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A new diagonally implicit Runge-Kutta-Nyström (DIRKN) method is constructed for solving second order differential equations
with oscillatory solutions. The method is originally based on existing DIRKN method derived by Senu et al. which is three-stage
and fourth algebraic order. The new derived method has a variable coefficient with phase-lag of order infinity. The numerical
experiments are carried out and the results show the efficiency and accuracy of the new method in comparison with the other
DIRKN methods in the literature.

1. Introduction

In this paper, we are dealing with the initial value problems
(IVPs) related to second order ordinary differential equations
(ODEs) in the form:

𝑦
󸀠󸀠

= 𝑓 (𝑡, 𝑦) , 𝑦 (𝑡
0
) = 𝑦
0
, 𝑦

󸀠
(𝑡
0
) = 𝑦
󸀠

0
, (1)

where 𝑦
󸀠
(𝑡) does not appear explicitly and know that their

solutions are periodic. These problems arise in many fields
of applied sciences such as astronomy, quantum mechanics,
physical chemistry, structural mechanics, and electronics.

For solving this kind of problems, one of the numerical
methods is Runge-Kutta-Nyström (RKN) method. RKN
method is frequently used due to its computational advantage
(see [1]). RKN method consists of two main classes; they
are explicit method and implicit method. Generally, it is
quite difficult to handle oscillatory problems of the form (1)
with classical RKN methods. The term phase-lag was first
introduced by Brusa and Nigro [2]. Phase-lag is the angle
between the analytical solution and the numerical solution.
For solving oscillatory problems, phase-lag is an important
property. In [3], van der Houwen and Sommeijer imple-
mented the phase-lag theory to Runge-Kutta (RK) and RKN

methods.They presented a few explicit RK andRKNmethods
with reduced phase errors. Based on the minimal phase-
lag theory, Senu et al. constructed a zero-dissipative RKN
method in [4]. In [5], Simos derived a Runge-Kutta-Fehlberg
methodwith phase-lag of order infinity. In [6], Papadopoulos
et al. extended the idea of phase-lag of order infinity to RKN
method and presented a phase-fitted RKN method. Based
on idea of phase-lag of order infinity, Papadopoulos and
Simos introduced a newmethodology to construct optimized
RKN methods in [7]. Since then, Kosti et al. constructed
two optimized RKN methods with fifth algebraic order in
[8, 9]. Notice that all methods mentioned above are explicit
methods.

In [10], Sommeijer presented two DIRKN methods with
nonempty interval of periodicity. van der Houwen and Som-
meijer extended the phase-lag theory to DIRKN methods
and presented a few DIRKN methods with high phase-lag
order for solving oscillatory problems in [11]. Sharp et al. also
presented a few two-stage and three-stage DIRKN methods
with high phase-lag order in [12]. Senu et al. extended the
DIRKN methods to phase-lag order up to order eight and
higher dissipative order in [13, 14]. However, there is no
DIRKN method with phase-lag of order infinity being done
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yet. This motivates us to develop the DIRKN method with
phase-lag of order infinity. In this paper, we will construct a
three-stage phase-fitted DIRKN method which is based on a
three-stagemethod of algebraic order four derived by Senu et
al. [15].

2. Phase Properties of RKN Method

The general form of a𝑚-stage implicit RKNmethod for (1) is
given by

𝑦
𝑛
= 𝑦
𝑛−1

+ ℎ𝑦
󸀠

𝑛−1
+ ℎ
2

𝑚

∑

𝑖=1

𝑏
𝑖
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
) ,

𝑦
󸀠

𝑛
= 𝑦
󸀠

𝑛−1
+ ℎ

𝑚

∑

𝑖=1

𝑏
󸀠

𝑖
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑖
ℎ, 𝑌
𝑖
) ,

(2)

where

𝑌
𝑖
= 𝑦
𝑛−1

+ ℎ𝑐
𝑖
𝑦
󸀠

𝑛−1
+ ℎ
2

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑡
𝑛−1

+ 𝑐
𝑗
ℎ, 𝑌
𝑗
) ,

𝑖 = 1, . . . , 𝑚.

(3)

The DIRKN method above can be expressed nicely in a
Butcher table as shown as follows:

𝑐
1

𝜅

𝑐
2

𝑎
21

𝜅

...
...

... d
𝑐
𝑚

𝑎
𝑚,1

𝑎
𝑚,1

⋅ ⋅ ⋅ 𝜅

𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑚

𝑏
󸀠

1
𝑏
󸀠

2
⋅ ⋅ ⋅ 𝑏
󸀠

𝑚
.

(4)

For diagonally implicit RKN methods, the diagonal ele-
ments are equal.We denote the diagonal elements as 𝜅 so that
𝑎
11

= 𝑎
22

= ⋅ ⋅ ⋅ = 𝑎
𝑚𝑚

= 𝜅.
The phase-lag error of method (2) is investigated by using

the homogeneous test equation in the following:

𝑦
󸀠󸀠

(𝑡) = −V2𝑦 (𝑡) , V ∈ 𝑅. (5)

Applying method (2) to the test equation (5) yields

[

[

𝑦
𝑛

ℎ𝑦
󸀠

𝑛

]

]

= 𝐷
𝑛 [

[

𝑦
0

ℎ𝑦
󸀠

0

]

]

, 𝐷 = [

[

𝐴(𝑧
2
) 𝐵 (𝑧

2
)

𝐴
󸀠
(𝑧
2
) 𝐵
󸀠
(𝑧
2
)
]

]

, 𝑧 = Vℎ,

(6)

where 𝐷 is the stability matrix of the RKN method and
𝐴, 𝐵, 𝐴󸀠, and𝐵

󸀠 are polynomials in terms of 𝑧
2 and totally

determined by the parameters of method (2). The character-
istic equation of 𝐷 can be written as

𝜉
2
− trace (𝐷) 𝜉 + det (𝐷) = 0 (7)

which is the stability polynomial of the RKN method.
It is given that the exact solution of (5) is

𝑦 (𝑡
𝑛
) = 𝜎
1
[exp (𝑖𝑧)]

𝑛

+ 𝜎
2
[exp (−𝑖𝑧)]

𝑛

, (8)

where

𝜎
1,2

=
1

2
[𝑦
0
±

(𝑖𝑦
󸀠

0
)

V
] , or 𝜎

1,2
= |𝜎| exp (±𝑖𝜒) . (9)

Substituting (9) into (8) yields

𝑦 (𝑡
𝑛
) = 2 |𝜎| cos (𝜒 + 𝑛𝑧) . (10)

Then, we assume that the eigenvalues of𝐷 are 𝜌
1
, 𝜌
2
and they

will be called as the amplification factors of the RKNmethod.
The consequent eigenvectors are [1, 𝛾

1
]
𝑇, [1, 𝛾

2
]
𝑇, where 𝛾

𝑖
=

𝐴
󸀠
/(𝜌
𝑖
− 𝐵
󸀠
), 𝑖 = 1, 2. The numerical solution of (5) is

𝑦
𝑛
= 𝑐
1
𝜌
𝑛

1
+ 𝑐
2
𝜌
𝑛

2
, (11)

where

𝑐
1
= −

𝛾
2
𝑦
0
− ℎ𝑦
󸀠

0

𝛾
1
− 𝛾
2

, 𝑐
2
=

𝛾
1
𝑦
0
− ℎ𝑦
󸀠

0

𝛾
1
− 𝛾
2

. (12)

If 𝜌
1
and 𝜌

2
are complex conjugate, then 𝑐

1,2
= |𝑐| exp(±𝑖𝑤)

and 𝜌
1,2

= |𝜌| exp(±𝑖𝑝). By substituting both into (10), we
have

𝑦
𝑛
= 2 |𝑐|

󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨 cos (𝑤 + 𝑛𝑝) . (13)

Hence, we have the exact solution (10) and the numerical
solution (13) of (5) in the similar form. From (10) and (13) we
have the following definition.

Definition 1 (phase-lag and amplification error; see [3]).
Apply the RKN method (2) to the test equation (5). Then we
define the phase-lag as Φ(𝑧) = 𝑧 − 𝑝. If Φ(𝑧) = 𝑂(𝑧

𝑞+1
),

then the RKN method is said to have phase-lag order 𝑞. In
addition, the quantity 𝛼(𝑧) = 1 − |𝜌| is called amplification
error. If 𝛼(𝑧) = 𝑂(𝑧

𝑟+1
), then the RKNmethod is said to have

dissipation order 𝑟.

Then, we denote that

𝑅 (𝑧
2
) = trace (𝐷) , 𝑄 (𝑧

2
) = det (𝐷) . (14)

For DIRKN method, let us denote 𝑅 and 𝑄 in the following
form:

𝑅 (𝑧
2
) =

2 + 𝛼
1
𝑧
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑚
𝑧
2𝑚

(1 + 𝜅𝑧2)
𝑚

,

𝑄 (𝑧
2
) =

1 + 𝛽
1
𝑧
2
+ ⋅ ⋅ ⋅ + 𝛽

𝑚
𝑧
2𝑚

(1 + 𝜅𝑧2)
𝑚

.

(15)

From Definition 1 it follows that

Φ (𝑧) = 𝑧 − cos−1(
𝑅(𝑧
2
)

2√𝑄 (𝑧2)

) ,
󵄨󵄨󵄨󵄨𝜌

󵄨󵄨󵄨󵄨 =
√𝑄 (𝑧2). (16)

From (12), it leads us to the definition of phase-lag of order
infinity.
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Definition 2 (phase-lag of order infinity; see [6]). To obtain
phase-lag of order infinity the following relation must hold

Φ (𝑧) = 𝑧 − cos−1(
𝑅(𝑧
2
)

2√𝑄 (𝑧2)

) = 0. (17)

In addition, when 𝛼(𝑧) = 0 at a point 𝑧, themethod is said
to have zero amplification error (zero-dissipative). Hence, we
have

𝛼 (𝑧) = 1 − √𝑄 (𝑧2) = 0. (18)

Let us denote 𝜉
1,2

as the roots of (7); then we have the
following definitions.

Definition 3 (absolute stability interval; see [16]). An interval
(0,𝐻
𝑎
) is called the interval of absolute stability of themethod

(2) if, for all 𝐻 ∈ (0,𝐻
𝑎
), 𝜉
1,2

< 1.

Definition 4 (periodicity interval; see [10]). An interval
(0,𝐻
𝑝
) is called the interval of periodicity of method (2) if,

for all𝐻 ∈ (0,𝐻
𝑝
), 𝜉
1,2

are complex conjugate and ofmodulus
one.

3. Construction of the New Method

In this section, we will present the construction of a zero-
dissipative DIRKN method with phase-lag of order infinity.
The method is originally based on a three-stage DIRKN
method with algebraic order four (see Senu et al. [15]) as
shown as follows:

1

2
−

√3

6

1

6
−

√3

12

1

2
−

√3

6
0

1

6
−

√3

12

1

2
−

√3

6
0

√3

6

1

6
−

√3

12

0
1

4
+

√3

12

1

4
−

√3

12

0
1

2

1

2
.

(19)

Since we want to derive a new method with phase-lag
order of order infinity, there must be a variable coefficient.
Therefore, we set 𝑎

31
as free parameter first but let the rest of

the coefficients remain the same. Then, we have to compute
the stability matrix𝐷which is determined by the coefficients

in the Butcher table. From matrix 𝐷, we can compute 𝑅 and
𝑄 in form of (11):

𝑅 (𝑧
2
) = (−288 + 2 (11 − 36𝑎

31
+ 12𝑎
31
√3 − 8√3) 𝑧

4

+ 2 (24 + 24√3) 𝑧
2
)

× (−144 + (4√3 − 7) 𝑧
4
+ (24√3 − 48) 𝑧

2
)
−1

,

𝑄 (𝑧
2
)=

−144 + (−7 + 24𝑎
31
√3 + 4√3) 𝑧

4
+(24√3 − 48) 𝑧

2

−144 + (4√3 − 7) 𝑧4 + (24√3 − 48) 𝑧2
.

(20)

Now, we have 𝑅 and 𝑄 in terms of 𝑧
2 and 𝑎

31
. From

Definition 2, condition (13) must be satisfied in order to have
phase-lag of order infinity. Therefore, we substitute 𝑅 and 𝑄

from (15) into (13) and solve the equation for 𝑎
31
which yields

𝑎
31

= [1368576 + 787968√3 − 324864√3𝑧
2

+ 624𝑧
6√3 + 720𝑧

6
− 559872𝑧

2
− 18𝑧

8

+ 1866240(cos (𝑧))2 − 6(cos (𝑧))2𝑧8

+ 5184(cos (𝑧))2𝑧4 + 165888(cos (𝑧))2𝑧2

+ 1078272(cos (𝑧))2√3 + 26𝑧
8√3

+ 3456(cos (𝑧))2𝑧4√3 + 96(cos (𝑧))2𝑧6√3

+ 4(cos (𝑧))2𝑧8√3 + 96768(cos (𝑧))2𝑧2√3

+ (−9 cos (𝑧) 𝑧4 − 72 cos (𝑧) 𝑧2 − 144 cos (𝑧)√3

− 432 cos (𝑧) + 5 cos (𝑧) 𝑧4√3

+ 24 cos (𝑧)√3𝑧
2
)√𝑇]𝑈,

(21)

where

𝑇 = 30025728 + 17335296√3 − 4796928√3𝑧
2

+ 8544𝑧
6√3 + 13824𝑧

4√3 + 14880𝑧
6

+ 24192𝑧
4
− 8308224𝑧

2
+ 224𝑧

8

+ 15012864(cos (𝑧))2 + 4(cos (𝑧))2𝑧8

+ 672(cos (𝑧))2𝑧6 + 44928(cos (𝑧))2𝑧4

+ 124𝑧
8√3 + 1340928(cos (𝑧))2𝑧2

+ 8667648(cos (𝑧))2√3 + 25920(cos (𝑧))2𝑧4√3

+ 384(cos (𝑧))2𝑧6√3 + 2(cos (𝑧))2𝑧8√3

+ 774144(cos (𝑧))2𝑧2√3,
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𝑈 = −
1

144𝑧4 (24√3𝑧2 + 576√3 + 𝑧4 + 48𝑧2 + 1008)
.

(22)

For small value of 𝑧, we use the Taylor series expansion of
𝑎
31
as follows:

𝑎
31

= 𝑉
1
𝑧
2
+ 𝑉
2
𝑧
4
+ 𝑉
3
𝑧
6
+ 𝑉
4
𝑧
8
+ 𝑉
5
𝑧
10

+ ⋅ ⋅ ⋅ , (23)

where

𝑉
1
=

847066076 + 489053827√3

360(209√3 + 362)
3

(4√3 + 7)

,

𝑉
2
=

77050517871906 + 44485137234545√3

15120(209√3 + 362)
4

(4√3 + 7)
2

,

𝑉
3
=

232556319057343003 + 134266453409505479√3

25200(209√3 + 362)
5

(4√3 + 7)
3

,

𝑉
4
= (486986528811138670423405

+ 281161803500832354396724√3)

× (29937600(209√3 + 362)
6

(4√3 + 7)
4

)

−1

,

𝑉
5
= (312940888920926910572433033061

+ 180676506458937926856136528591√3)

× (10897286400(209√3 + 362)
7

(4√3 + 7)
5

)

−1

.

(24)

Hence, a new method is derived and we denote it by
PFDIRKN4. This method has one variable coefficient 𝑎

31

that depends on the product of the step-length ℎ and the
frequency V. For each specific product of Vℎ, it helps to nullify
the phase-lag error.Hence, the accuracy of themethod always
depends on the nature of the problem and the properties of
the method. For solving oscillatory problems, reducing the
phase-lag error of the method is far more important than
decreasing its algebraic error. The behavior of 𝑎

31
value for

different value of 𝑧 is illustrated in Figure 1. For small value
of 𝑧, 𝛼(𝑧) tends to zero; therefore the new method is zero-
dissipative too.The behavior of ‖𝜏(𝑝+1)‖

2
and ‖𝜏

󸀠(𝑝+1)
‖
2
values

of PFDIRKN4 for different value of 𝑧 is illustrated in Figure 2.
Table 1 shows a comparison of the properties of the method
derived.

4. Problems Tested and Numerical Results

In this section, we will apply the newmethod to some second
order differential equation problems. The following DIRKN
methods are selected for the numerical comparisons.

(i) PFDIRKN4: the new derived fourth order zero-
dissipative phase-fitted DIRKN method.

21.510.50

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

a31

z

Figure 1: Graph for 𝑎
31
against 𝑧 value.

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

‖𝜏(p+1)‖2

z

‖
·‖

2

‖𝜏󳰀(p+1)‖2

Figure 2: Graph for −log
10
‖𝜏
(𝑝+1)

‖
2
and −log

10
‖𝜏
󸀠(𝑝+1)

‖
2
against 𝑧

value.

32.521.510.50

0

−2

−4

−6

−8

−10

lo
g
10
(M

A
XE

)

Time (s)

PFDIRKN4

DIRKN4Senu2
DIRKN4Senu

DIRKN4Franco
DIRKN4Raed
DIRKN4Sharp
DIRKN4Som

Figure 3: The efficiency curves for all methods for Problem 5 with
𝑡end = 4000 and ℎ = 1/2

𝑖, 𝑖 = 5, . . . , 9.
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Table 1: Summary of the properties of the methods.

Method 𝑞 𝑟 ‖𝜏
(𝑝+1)

‖
2

‖𝜏
󸀠(𝑝+1)

‖
2

DPC DSC S.I/P.I
PFDIRKN4 ∞ ∞ — — — — (0, 4.02)
DIRKN4Senu 4 ∞ 2.05(−3) 1.48(−3) 2.23(−4) — (0, 8.20)
DIRKN4Senu2 6 5 1.88(−3) 1.70(−3) 4.71(−5) 1.19(−4) (0, 8.10)
DIRKN4Franco 4 5 1.04(−3) 2.57(−3) 1.74(−3) 7.76(−3) (0, ∞)
DIRKN4Raed 4 5 3.13(−2) 1.71(−2) 2.33(−2) 1.80(−2) —
DIRKN4Sharp 6 5 1.85(−3) 6.26(−4) 2.82(−2) 1.03(−2) (0, 12.00)
DIRKN4Som 4 5 6.35(−4) 1.59(−4) 3.18(−4) 1.43(−4) (0, 9.51)
Note: ‖𝜏(𝑝+1)‖

2
is principal local truncation error constant for 𝑦.

‖𝜏
󸀠(𝑝+1)
‖
2
is principal local truncation error constant for 𝑦󸀠.

DPC is dispersion constant.
DSC is dissipation constant.
P.I is periodicity interval.
S.I is stability interval.
1.23(−3) = 1.23 × 10

−3.

2

0

−2

−4

−6

−8

−10

lo
g
10
(M

A
XE

)

Time (s)
4.543.532.521.510.50

PFDIRKN4

DIRKN4Senu2
DIRKN4Senu

DIRKN4Franco
DIRKN4Raed
DIRKN4Sharp
DIRKN4Som

Figure 4: The efficiency curves for all methods for Problem 6 with
𝑡end = 4000 and ℎ = 1/2

𝑖, 𝑖 = 5, . . . , 9.

(ii) DIRKN4Senu: the three-stage fourth order DIRKN
method derived by Senu et al. [15].

(iii) DIRKN4Senu2: the three-stage fourth order DIRKN
method with phase-lag order six derived by Senu et
al. [15].

(iv) DIRKN4Franco: the A-stable fourth order DIRKN
method derived by Franco and Gómez [16].

(v) DIRKN4Raed: the fourth order DIRKN method
derived by Al-Khasawneh et al. [17].

(vi) DIRKN4Sharp: the three-stage fourth order with
phase-lag of order six DIRKN method by Sharp et al.
[12].

(vii) DIRKN4Som: the fourth order with phase-lag of
order four by Sommeijer [10].

0

−2

−4

−6

−8

−10
0.90.80.70.60.50.40.30.20.10

lo
g
10
(M

A
XE

)

Time (s)

PFDIRKN4

DIRKN4Senu2
DIRKN4Senu

DIRKN4Franco
DIRKN4Raed
DIRKN4Sharp
DIRKN4Som

Figure 5: The efficiency curves for all methods for Problem 7 with
𝑡end = 4000 and ℎ = 1/2

𝑖, 𝑖 = 2, . . . , 6.

The accuracy criteria taken are calculating the log
10
of the

maximum global absolute error:

Accuracy = log
10
max 󵄩󵄩󵄩󵄩𝑦 (𝑡

𝑛
) − 𝑦
𝑛

󵄩󵄩󵄩󵄩 , (25)

where 𝑡
𝑛

= 𝑡
0

+ 𝑛ℎ, 𝑛 = 1, 2, . . . , (𝑇 − 𝑡
0
)/ℎ. We test the

problems in the following for each method with the step-size
ℎ = 1/2

𝑁, 𝑁 ≥ 1.

Problem 5 (homogeneous). Consider

𝑑
2
𝑦 (𝑡)

𝑑𝑡2
= −64𝑦 (𝑡) , 𝑦 (0) = 1, 𝑦

󸀠

(0) = −2. (26)

Exact solution: 𝑦(𝑡) = −(1/4) sin(8𝑡) + cos(8𝑡).
Estimated frequency: V = 8.0.
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Figure 6: The efficiency curves for all methods for Problem 8 with
𝑡end = 4000 and ℎ = 1/2
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𝑡end = 4000 and ℎ = 1/2
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Problem 6 (inhomogeneous). Consider

𝑑
2
𝑦 (𝑡)

𝑑𝑡2
= −𝑢
2
𝑦 (𝑡) + (𝑢

2
− 1) sin (𝑡) ,

𝑦 (0) = 1, 𝑦
󸀠

(0) = 𝑢 + 1.

(27)

This case is using 𝑢 = 10.
Exact solution: 𝑦(𝑡) = cos(𝑢𝑡) + sin(𝑢𝑡) + sin(𝑡).
Estimated frequency: V = 10.0.
Source: van der Houwen and Sommeijer [3].

Problem 7 (an almost periodic orbital problem). Consider

𝑑
2
𝑦
1
(𝑡)

𝑑𝑡2
+ 𝑦
1
(𝑡) = 0.001 cos (𝑡) ,

𝑦
1
(0) = 1, 𝑦

󸀠

1
(0) = 0,

𝑑
2
𝑦
2
(𝑡)

𝑑𝑡2
+ 𝑦
2
(𝑡) = 0.001 sin (𝑡) ,

𝑦
2
(0) = 0, 𝑦

󸀠

2
(0) = 0.9995.

(28)

Exact solution: 𝑦
1
(𝑡) = cos(𝑡)+0.0005𝑡 sin(𝑡), 𝑦

2
(𝑡) =

sin(𝑡) − 0.0005𝑡 cos(𝑡).
Estimated frequency: V = 1.0.
Source: Stiefel and Bettis [18].

Problem 8 (two-body problem). Consider

𝑦
󸀠󸀠

1
=

−𝑦
1

(√𝑦2
1
+ 𝑦2
2
)

3
, 𝑦

1
(0) = 1, 𝑦

󸀠

1
(0) = 0,

𝑦
󸀠󸀠

2
=

−𝑦
2

(√𝑦2
1
+ 𝑦2
2
)

3
, 𝑦

2
(0) = 0, 𝑦

󸀠

2
(0) = 1.

(29)

Exact solution: 𝑦
1
(𝑡) = cos(𝑡), 𝑦

2
(t) = sin(𝑡).

Estimated frequency: V = 1.0.
Source: Dormand et al. [19].

Problem 9 (inhomogeneous system). Consider

𝑑
2
𝑦
1
(𝑡)

𝑑𝑡2
= −𝑢
2
𝑦
1
(𝑡) + 𝑢

2
𝑓 (𝑡) + 𝑓

󸀠󸀠

(𝑡) ,

𝑦
1
(0) = 𝑎 + 𝑓 (0) , 𝑦

󸀠

1
(0) = 𝑓

󸀠

(0) ,

𝑑
2
𝑦
2
(𝑡)

𝑑𝑡2
= −𝑢
2
𝑦
2
(𝑡) + 𝑢

2
𝑓 (𝑡) + 𝑓

󸀠󸀠

(𝑡) ,

𝑦
2
(0) = 𝑓 (0) , 𝑦

󸀠

2
(0) = 𝑢𝑎 + 𝑓

󸀠

(0) .

(30)

Exact solution: 𝑦
1
(𝑡) = 𝑎 cos(𝑢𝑡) + 𝑓(𝑡), 𝑦

2
(𝑡) =

𝑎 sin(𝑢𝑡) +𝑓(𝑡), 𝑓(𝑡) = 𝑒
−10𝑡, and parameters 𝑢 and 𝑎

are 20 and 0.1, respectively.
Estimated frequency: V = 20.0.
Source: Lambert and Watson [20].

Problem 10 (Duffing problem). Consider

𝑦
󸀠󸀠

+ 𝑦 + 𝑦
3
= 𝐹 cos (Ω𝑡) ,

𝑦 (0) = 0.200426728067, 𝑦
󸀠

(0) = 0,

(31)

where 𝐹 = 0.002 and Ω = 1.01.
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Exact solution: 𝑦(𝑡) = ∑
4

𝑖=0
𝜃
2𝑖+1

cos[(2𝑖 + 1)Ω𝑡],
where 𝜃

1
= 0.200179477536, 𝜃

3
= 0.246946143×10

−3,
𝜃
5

= 0.304014 × 10
−6, 𝜃
7

= 0.374 × 10
−9, and 𝜃

9
<

10
−12.

Estimated frequency: V = 0.9.
Source: van de Vyver [21].

Problem 11 (linear Strehmel-Weiner problem). Consider

𝑦
󸀠󸀠

(𝑡) = (

−20.2 0 −9.6

7989.6 −10000 −6004.2

−9.6 0 −5.8

)𝑦 (𝑡)

+ (

150 cos (10𝑡)
75 cos (10𝑡)
75 cos (10𝑡)

) ,

𝑦 (0) = (

1

2

−2

) , 𝑦
󸀠

(0) = (

0

0

0

) .

(32)

Exact solution:

𝑦 (𝑡) = (

cos (𝑡) + 2 cos (5𝑡) − 2 cos (10𝑡)
2 cos (𝑡) + cos (5𝑡) − cos (10𝑡)
−2 cos (𝑡) + cos (5𝑡) − cos (10𝑡)

) . (33)

Estimated frequency: V = 5.0.
Source: Cong [22].

The numerical results are plotted in Figures 3, 4, 5, 6,
7, 8, and 9. Figures 3–9 display the efficiency curves where
the accuracy versus the computational cost measured by the
time used by each method in a same computation machine.
Figures 3–9 show the efficiency curves of the methods
that consist of PFDIRKN4, DIRKN4Senu, DIRKN4Senu2,
DIRKN4Franco, DIRKN4Raed, DIRKN4Sharp, and
DIRKN4Som. These efficiency curves display a clear
comparison among those methods.

From Figures 3 to 9, we found that the new method
PFDIRKN4 is the most accurate and efficient for solving
Problems 5–11, followed by DIRKN4Senu2, DIRKN4Senu,
DIRKN4Som, DIRKN4Sharp, DIRKN4Franco, and
DIRKN4Raed. From Figures 3 to 9, we can conclude
that high phase-lag order of the method is very important
for solving oscillating problems. Since both methods
PFDIRKN4 and DIRKN4Senu2 are far more accurate than
other methods which are having higher phase-lag order. In
an addition, we can observe that the new method is having
the same computational cost with the corresponding original
method but higher accuracy.

5. Conclusion

In this paper, we have derived a new DIRKN method for
solving second order IVPs which are oscillatory in nature.
The new method is derived based on a fourth algebraic order
DIRKN method [15] with zero dissipation. The new method
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Figure 8: The efficiency curves for all methods for Problem 10 with
𝑡end = 4000 and ℎ = 1/2
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Figure 9: The efficiency curves for all methods for Problem 11 with
𝑡end = 1000 and ℎ = 1/2
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has a variable coefficient that will help to nullify the phase-lag
error. Numerical results show that the new method is more
accurate and efficient for solving second order differential
equations with oscillating solutions in nature.
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