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Terminal guidance law design and its implementation are considered for homing missiles against maneuvering targets. The lateral
acceleration dynamics are taken into account in the design. In the guidance law design, the line-of-sight acceleration signals are
incorporated into the acceleration reference signals to compensate for the targets’ maneuvers. Then the commanded accelerations
are designed and the convergent tracking of the lateral accelerations to these signals is proven theoretically. In the guidance
implementation, a linear high-gain differentiator is used to estimate the line-of-sight rates and the line-of-sight acceleration signals.
To avoid the magnifying effects of higher order differentiation, a practical design of commanded accelerations is given to realize
approximate tracking of the lateral accelerations to the given reference signals. Simulation is conducted for both cases with and
without measurement noises. The simulation results justify the feasibility of the design and the implementation.

1. Introduction

For terminal guidance laws of the homing missiles against
maneuvering targets, two of the most important factors
affecting the guidance precision are the targets’ maneuvers
and the lateral acceleration dynamics of the missiles [1]. If
these two factors are ignored in mathematical performance
analysis, then the conventional proportional navigation guid-
ance (PNG) laws, which provide for missiles lateral accel-
eration commands proportional to the line-of-sight rates,
are optimal in the sense that both the miss distance and
control efforts are accounted for in the performance cost
functional [2]. This result motivated many guidance laws
based on PNG. For amaneuvering target, an augmented PNG
law consists of conventional PNG and a compensation term
for the target’s maneuvering acceleration. Thus, the target’s
maneuver is canceled out in the relative kinematics of the
missile and the target, and the performance of PNG against
a nonmaneuvering target is recovered. Since the target’s
maneuver is generally unknown, the remaining problem is
how to estimate the target’s maneuver in guidance law imple-
mentation. For a seeker with bearing onlymeasurement, such

as an infrared seeker, the acceleration components of the
target’smaneuver are not observable.Therefore, Kalman filter
technique, as well as conventional state observer technique,
would be practical only if an appropriate maneuveringmodel
for the target’s maneuver was designed for the observability
condition to be met [3]. By extending the observer states,
however, extended state observer technique can be used to
estimate the target’s maneuver without making any a priori
assumptions on target’smaneuver [4, 5]. In fact, extending the
observer states is equivalent to a constant acceleration (CA)
model being adopted, and the discrepancy between the actual
target’s maneuver and the output of the CA model is treated
as an uncertain term in the observer error dynamics and is
suppressed via high-gain feedback. Thus no further delicate
models of the target’s maneuver are necessary.

The compensation for the targets’ maneuvers is a feed-
forward method. The targets’ maneuvers can also be treated
in a feedback paradigm. In this case, the maneuvers of the
targets are thought of as external disturbance inputs for the
guidance systems, and feedback control methods with good
disturbance rejection or attenuation can be used to design
the guidance laws. Indeed, based on sliding mode control,
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various guidance laws are designed in which a switching
term is added to the PNG term [6, 7]. The sliding mode
guidance laws are nonsmooth, whichmay result in theoretical
difficulties in guidance law implementation when the lateral
acceleration dynamics of the missiles are considered.

Both theoretical analysis and numerical simulation show
that the lateral acceleration dynamics of the missiles can
induce miss distance, especially when the time constants are
large. There are two approaches to solving this problem. One
approach is to improve the response characteristics of the
lateral acceleration dynamics by adopting novel techniques
such as lateral jets [8], and the guidance and control systems
are in a decoupled structure and designed in separately.
The introduction of the lateral jets endows the missiles with
features of heterogeneous multiple actuators and substantial
uncertainties due to the side jet interaction effects [9], which
bring potential difficulties in the design of the guidance and
control systems. The other approach is to conduct an inte-
grated design of guidance and control [10]. In an integrated
design, the guidance, control, and guidance information
estimation are treated as a whole coupled system for which
certain performance index is to be optimized. The integrated
system is quite complex with multiple constraints compared
with the guidance systemor the control system in a decoupled
structure, and there are still difficulties to be tackled in both
theory and application.

In this paper, a novel guidance law is designed formissiles
against maneuvering targets. In the guidance law, the target’s
maneuvers are compensated for via incorporating the line-
of-sight accelerations into the guidance commands, instead
of constructing a filter or an observer. Also incorporated
into the commands are the dynamics of the missiles via a
robust control design. The idea is to design the guidance
and control separately and then to redesign the lateral
acceleration commands issued by the guidance laws by
incorporating the closed-loop lateral acceleration dynamics
into the commands. By doing so, a high guidance precision
is reached. The rest of the paper is organized as follows.
In Section 2, the three-dimensional relative kinematics of
a missile and its maneuvering target are given, and the
problem of terminal guidance law design is formulated. In
Section 3, a guidance law is designed via incorporating into
guidance commands the line-of-sight accelerations and the
lateral acceleration dynamics of the missile. In the following
section, guidance law implementation is considered, and a
practical design of the acceleration commands is given. In
Section 5, numerical simulation is conducted.The conclusion
is given in Section 6.

2. Problem Formulation

Weassume the terminal guidance scenario of amissile against
a maneuvering air target. It is convenient to describe the
kinematics of the relative motion between the missile and
its target in the line-of-sight coordinate system, denoted by
𝑂𝑥
𝐿
𝑦
𝐿
𝑧
𝐿
and shown in Figure 1. The origin 𝑂 of 𝑂𝑥

𝐿
𝑦
𝐿
𝑧
𝐿

is set to the mass center of the missile (denoted by 𝑀); the
axis 𝑂𝑥

𝐿
is aligned with the line-of-sight (denoted by LOS)
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Figure 1: Orientation of 𝑂𝑥
𝐿
𝑦
𝐿
𝑧
𝐿
with respect to 𝐴𝑥𝑦𝑧.

and the half-line originated from𝑂 and pointing to the target
(denoted by 𝑇); the axis 𝑂𝑦

𝐿
is in the vertical plane, pointing

upward and normal to 𝑂𝑥
𝐿
; and the axis 𝑂𝑧

𝐿
is normal to

both 𝑂𝑥
𝐿
and 𝑂𝑦

𝐿
with its positive direction decided by the

right-hand rule. We take the earth-fixed coordinate system
𝐴𝑥𝑦𝑧 as an inertial reference. 𝑂𝑥

𝐿
𝑦
𝐿
𝑧
𝐿
can be obtained

through a translation of 𝐴𝑥𝑦𝑧, followed by two consecutive
counterclockwise rotations, first with an Euler angle 𝑞

𝛽
with

respect to 𝐴𝑦 and second with an Euler angle 𝑞
𝜀
with respect

to𝑂𝑧
𝐿
, as shown in Figure 1, where, for clarity of illustration,

the origin 𝐴 of 𝐴𝑥𝑦𝑧 is already translated to coincide with
the origin𝑂 of𝑂𝑥

𝐿
𝑦
𝐿
𝑧
𝐿
, and the rotations are indicated with

dotted curved arrows. Thus, the orientation of 𝑂𝑥
𝐿
𝑦
𝐿
𝑧
𝐿
with

respect to 𝐴𝑥𝑦𝑧 is characterized by 𝑞
𝜀
and 𝑞
𝛽
, known as line-

of-sight angles. The relative range vector, for example, the
radius vector of the target in 𝑂𝑥

𝐿
𝑦
𝐿
𝑧
𝐿
originating from 𝑀

towards 𝑇 along LOS, is denoted by �⃗�, and its magnitude, the
relative range, is denoted by 𝑅.

Next, we construct the mathematical description of the
relative motion of the missile and the target in 𝑂𝑥

𝐿
𝑦
𝐿
𝑧
𝐿
.

Denote the respective unit vectors of 𝑂𝑥
𝐿
, 𝑂𝑦
𝐿
, and 𝑂𝑧

𝐿
by

⃗𝑖
𝐿
, ⃗𝑗
𝐿
, and �⃗�

𝐿
, and we have

�⃗� = 𝑅 ⃗𝑖
𝐿
+ 0 ⃗𝑗
𝐿
+ 0�⃗�
𝐿
. (1)

Denote the unit vectors of 𝐴𝑥, 𝐴𝑦, and 𝐴𝑧 by ⃗𝑖, ⃗𝑗, and �⃗�,
respectively. Figure 1 shows that

[
[

[

⃗𝑖
𝐿

⃗𝑗
𝐿

�⃗�
𝐿

]
]

]

= 𝐿 (𝑞
𝜀
, 𝑞
𝛽
)
[
[

[

⃗𝑖

⃗𝑗

�⃗�

]
]

]

, (2)
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where

𝐿 (𝑞
𝜀
, 𝑞
𝛽
) = [

[

cos 𝑞
𝜀

sin 𝑞
𝜀

0

− sin 𝑞
𝜀
cos 𝑞
𝜀

0

0 0 1

]

]

[

[

cos 𝑞
𝛽

0 − sin 𝑞
𝛽

0 1 0

sin 𝑞
𝛽

0 cos 𝑞
𝛽

]

]

= [

[

cos 𝑞
𝜀
cos 𝑞
𝛽

sin 𝑞
𝜀

− cos 𝑞
𝜀
sin 𝑞
𝛽

− sin 𝑞
𝜀
cos 𝑞
𝛽

cos 𝑞
𝜀

sin 𝑞
𝜀
sin 𝑞
𝛽

sin 𝑞
𝛽

0 cos 𝑞
𝛽

]

]

.

(3)

Consider the two consecutive rotations shown in Figure 1,
andwe have the expression of the angular velocity of𝑂𝑥

𝐿
𝑦
𝐿
𝑧
𝐿

with respect to 𝐴𝑥𝑦𝑧 as follows:

�⃗� = ̇𝑞
𝛽

⃗𝑗 + ̇𝑞
𝜀
�⃗�
𝐿

= ̇𝑞
𝛽
sin 𝑞
𝜀

⃗𝑖
𝐿
+ ̇𝑞
𝛽
cos 𝑞
𝜀

⃗𝑗
𝐿
+ ̇𝑞
𝜀
�⃗�
𝐿
,

(4)

where the latter equality is obtained using (2). The relative
velocity between the missile and the target is

̇
�⃗� = �̇� ⃗𝑖

𝐿
+ �⃗� × 𝑅 ⃗𝑖

𝐿

= �̇� ⃗𝑖
𝐿
+ 𝑅 ̇𝑞
𝜀

⃗𝑗
𝐿
− 𝑅 ̇𝑞
𝛽
cos 𝑞
𝜀
�⃗�
𝐿
,

(5)

which further leads to

̈
�⃗� = �̈� ⃗𝑖

𝐿
+ �̇�

̇⃗𝑖
𝐿
+ (�̇� ̇𝑞

𝜀
+ 𝑅 ̈𝑞
𝜀
) ⃗𝑗
𝐿
+ 𝑅 ̇𝑞
𝜀

̇⃗𝑗
𝐿

− (�̇� ̇𝑞
𝛽
cos 𝑞
𝜀
+ 𝑅 ̈𝑞
𝛽
cos 𝑞
𝜀
− 𝑅 ̇𝑞
𝛽

̇𝑞
𝜀
sin 𝑞
𝜀
) �⃗�
𝐿

− 𝑅 ̇𝑞
𝛽
cos 𝑞
𝜀

̇
�⃗�
𝐿
,

(6)

where

̇⃗𝑖
𝐿

= �⃗� × ⃗𝑖
𝐿

= ̇𝑞
𝜀

⃗𝑗
𝐿
− ̇𝑞
𝛽
cos 𝑞
𝜀
�⃗�
𝐿
,

̇⃗𝑗
𝐿

= �⃗� × ⃗𝑗
𝐿

= − ̇𝑞
𝜀

⃗𝑖
𝐿
+ ̇𝑞
𝛽
sin 𝑞
𝜀
�⃗�
𝐿
,

̇
�⃗�
𝐿

= �⃗� × �⃗�
𝐿

= ̇𝑞
𝛽
cos 𝑞
𝜀

⃗𝑖
𝐿
− ̇𝑞
𝛽
sin 𝑞
𝜀

⃗𝑗
𝐿
.

(7)

Substitute these expressions into (6), and we have

̈
�⃗� = (�̈� − 𝑅 ̇𝑞

2

𝜀
− 𝑅 ̇𝑞
2

𝛽
cos2𝑞
𝜀
) ⃗𝑖
𝐿

+ (2�̇� ̇𝑞
𝜀
+ 𝑅 ̈𝑞
𝜀
+ 𝑅 ̇𝑞
2

𝛽
sin 𝑞
𝜀
cos 𝑞
𝜀
) ⃗𝑗
𝐿

+ (−2�̇� ̇𝑞
𝛽
cos 𝑞
𝜀
+ 𝑅 ̇𝑞
𝜀

̇𝑞
𝛽
sin 𝑞
𝜀
− 𝑅 ̈𝑞
𝛽
cos 𝑞
𝜀

+𝑅 ̇𝑞
𝜀

̇𝑞
𝛽
sin 𝑞
𝜀
) �⃗�
𝐿
.

(8)

Denote the projections of the target’s acceleration on 𝑂𝑥
𝐿
,

𝑂𝑦
𝐿
, and 𝑂𝑧

𝐿
by 𝑎
𝑇𝑟
, 𝑎
𝑇𝜀
, and 𝑎

𝑇𝛽
, respectively, and denote

the projections of the missile’s acceleration by 𝑎
𝑀𝑟

, 𝑎
𝑀𝜀

, and
𝑎
𝑀𝛽

, respectively. Account for the contributions to ̈
�⃗� of these

projections, and we have

̈
�⃗� = (𝑎

𝑇𝑟
− 𝑎
𝑀𝑟

) ⃗𝑖
𝐿
+ (𝑎
𝑇𝜀

− 𝑎
𝑀𝜀

) ⃗𝑗
𝐿
+ (𝑎
𝑇𝛽

− 𝑎
𝑀𝛽

) �⃗�
𝐿
. (9)

Equating (8) to (9) gives the following mathematical descrip-
tion of the relative motion between the missile and its target:

�̈� = 𝑅 ̇𝑞
2

𝜀
+ 𝑅 ̇𝑞
2

𝛽
cos2𝑞
𝜀
+ 𝑎
𝑇𝑟

− 𝑎
𝑀𝑟

, (10)

̈𝑞
𝜀
= −

2�̇�

𝑅
̇𝑞
𝜀
− ̇𝑞
2

𝛽
sin 𝑞
𝜀
cos 𝑞
𝜀
+

𝑎
𝑇𝜀

− 𝑎
𝑀𝜀

𝑅
, (11)

̈𝑞
𝛽

= −
2�̇�

𝑅
̇𝑞
𝛽

+ 2 ̇𝑞
𝜀

̇𝑞
𝛽
tan 𝑞
𝜀
−

𝑎
𝑇𝛽

− 𝑎
𝑀𝛽

𝑅 cos 𝑞
𝜀

. (12)

In (11) and (12), the target’s acceleration components 𝑎
𝑇𝜀

and 𝑎
𝑇𝛽

are unknown and can be thought of as external
disturbances. The acceleration components 𝑎

𝑀𝜀
and 𝑎
𝑀𝛽

are
provided by the missile acceleration dynamics which can be
modeled as follows:

̈𝑎
𝑀𝜀

= −2𝜁𝜔
𝑛

̇𝑎
𝑀𝜀

− 𝜔
2

𝑛
𝑎
𝑀𝜀

+ 𝜔
2

𝑛
𝑎
𝑀𝜀𝑐

+ Δ
𝜀
(𝑎
𝑀𝜀

, ̇𝑎
𝑀𝜀

, 𝑡) ,

̈𝑎
𝑀𝛽

= −2𝜁𝜔
𝑛

̇𝑎
𝑀𝛽

− 𝜔
2

𝑛
𝑎
𝑀𝛽

+ 𝜔
2

𝑛
𝑎
𝑀𝛽𝑐

+ Δ
𝛽
(𝑎
𝑀𝛽

, ̇𝑎
𝑀𝛽

, 𝑡) ,

(13)

where the dynamics are modeled as second-order linear
dynamics with damping ratio 𝜁 > 0 and natural frequency
𝜔
𝑛

> 0, and 𝑎
𝑀𝜀𝑐

and 𝑎
𝑀𝛽𝑐

are guidance commands to
be designed. The differences of the second-order models
from the real dynamics of the missile are lumped into
the uncertainties Δ

𝜀
(𝑎
𝑀𝜀

, ̇𝑎
𝑀𝜀

, 𝑡) and Δ
𝛽
(𝑎
𝑀𝛽

, ̇𝑎
𝑀𝛽

, 𝑡) which
satisfy, uniformly in 𝑡, the following inequalities:

Δ 𝜀 (𝑎𝑀𝜀, ̇𝑎
𝑀𝜀

, 𝑡)
 ⩽ 𝑎
𝑀

,


Δ
𝛽
(𝑎
𝑀𝛽

, ̇𝑎
𝑀𝛽

, 𝑡)

⩽ 𝑎
𝑀

,

(14)

where 𝑎
𝑀
is a known constant.

Classical guidance theory shows that if the line-of-sight
rates ̇𝑞

𝜀
and ̇𝑞
𝛽
are convergent to zero, then a satisfactorymiss

distance can be guaranteed. Thus the guidance law design
problem can be formulated as follows: with the existence
of the external disturbances 𝑎

𝑇𝜀
and 𝑎

𝑇𝛽
and uncertainties

Δ
𝜀
(𝑎
𝑀𝜀

, ̇𝑎
𝑀𝜀

, 𝑡) and Δ
𝛽
(𝑎
𝑀𝛽

, ̇𝑎
𝑀𝛽

, 𝑡) satisfying (14), design
𝑎
𝑀𝜀𝑐

and 𝑎
𝑀𝛽𝑐

in (13) such that 𝑎
𝑀𝜀

and 𝑎
𝑀𝛽

in (11) and (12)
can make ̇𝑞

𝜀
and ̇𝑞
𝛽
convergent to zero.

3. Guidance Law Design Based on Line-of-
Sight Acceleration Feedback

If the following equalities hold

𝑎
𝑀𝜀

= 𝑎
𝑇𝜀

− 2�̇� ̇𝑞
𝜀
− 𝑅 ̇𝑞
2

𝛽
sin 𝑞
𝜀
cos 𝑞
𝜀
+ 𝑘𝑅 ̇𝑞

𝜀
,

𝑎
𝑀𝛽

= 𝑎
𝑇𝛽

+ 2�̇� ̇𝑞
𝛽
cos 𝑞
𝜀
− 2𝑅 ̇𝑞

𝜀
̇𝑞
𝛽
sin 𝑞
𝜀
− 𝑘𝑅 ̇𝑞

𝛽
cos 𝑞
𝜀
,

(15)
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where 𝑘 is a positive constant, then (11) and (12) become

̈𝑞
𝜀
= −𝑘 ̇𝑞

𝜀
,

̈𝑞
𝛽

= −𝑘 ̇𝑞
𝛽
.

(16)

Equations (16) guarantee the exponential convergence of the
line-of-sight rates, and the convergence rates are determined
by parameter 𝑘. Generally speaking, equalities (15) do not
hold. However, if commanded acceleration components 𝑎

𝑀𝜀𝑐

and 𝑎
𝑀𝛽𝑐

are designed such that the left-hand sides of (15),
𝑎
𝑀𝜀

and 𝑎
𝑀𝛽

, can track the respective right-hand sides,
then the dynamics of line-of-sight rates (16) will hold in an
approximation sense.Thus the right-hand sides of (15) should
be incorporated into 𝑎

𝑀𝜀𝑐
and 𝑎

𝑀𝛽𝑐
as reference signals for

𝑎
𝑀𝜀

and 𝑎
𝑀𝛽

to track. To deal with the unknown terms 𝑎
𝑇𝜀

and 𝑎
𝑇𝛽
, we rewrite (11) and (12) as

𝑅 ̈𝑞
𝜀
+ 𝑎
𝑀𝜀

= 𝑎
𝑇𝜀

− 2�̇� ̇𝑞
𝜀
− 𝑅 ̇𝑞
2

𝛽
sin 𝑞
𝜀
cos 𝑞
𝜀
,

𝑎
𝑀𝛽

− 𝑅 ̈𝑞
𝛽
cos 𝑞
𝜀
= 𝑎
𝑇𝛽

+ 2�̇� ̇𝑞
𝛽
cos 𝑞
𝜀
− 2𝑅 ̇𝑞

𝜀
̇𝑞
𝛽
sin 𝑞
𝜀
.

(17)

Comparing the right-hand sides of (15) with those of (17)
suggests taking the reference signals in the form of

𝑎
𝑀𝜀𝑟

= 𝑎
𝑀𝜀

+ 𝑅 ̈𝑞
𝜀
+ 𝑘𝑅 ̇𝑞

𝜀
,

𝑎
𝑀𝛽𝑟

= 𝑎
𝑀𝛽

− 𝑅 ̈𝑞
𝛽
cos 𝑞
𝜀
− 𝑘𝑅 ̇𝑞

𝛽
cos 𝑞
𝜀
,

(18)

based onwhich the commanded accelerations are in the form
of

𝑎
𝑀𝜀𝑐

= 𝑎
𝑀𝜀𝑟

+ 𝐾
𝜀
,

𝑎
𝑀𝛽𝑐

= 𝑎
𝑀𝛽𝑟

+ 𝐾
𝛽
,

(19)

where 𝐾
𝜀
and 𝐾

𝛽
are yet to be designed. In (18) line-of-

sight accelerations, ̈𝑞
𝜀
and ̈𝑞

𝛽
, are used to compensate for

the target’s unknown maneuvers. The compensation effect
depends on the tracking of 𝑎

𝑀𝜀
and 𝑎

𝑀𝛽
to the respective

right-hand sides of (15). In the sequel, we design𝐾
𝜀
(𝑎
𝑀𝜀

, ̇𝑎
𝑀𝜀

)

and 𝐾
𝛽
(𝑎
𝑀𝛽

, ̇𝑎
𝑀𝛽

) to guarantee the tracking, as well as to
account for the uncertainties in (13).

Define the tracking error vectors as

𝑒
𝜀
= [𝑒𝜀1 𝑒

𝜀2]
𝑇

= [𝑎𝑀𝜀 − 𝑎
𝑀𝜀𝑟

̇𝑎
𝑀𝜀

− ̇𝑎
𝑀𝜀𝑟]
𝑇

,

𝑒
𝛽

= [𝑒𝛽1 𝑒
𝛽2]
𝑇

= [𝑎𝑀𝛽 − 𝑎
𝑀𝛽𝑟

̇𝑎
𝑀𝛽

− ̇𝑎
𝑀𝛽𝑟]
𝑇

,

(20)

and, according to (13), we have the error dynamics as follows:

̇𝑒
𝜀
= 𝐴𝑒
𝜀
+ 𝐵(𝑎

𝑀𝜀𝑐
− 𝑎
𝑀𝜀𝑟

+ 𝑓
𝜀
+

1

𝜔2
𝑛

Δ
𝜀
(𝑎
𝑀𝜀

, ̇𝑎
𝑀𝜀

, 𝑡)) ,

̇𝑒
𝛽

= 𝐴𝑒
𝛽

+ 𝐵(𝑎
𝑀𝛽𝑐

− 𝑎
𝑀𝛽𝑟

+ 𝑓
𝛽

+
1

𝜔2
𝑛

Δ
𝛽
(𝑎
𝑀𝛽

, ̇𝑎
𝑀𝛽

, 𝑡)) ,

(21)

where

𝑓
𝜀
= −

2𝜁 ̇𝑎
𝑀𝜀𝑟

𝜔
𝑛

−
̈𝑎
𝑀𝜀𝑟

𝜔2
𝑛

, (22)

𝑓
𝛽

= −
2𝜁 ̇𝑎
𝑀𝛽𝑟

𝜔
𝑛

−

̈𝑎
𝑀𝛽𝑟

𝜔2
𝑛

, (23)

𝐴 = [
0 1

−𝜔
2

𝑛
−2𝜁𝜔
𝑛

] , 𝐵 = [
0

𝜔
2

𝑛

] . (24)

Substitute (19) into (21), and we have

̇𝑒
𝜀
= 𝐴𝑒
𝜀
+ 𝐵(𝐾

𝜀
+ 𝑓
𝜀
+

1

𝜔2
𝑛

Δ
𝜀
(𝑎
𝑀𝜀

, ̇𝑎
𝑀𝜀

, 𝑡)) ,

̇𝑒
𝛽

= 𝐴𝑒
𝛽

+ 𝐵(𝐾
𝛽

+ 𝑓
𝛽

+
1

𝜔2
𝑛

Δ
𝛽
(𝑎
𝑀𝛽

, ̇𝑎
𝑀𝛽

, 𝑡)) .

(25)

Since 𝜁 > 0 and 𝜔
𝑛

> 0, 𝐴 in (24) is a Hurwitz matrix.
Therefore, for any 𝑄 > 0, there is a 𝑃 > 0, such that the
following Lyapunov equation holds:

𝐴
𝑇
𝑃 + 𝑃𝐴 = −𝑄. (26)

For error dynamics (25), define the Lyapunov function
candidate as 𝑉 = 𝑒

𝑇

𝜀
𝑃𝑒
𝜀
+ 𝑒
𝑇

𝛽
𝑃𝑒
𝛽
, and we have

�̇� = 𝑒
𝑇

𝜀
(𝐴
𝑇
𝑃 + 𝑃𝐴) 𝑒

𝜀
+ 𝑒
𝑇

𝛽
(𝐴
𝑇
𝑃 + 𝑃𝐴) 𝑒

𝛽

+ 2𝑒
𝑇

𝜀
𝑃𝐵(𝐾

𝜀
+ 𝑓
𝜀
+

1

𝜔2
𝑛

Δ
𝜀
(𝑎
𝑀𝜀

, ̇𝑎
𝑀𝜀

, 𝑡))

+ 2𝑒
𝑇

𝛽
𝑃𝐵(𝐾

𝛽
+ 𝑓
𝛽

+
1

𝜔2
𝑛

Δ
𝛽
(𝑎
𝑀𝛽

, ̇𝑎
𝑀𝛽

, 𝑡)) .

(27)

Substitute (26) into (27) and consider (14), and we have

�̇� ⩽ −𝑒
𝑇

𝜀
𝑄𝑒
𝜀
− 𝑒
𝑇

𝛽
𝑄𝑒
𝛽

+ 2𝑒
𝑇

𝜀
𝑃𝐵 (𝐾

𝜀
+ 𝑓
𝜀
) + 2𝑒

𝑇

𝛽
𝑃𝐵 (𝐾

𝛽
+ 𝑓
𝛽
)

+
2𝑎
𝑀

𝜔2
𝑛

(
𝑃𝐵𝑒
𝜀

 +

𝑃𝐵𝑒
𝛽


) .

(28)

If we design 𝐾
𝜀
and 𝐾

𝛽
as follows:

𝐾
𝜀
= −𝑓
𝜀
−

2𝑎
𝑀

𝜔2
𝑛

sign (𝐵
𝑇
𝑃𝑒
𝜀
) ,

𝐾
𝛽

= −𝑓
𝛽

−
2𝑎
𝑀

𝜔2
𝑛

sign (𝐵
𝑇
𝑃𝑒
𝜀
) ,

(29)

then from (28) we have �̇� ⩽ −𝑒
𝑇

𝜀
𝑄𝑒
𝜀
− 𝑒
𝑇

𝛽
𝑄𝑒
𝛽
, which justifies

the asymptotic convergence of error vectors 𝑒
𝜀
and 𝑒
𝛽
.

4. Guidance Law Implementation

Here we assume that the radar seeker of the missile can
provide relative range, relative range rate, and line-of-sight
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angles for guidance law implementation. Since angular rates
and accelerations of line-of-sight angles are used in the
guidance law, the implementation is focused on numerical
differentiation algorithms. Here we employ the following
linear differentiator:

�̇�
1
= 𝑥
2
−

𝑘
1

𝜀
(𝑥
1
− 𝑓 (𝑡)) ,

�̇�
2
= 𝑥
3
−

𝑘
2

𝜀2
(𝑥
1
− 𝑓 (𝑡)) ,

�̇�
3
= −

𝑘
3

𝜀3
(𝑥
1
− 𝑓 (𝑡)) ,

(30)

where 𝑓(𝑡) is the input signal to be differentiated, 𝜀 > 0 is a
small design parameter, and 𝑘

1
> 0, 𝑘

2
> 0, and 𝑘

3
> 0 are

such that

𝑠
3
+ 𝑘
1
𝑠
2
+ 𝑘
2
𝑠 + 𝑘
3

(31)

is a Hurwitz polynomial. Here we assume that the third-order
derivative of 𝑓 is bounded; that is, there exists a constant 𝐾

𝑓

such that

𝑓
(3)

(𝑡)

⩽ 𝐾
𝑓
, ∀𝑡. (32)

Define

𝑒 = [

[

𝑒
1

𝑒
2

𝑒
3

]

]

=

[
[
[
[
[

[

𝑥
1
− 𝑓 (𝑡)

𝜀2

𝑥
2
− ̇𝑓 (𝑡)

𝜀2

𝑥
3
− ̈𝑓 (𝑡)

]
]
]
]
]

]

, (33)

and from (30) we have

𝜀 ̇𝑒 = 𝐴
𝑒
𝑒 + 𝜀𝐵

𝑒
𝑓
(3)

(𝑡) , (34)

where

𝐴
𝑒
= [

[

−𝑘
1

1 0

−𝑘
2

0 1

−𝑘
3

0 0

]

]

, 𝐵
𝑒
= [

[

0

0

1

]

]

. (35)

Since (31) is a Hurwitz polynomial, 𝐴 is Hurwitz. Therefore,
for any given 𝑄

𝑒
> 0, there exists a 𝑃 > 0, such that

𝐴
𝑇

𝑒
𝑃 + 𝑃𝐴

𝑒
= −𝑄
𝑒
. (36)

Take 𝑉
𝑒
(𝑒) = 𝑒

𝑇
𝑃
𝑒
𝑒, and it is easy to show that system (34) is

input-to-state stable [11] with𝑓
(3)

(𝑡) thought of as an external
input, and �̇�(𝑒) ⩽ 0 whenever ‖𝑒‖ ⩾ 2𝜀‖𝑃

𝑒
𝐵
𝑒
‖𝐾
𝑓
/𝜆min(𝑄𝑒).

This means that the state of the system (34), the error defined
in (33), will converge in finite time 𝑇(𝜀), dependent on 𝜀, to
the following set:

𝑆 (𝜀) = {𝑒 ∈ R
3
| ‖𝑒‖ ⩽

2𝜀
𝑃𝑒𝐵𝑒

𝐾
𝑓

𝜆min (𝑄
𝑒
)

} , (37)

which is dependent on the parameter 𝜀 and shrinks to
zero as 𝜀 tends to zero from above. Thus for an input

signal 𝑓 satisfying (32), the error variables defined in (33) are
bounded, and

lim
𝑡→∞,𝜀↓0

𝑥
1 (𝑡) = 𝑓 (𝑡) ,

lim
𝑡→∞,𝜀↓0

𝑥
2 (𝑡) = ̇𝑓 (𝑡) ,

lim
𝑡→∞,𝜀↓0

𝑥
3 (𝑡) = ̈𝑓 (𝑡) .

(38)

We can also see from (34) that the converging rates of (38)
increase with the decrease of the value of 𝜀:

lim
𝜀↓0

𝑇 (𝜀) = 0, (39)

and the bound 𝐾
𝑓
in (32) can be arbitrarily large provided 𝜀

is small enough. However, with the decrease of 𝜀, the error
variables 𝑒

𝑖
(𝑡), 𝑖 = 1, 2, 3, 0 < 𝑡 < 𝑇(𝜀) will become very

large, known as the peaking phenomenon [12]. To attenuate
the peaking with the set 𝑆(𝜀) unchanged, we can introduce a
satiation function to the differentiator (30). Here the details
will not be discussed theoretically, but we note that numerical
simulationwe conducted has revealed the effectiveness of this
technique.

We denote the state of the differentiator (30) by 𝑥
𝜀

𝑖
, 𝑖 =

1, 2, 3 when the input signal is 𝑞
𝜀
and by 𝑥

𝛽

𝑖
, 𝑖 = 1, 2, 3 when

the input signal is 𝑞
𝛽
. Therefore, the reference signals given

in (18) are implemented by replacing ̇𝑞
𝜀
, ̈𝑞
𝜀
, ̇𝑞
𝛽
, ̈𝑞
𝛽
by 𝑥
𝜀

2
, 𝑥𝜀
3
,

𝑥
𝛽

2
, and 𝑥

𝛽

3
, respectively, provided 𝑅, 𝑞

𝜀
, and 𝑞

𝛽
are available.

As far as measurement noises are concerned, we need to
limit the order of differentiation operations as low as possible,
especially to avoid very high order differentiations. Here only
first-order and second-order differentiations are necessary,
and we can limit the effects of noises by limiting the value of
the parameter 𝜀. If we used the differentiator to implement𝐾

𝜀

and𝐾
𝛽
in (29), the further differentiation operations on 𝑎

𝑀𝜀𝑟

and 𝑎
𝑀𝛽𝑟

required in (22) and (23) would have significantly
magnified the noises of the measured signals 𝑞

𝜀
and 𝑞
𝛽
, since

third-order and fourth-order differentiations are involved. To
avoid this, here we give a practical design of 𝑎

𝑀𝜀𝑟
and 𝑎

𝑀𝛽𝑟
,

instead of the theoretical design given in (29). The idea is to
treat the bounded uncertaintiesΔ

𝜀
andΔ

𝛽
as input signals to

dynamics (13) and to reduce the gain of Δ
𝜀
and Δ

𝛽
as well as

to increase the frequency bandwidths of 𝑎
𝑀𝜀𝑟

and 𝑎
𝑀𝛽𝑟

.
Let

𝐾
𝜀
= −

2𝜁 (𝐾 − 1)

𝜔
𝑛

̇𝑎
𝑀𝜀

− (𝐾
2
− 1) 𝑎

𝑀𝜀
+ (𝐾
2
− 1) 𝑎

𝑀𝜀𝑟
,

𝐾
𝛽

= −
2𝜁 (𝐾 − 1)

𝜔
𝑛

̇𝑎
𝑀𝛽

− (𝐾
2
− 1) 𝑎

𝑀𝛽
+ (𝐾
2
− 1) 𝑎

𝑀𝛽𝑟
,

(40)
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where 𝐾 > 1 is a design parameter, and substitute (40) into
(13), and we have

̈𝑎
𝑀𝜀

= −2𝜁 (𝐾𝜔
𝑛
) ̇𝑎
𝑀𝜀

− (𝐾𝜔
𝑛
)
2
𝑎
𝑀𝜀

+ (𝐾𝜔
𝑛
)
2
𝑎
𝑀𝜀𝑟

+ Δ
𝜀
(𝑎
𝑀𝜀

, ̇𝑎
𝑀𝜀

, 𝑡) ,

̈𝑎
𝑀𝛽

= −2𝜁 (𝐾𝜔
𝑛
) ̇𝑎
𝑀𝛽

− (𝐾𝜔
𝑛
)
2
𝑎
𝑀𝛽

+ (𝐾𝜔
𝑛
)
2
𝑎
𝑀𝛽𝑟

+ Δ
𝛽
(𝑎
𝑀𝛽

, ̇𝑎
𝑀𝛽

, 𝑡) .

(41)

We can see from (41) that the gains of uncertain input signals
Δ
𝜀
and Δ

𝛽
are reduced 𝐾

2 times, with the gains of 𝑎
𝑀𝜀𝑟

and 𝑎
𝑀𝛽𝑟

unchanged and the bandwidths increased 𝐾 times.
Although 𝐾

𝜀
and 𝐾

𝛽
in (40) cannot guarantee asymptotic

convergence of 𝑎
𝑀𝜀

and 𝑎
𝑀𝛽

to their respective reference
signals 𝑎

𝑀𝜀𝑟
and 𝑎

𝑀𝛽𝑟
, as guaranteed by (29), a satisfactory

tracking can be guaranteed provided 𝐾 is sufficiently large.

5. Simulation

Here we consider the terminal guidance phase with the
following initial conditions:

𝑅 (0) = 6000m, �̇� (0) = 600m/s, 𝑞
𝜀 (0) = 27

∘
,

̇𝑞
𝜀 (0) = 1.5

∘
/s, 𝑞

𝛽 (0) = 30
∘
, ̇𝑞

𝜀 (0) = −1.25
∘
/s.
(42)

The sampling period of the guidance system is assumed
to be 𝑇 = 5ms. Since the time horizon of a typical
terminal guidance phase ranges over a time interval of several
seconds or just over ten seconds, we can employ the Euler
integration as the numerical implementation of differentiator
(30) without much loss of precision; for example,

𝑥
1 ((𝑘 + 1) 𝑇)

= 𝑥
1 (𝑘𝑇) + 𝑇 [𝑥

2 (𝑘𝑇) − 𝑘
1
sat(

𝑥
1 (𝑘𝑇) − 𝑓 (𝑘𝑇)

𝐾
𝑠
𝜀

)] ,

𝑥
2 ((𝑘 + 1) 𝑇)

= 𝑥
2 (𝑘𝑇) + 𝑇 [𝑥

3 (𝑘𝑇) − 𝑘
2
sat(

𝑥
1 (𝑘𝑇) − 𝑓 (𝑘𝑇)

𝐾
𝑠
𝜀2

)] ,

𝑥
3 ((𝑘 + 1) 𝑇)

= 𝑥
3 (𝑘𝑇) + 𝑇 [−𝑘

3
sat(

𝑥
1 (𝑘𝑇) − 𝑓 (𝑘𝑇)

𝐾
𝑠
𝜀3

)] ,

(43)

where the parameter 𝐾
𝑠
is set to 80, 𝜀 is set to 0.011,

and the parameters 𝑘
1
, 𝑘
2
, and 𝑘

3
are set to 3, 3, and 1,

respectively. All the initial values of the differentiator are
set to zero. The parameters in the dynamics (13) are set to
𝜁 = 0.7 and 𝜔

𝑛
= 8. The maximum acceleration the missile

can provide is assumed to be 𝑎
𝑀

= 200m/s2, and the
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Figure 2: Line-of-sight rate ̇𝑞
𝜀
and its estimate: without noises.

commanded accelerations issued by the guidance system take
the following form:

𝑎
𝑀𝜀𝑐

= 𝑎
𝑀
sat(

𝑎
𝑀𝜀𝑟

+ 𝐾
𝜀

𝑎
𝑀

) ,

𝑎
𝑀𝛽𝑐

= 𝑎
𝑀
sat(

𝑎
𝑀𝛽𝑟

+ 𝐾
𝛽

𝑎
𝑀

) ,

(44)

where 𝑎
𝑀𝜀𝑟

and 𝑎
𝑀𝛽𝑟

are given in (18) with 𝑘 = 5, and 𝐾
𝜀
and

𝐾
𝛽
are given in (40) with 𝐾 = 4. The minimum range for

the seeker to operate is assumed to be 𝑅
𝑏
= 100m, and when

𝑅 < 𝑅
𝑏
, both 𝑎

𝑀𝜀𝑐
and 𝑎
𝑀𝛽𝑐

are set to zero.
Numerical simulation is conducted for the above scenario

with an integration step 0.0001 s. For a nonmaneuvering
target, the interception time is 10.0577 s, and themiss distance
is 0.0475m. Then we consider the case where the maneuver
of the target takes the following form:

𝑎
𝑇𝜀

= 100 sin (2𝜋𝑓
𝜀
+ 𝜃
𝜀
)m/s2,

𝑎
𝑇𝛽

= 100 sin (2𝜋𝑓
𝛽

+ 𝜃
𝛽
)m/s2,

(45)

where 𝑓
𝜀

= 0.35Hz, 𝜃
𝜀

= 𝜋/5, 𝑓
𝛽

= 0.5Hz, and 𝜃
𝛽

= 𝜋/5.
The interception time is 10.1039 s, and the miss distance is
0.1343m.The line-of-sight rates ̇𝑞

𝜀
and ̇𝑞
𝛽
and their respective

estimates are shown in Figures 2 and 3, and a satisfactory
tracking is obtained. The acceleration components of the
missile are shown in Figure 4.

To validate the proposed guidance law and its imple-
mentation when measurement is corrupted by noises, the
simulation is also conducted with 𝑞

𝜀
and 𝑞

𝛽
added with

a normal stochastic noise with zero mean and standard
deviation 𝜎 = 30 𝜇rad. Numerical simulation is repeated for
100 times. The miss distance values, with a mean value of
0.4856m and a standard deviation of 0.3372m, are shown in
Figure 5.The line-of-sight rates ̇𝑞

𝜀
and ̇𝑞
𝛽
and their respective
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Figure 3: Line-of-sight rate ̇𝑞
𝛽
and its estimate: without noises.
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Figure 4: The acceleration components of the missile: without
noises.

estimates under the noisy condition are shown in Figures 6
and 7. The lateral acceleration components of the missile are
shown in Figure 8.

6. Conclusion

Anovel terminal guidance law design and its implementation
are considered for missiles against maneuvering targets. The
target’s maneuvers are compensated for via feeding back the
line-of-sight accelerations. Therefore no maneuver models
for the targets are necessary.The lateral acceleration dynamics
are also incorporated into the guidance commands. The
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Figure 5: The miss distance values: with noises.
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Figure 6: Line-of-sight rate ̇𝑞
𝜀
and its estimate: with noises.

implementation of the guidance laws only requires the first-
order and second-order derivative signals of the line-of-
sight angles. A high-gain linear differentiator is used in
the guidance law implementation. Numerical simulation is
conducted to validate the design and implementation. In
the simulation, both cases with and without measurement
noises are considered. The results show the effectiveness. We
note that, in the implementation, the differentiator employs
no statistical features of the noises, which deserves further
investigation to improve the performance of the given design.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



8 Mathematical Problems in Engineering

0 2 4 6 8 10

0

2

4

6

Actual signal
Estimated signal

−6

−4

−2

Time (s)

Li
ne

-o
f-s

ig
ht

 ra
te

:q̇
𝛽

(∘
/s

)

Figure 7: Line-of-sight rate ̇𝑞
𝛽
and its estimate: with noises.

0 2 4 6 8 10

0

50

100

150

200

−50

−100

−150

−200

Ac
ce

le
ra

tio
n 

co
m

po
ne

nt
s o

f t
he

 m
iss

ile
 (m

/s
2
)

Time (s)

aM𝜀

aM𝛽

Figure 8: The acceleration components of the missile: with noises.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China under Grant nos. 61174001,
61203185, and 61321062. The work of the second author was
partially supported by theNatural Science Foundation ofHei-
longjiang Province of China (no. F201221) and the Graduate
Education Innovation Project of Heilongjiang Province of
China (no. JGXM HLJ 2013034).

References

[1] G. Siouris,Missile Guidance and Control Systems, Springer, New
York, NY, USA, 2003.

[2] P. Zarchan, Tactical and Strategic Missile Guidance, AIAA,
Reston, Va, USA, 3rd edition, 2012.

[3] X. Ku and V. Jilkov, “A survey of maneuvering target tracking.
Part I. Dynamic models,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 39, no. 4, pp. 1333–1364, 2003.

[4] K. Ma, H. K. Khalil, and Y. Yao, “Guidance law implementa-
tion with performance recovery using an extended high-gain
observer,” Aerospace Science and Technology, vol. 24, no. 1, pp.
177–186, 2013.

[5] Z. Zhu, D. Xu, J. Liu, and Y. Xia, “Missile guidance law based
on extended state observer,” IEEE Transactions on Industrial
Electronics, vol. 60, no. 12, pp. 5882–5891, 2013.

[6] B. S. Kim, J. G. Lee, H. S. Han et al., “Homing guidance
with terminal angular constraint against nonmaneuvering and
maneuvering targets,” in Proceedings of the AIAA Guidance,
Avigation, and Control Conference, AIAA-97-3474, pp. 189–199,
1997.

[7] H. Yanhua and X. Bo, “Variable structure guidance law for
attacking surface maneuver targets,” Journal of Systems Engi-
neering and Electronics, vol. 19, no. 2, pp. 337–341, 2008.

[8] Y. S. Choi, H. C. Lee, and J. W. Choi, “Autopilot design for agile
missile with aerodynamic fin and side thruster,” in Proceedings
of the SICE Annual Conference, vol. 2, pp. 1476–1481, Fukui,
Japan, August 2003.

[9] L. P. Jeffrey and J. R. Christopher, “A comparison of turbulence
models for a supersonic jet in transonic crossflow,” in Proceed-
ings of the 39th AIAA Aerospace Sciences Meeting and Exhibit,
pp. 1–12, Reno, Nev, USA, 2001.

[10] N. F. Palumbo, B. E. Reardon, andR. A. Blauwkamp, “Integrated
guidance and control for homing missiles,” Johns Hopkins
Applicaiton Technical Digest, vol. 25, no. 2, pp. 121–138, 2004.

[11] H. K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle
River, NJ, USA, 3rd edition, 2002.

[12] H. K. Khalil, “High-gain observers in nonlinear feedback con-
trol,” in Proceedings of the International Conferene on Control,
Automation and Systems, pp. 249–268, Seoul, Republic of Korea,
2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


