝐸 + 04 2.5152𝐸 + 04 9.8090𝐸 + 02

ACL-PSO 1.8851𝐸 + 01 1.8965𝐸 + 01 1.9363𝐸 + 01 8.4700𝐸 − 02 1.0000𝐸 + 03

IPSO 1.8605𝐸 + 01 1.8878𝐸 + 01 1.8942𝐸 + 01 5.5500𝐸 − 02 9.9974𝐸 + 02

𝑓
4

BPSO 4.1700𝐸 − 02 2.0394𝐸 + 00 1.1227𝐸 + 01 2.9060𝐸 + 00 9.8864𝐸 + 02

EPSO 3.2000𝐸 − 02 6.0300𝐸 − 02 1.0026𝐸 + 00 1.3970𝐸 − 01 9.9978𝐸 + 02

CPSO 9.2000𝐸 − 03 5.5700𝐸 − 01 5.8396𝐸 + 00 9.1550𝐸 − 01 9.7898𝐸 + 02

ACL-PSO 2.1674𝐸 − 17 2.7549𝐸 − 05 2.1864𝐸 − 04 4.9741𝐸 − 05 1.000𝐸 + 03

IPSO 9.6962𝐸 − 84 6.2702𝐸 − 61 1.6301𝐸 − 59 2.7260𝐸 − 60 9.9994𝐸 + 02

Gou et al. [17] have proved that their proposed population
centroid will be the convergence position on condition that
ACL-PSO algorithm converges to local minimum or global
convergence. Similarly, Let 𝑃∗ satisfy (17), (18) indicates
that 𝑝

𝑐
(𝑡) is the convergence position of IPSO algorithm on

condition that the algorithm converges to local minimum or
global convergence. Consider

𝑃∗ = lim
𝑡→∞

𝑋
𝑖 (𝑡) , (17)

lim
𝑡→∞

𝑝
𝑐 (𝑡)

= lim
𝑡→∞

𝑆

∑
𝑖=1

1

𝑆 − 1
[1 −

𝑓 (𝑋
𝑖 (𝑡))

∑
𝑆

𝑘=1
𝑓 (𝑋
𝑘 (𝑡))

] ∗ 𝑋
𝑖 (𝑡)

=
1

𝑆 − 1

𝑆

∑
𝑖=1

[

[

1 −
lim
𝑡→∞

𝑓 (𝑋
𝑖 (𝑡))

∑
𝑆

𝑘=1
lim
𝑡→∞

𝑓 (𝑋
𝑘 (𝑡))

]

]

∗ lim
𝑡→∞

𝑋
𝑖 (𝑡)

=
1

𝑆 − 1

𝑆

∑
𝑖=1

[1 −
𝑓 (𝑃∗)

∑
𝑆

𝑘=1
𝑓 (𝑃∗)

] ∗ 𝑃∗

= 𝑃∗.

(18)

(2) Inertia Weight. Based on the exponential inertia weight
proposed by Ting et al. [23], we select two pairs of 𝑎 and 𝑏.
One pair is that 𝑎 is 1 and 𝑏 is 2. Another one is contrary.
Denote them as (19) at the 𝑡th iteration.These inertia weights
work in with different evolution strategies, the same as ACL-
PSO algorithm. Consider

𝑤
1 (𝑡) = 𝑤max ⋅ 𝑒−(𝑡/𝐶𝑆)

2

, 𝑤
2 (𝑡) = 𝑤max ⋅ 𝑒−2𝑡/𝐶𝑆. (19)

(3) Update Velocity. It can be drawn from (18) that population
centroid will coincide with the population globally optimal
location. So, we use Gou et al.’s method [17] to help the 𝑖th
particle to select velocity updating formula. If 𝑃 ≤ 𝑅

𝑡
, update
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Table 5: Comparison of experimental results of success rate and average convergence iteration.

Functions Target precision Indicators BPSO EPSO CPSO ACL-PSO IPSO

𝑓
1

0.1 SR 0 0 0 86 100
ACI 1000 1000 1000 901.28 676.66

0.6 SR 0 4 0 98 100
ACI 1000 974.80 1000 747.80 607.82

1 SR 0 26 4 100 100
ACI 1000 818.98 989.02 439.76 472.48

1.5 SR 16 100 64 100 100
ACI 991.82 327 840.20 23.10 269.64

𝑓
2

10−7 SR 0 0 0 48 100
ACI 1000 1000 1000 967.60 369.50

20 SR 0 4 0 100 100
ACI 1000 971.98 1000 40.92 262.20

30 SR 0 8 2 100 100
ACI 1000 945.64 998.82 42.42 267.02

40 SR 2 30 12 100 100
ACI 982.44 775.36 944.36 28.62 254.82

𝑓
3

19 SR 0 0 0 70 100
ACI 1000 1000 1000 932.98 336.88

30 SR 0 8 0 100 100
ACI 1000 947.38 1000 444.52 275.40

40 SR 0 14 2 100 100
ACI 1000 903.22 983 333.14 608.60

500 SR 6 62 30 100 100
ACI 998.72 530.34 943.50 36.18 28.40

𝑓
4

10−10 SR 0 0 0 78 100
ACI 1000 1000 1000 920.22 330.84

0.01 SR 0 10 8 100 100
ACI 1000 932.46 980.92 229.54 255.48

0.05 SR 4 68 18 100 100
ACI 998.68 504.24 959.46 53.96 225.48

0.1 SR 14 90 52 100 100
ACI 994 294.80 899.40 34.64 209.18

the 𝑖th particle’s velocity by (12) with 𝑤
2
(𝑡), else by (7) with

𝑤
1
(𝑡). The execution process of IPSO algorithm is shown in

Algorithm 1.

4. Experiments and Results

In this section, BPSO, EPSO, CPSO, and ACL-PSO algorithm
are compared as four benchmark functions to verify the
feasibility of IPSO algorithm. The descriptions of those
test functions, which can be divided into unimodal and
multimodal function, are shown in Table 1. Using the object
function in Table 1 to evaluate each particle’s fitness, the
smaller the function value the higher the fitness.

Experiments use the following methods. Firstly, deter-
mine the parameter pairs of IPSO algorithm, such as 𝑆 and
𝑐
3
. Secondly, fixing the number of iterations, with different

number of particles, evaluate performances of those five
algorithms by average object value corresponding to the 𝑡th
iteration. At last, setting the maximum iteration number and

different target accuracies of these functions, success rate and
average convergence iteration number are compared.

The average object value according to the 𝑡th iteration
of all the 𝑟 turns is as (20) for each algorithm. Therein,
𝑓(𝑖)
𝑗

(𝑡) stands for the global best fitness for the 𝑗th algorithm,
corresponding to the 𝑡th iteration at the 𝑖th turn. Consider

𝑦 (𝑡) =
1

𝑟

𝑟

∑
𝑖=1

𝑓
(𝑖)

𝑗
(𝑡) , 𝑡 = 1, . . . , 𝐶𝑆, 𝑗 = 1, . . . , 5. (20)

(1) Determine the Parameter Pairs of 𝑆 and 𝑐
3
in IPSO

Algorithm. With Vmin = 𝑥min, Vmax = 𝑥max, 𝑐
1

= 𝑐
2

= 1.4,
𝐶𝑆 = 1000, let 𝑆 be 10, 20, and 30 each time and let 𝑐

3
be

updated by (21) for each 𝑆. Run the IPSO algorithm 𝑟 = 50
turns per time. Its (𝑡−log(𝑦)) curves of above four benchmark
functions are shown in Figures 1, 2, 3, and 4. Consider

𝑐
3 (𝑘) = 0.5 × (𝑘 − 1) 𝑘 = 1, . . . , 5. (21)
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Figure 1: (𝑡 − log(𝑦)) curves of 𝑓
1
according to different 𝑆.

From Figures 1–4, we can get that each of the number
of iteration, the value of parameter 𝑐

3
, and swarm size 𝑆

produces an effect on performance of IPSO algorithm. Let 𝑐
3

be 0.5 and let 𝑆 be 30; 𝑦(𝑡) will arrive to minimum at later
iteration stage for the four benchmark functions. If 𝑦(𝑡) is
zero, log(𝑦(𝑡)) will tend to be infinite, and the corresponding
curves about (𝑡 − log(𝑦)) will not appear. The phenomenon
happened in curves of functions 𝑓

1
and 𝑓

2
, that is to say,

IPSO algorithm can find target optima value for 𝑓
1
and 𝑓

2

at litter iteration number, this can be seen in Figures 1 and 2.
While𝑦(𝑡) is smaller, log(𝑦(𝑡))will become smaller too. From
Figure 3, we can get that setting 𝑐

3
= 2 is more effective for

using IPSO algorithm to search optimal solution of𝑓
3
at later

iteration stage. So as to 𝑓
4
, setting 𝑐

3
= 0.5 is reasonable.

With different pairs of swarm size and 𝑐
3
, 𝑦(𝑡) comes

to the minimum at the later iteration. Table 2 lists the
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Figure 2: (𝑡 − log(𝑦)) curves of 𝑓
2
according to different 𝑆.

disjoint distribution of (𝑆, 𝑐
3
) pairs according to 𝐶𝑆 = 1000.

Larger population sizes require more function evaluations
and increase the computing efforts for convergence, but
increase the reliability of the algorithm. The problem is to
find a compromise between cost and reliability. In order to
make IPSO algorithm have better optimization capability,
we will set swarm size 𝑆 = 30, and let parameter 𝑐

3
take

the corresponding values in the third row of Table 2 for the
different benchmark functions in the following tests with the
algorithm.

(2) Compare IPSO Algorithm with Other Four Algorithms.
Using BPSO, EPSO, CPSO, and ACL-PSO algorithm to
compare with IPSO algorithm on above four benchmark
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Figure 4: (𝑡 − log(𝑦)) curves of 𝑓
4
according to different 𝑆.

functions, we set Vmin = 𝑥min, Vmax = 𝑥max, 𝑆 = 30, 𝐶𝑆 =
1000, and other parameters related to those compared with
algorithms are listed in Table 3.

Run each of above five algorithms 50 times indepen-
dently. Record five indicators, which are the minimum object
value (Min), the maximum object value (Max), the mean
object value (Mean), the deviation of object value (Dev),

and the average convergence iteration number (ACIN), for
every run. Ours experimental results are shown in Table 4
and Figures 5, 6, 7, and 8.

FromTable 4, it can be seen that there are higher accuracy
for the IPSO than that for the BPSO, EPSO, CPSO, and ACL-
PSO. From the mean and deviation in Table 4, the IPSO is
better than the BPSO, EPSO, CPSO, and ACL-PSO, with
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Figure 5: (𝑡 − 𝑦(𝑡)) curves of 𝑓
1
according to results of five algorithms. (b) is a partial graph of (a) corresponding to 𝑦(𝑡) ∈ [0, 1.2].
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Figure 6: (𝑡 − 𝑦(𝑡)) curves of 𝑓
2
according to results of five algorithms. (b) is a partial graph of (a) corresponding to 𝑦(𝑡) ∈ [0, 0.1].

a steady convergence. In addition, IPSO algorithm needs less
number of iteration for coming to convergence than ACL-
PSO algorithm does.

Let iteration number 𝑡 be as 𝑥-coordinate and average
best object value according to the 𝑡th iteration 𝑦(𝑡) as 𝑦-
coordinate; we plot (𝑡 − 𝑦(𝑡)) curves of these four benchmark
functions in Figures 5–8.

From Figures 5–8, it can be seen that IPSO algorithm,
compared to other four algorithms, searches more excellent
object value at later iteration. EPSO, CPSO, ACL-PSO, and
IPSO algorithm all can find more optimal solution than

BPSO algorithm does after litter iteration number, and the
performance of IPSO algorithm is the best among these five
algorithms. In addition, IPSO algorithm needs less iteration
number to come to convergence than ACL-PSO algorithm
does. This phenomenon is considered to be due to the
combination of inertia weight𝑤

2
(𝑡)working with population

centroid and 𝑤
1
(𝑡) working with best individual centroid.

(3) Compare Success Rate and Average Number of Iteration
Corresponding to Target Precision Arriving. In order to val-
idate the effectiveness of IPSO algorithm further, we set
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Figure 7: (𝑡 − 𝑦(𝑡)) curves of 𝑓
3
according to results of five algorithms. (b) is a partial graph of (a) corresponding to 𝑦 (𝑡) ∈ [18.6, 22].
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Figure 8: (𝑡 − 𝑦(𝑡)) curves of 𝑓
4
according to results of five algorithms. (b) is a partial graph of (a) corresponding to 𝑦(𝑡) ∈ [0, 10−3].

target precisions of above four benchmark functions, which
are listed in Table 5 and run every algorithm 100 turns for
each of test functions, respectively. Setting the maximum
iteration number as 1000, while object value is less than or
equal to its target precision, we plus success convergence
number with one and record the current iteration number
at one turn. Then, success rate (SR) is equal to the success
convergence number divided by total number of turns.
Average convergence iteration (ACI) is the mean iteration

numbers at all. Four group target accuracies, which are
listed in Table 5, are used to evaluate the stability of those
algorithms. Our experimental results are shown in Table 5.

From Table 5, it can be seen that success rates of those
five algorithms are affected by the target accuracies. Success
rate of IPSO algorithm for each test function reaches 100%
and is obviously better than those of BPSO, EPSO, CPSO,
and ACL-PSO. Average convergence iteration of EPSO is
smaller than CPSO algorithm, and ACI of IPSO is smaller
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than EPSO algorithm. So as to the ability of finding optimal
solutions, ACL-PSO algorithm is better than BPSO, EPSO,
and CPSO algorithms, and IPSO algorithm is better than
ACL-PSO algorithm.

5. Conclusions

The particle swarm optimization algorithm is a global
stochastic tool, which has ability to search the global optima.
PSO algorithm is easily trapped into local optima. In this
paper, in order to overcome the shortcoming of PSO algo-
rithm, we propose an improved particle swarm optimization
algorithm (IPSO) based on two forms of exponential inertia
weight and two kinds of centroids. By means of comparing
optimization ability of IPSO algorithm with BPSO, EPSO,
CPSO, and ACL-PSO algorithms, experimental results of
these four benchmark functions show that the proposed
IPSO algorithm is more efficient and outperforms other PSO
algorithms in accuracy investigated in this paper. Inertia
weight is one of the important parameters in PSO algorithm.
How can (5) respect the constraint on 𝑤min? Moreover can a
and b be chosen to be adaptive throughout a single evolution
to guarantee a suitable trade-off between exploration and
exploitation phase?These are good future research directions
for us.
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