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An approach to automatic hoverfly species discrimination based on detection and extraction of vein junctions in wing venation
patterns of insects is presented in the paper. The dataset used in our experiments consists of high resolution microscopic wing
images of several hoverfly species collected over a relatively long period of time at different geographic locations. Junctions are
detected using the combination of the well known HOG (histograms of oriented gradients) and the robust version of recently
proposed CLBP (complete local binary pattern). These features are used to train an SVM classifier to detect junctions in wing
images. Once the junctions are identified they are used to extract statistics characterizing the constellations of these points. Such
simple features can be used to automatically discriminate four selected hoverfly species with polynomial kernel SVM and achieve
high classification accuracy.

1. Introduction

Classification, measurement, and monitoring of insects form
an important part of many biodiversity and evolutionary
scientific studies [1–3]. Their aim is usually to identify
presence and variation of some characteristic insect or its
properties that could be used as a starting point for further
analyses. The technical problem that researchers are facing is
a very large number of species, their variety, and a shortage
of available experts that are able to categorize and examine
specimens in the field. Due to these circumstances, there
is a constant need for automation and speed up of this
time consuming process. Application of computer vision
and its methods provides accurate and relatively inexpensive
solutions when applicable, as in the case of different flying
insects [1, 2, 4, 5]. Wings of flying insects are one of the
most frequently considered discriminating characteristics
[4] and can be used standalone as a key characteristic for

their classification [2]. Unlike some other body parts, wings
are also particularly suitable for automatic processing [6].
The processing can be aimed at species identification and
classification or form the basis for further morphometric
analyses once the classification to specific taxonomy is done.

Discriminative information that allows flying insects
classification may be contained in wing shape [7], but in the
most cases it is contained in the relative positions of vein
junctions inside the wing that primarily define unique wing
venation patterns [1, 2, 4–6]. Wing venation patterns are the
result of specific evolutionary adaptations over a long period
of time and are influenced by many different factors [8]. As
such, they are relatively stable and can successfully describe
and represent small differences between very similar species
and taxons, which is not always possible using only shape
of the insect’s wing. Another useful property of venation
patterns is that they are not significantly affected by the
current living conditions, present in some specific natural
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environment, in comparison to some other wing properties
such as colour or pigmentation. This makes them a good
choice for reliable and robust species discrimination and
measurement. The advantage of using venation patterns is
also that patterns of previously collected wing specimens do
not change with the passing of time, as some other wing
features, so they are suitable for later, off-field analyses.

Discrimination of species in the past was based on
descriptive methods that proved to be insufficient and were
replaced by morphometric methods [6]. These methods rely
on geometric measures like angles and distances in the case
of standard morphometry or coordinates of key points called
landmarks, which can be also used for computing angles and
distances, in the case of more recent geometric morphomet-
rics. In the wing-based discrimination each landmark-point
represents a unique vein junction, whose expected position
on thewing is predefined andwhich needs to be located in the
wing before discrimination.Manually determined landmarks
require skilled operator and are prone to errors, so automatic
detection of landmark-points is always preferred.

Some systems for automatic classification of insects
are designed to perform recognition tasks in uncontrolled
environments with variability in position and orientation
of objects [3], while others are designed to operate under
controlled working conditions [2, 6].

Methods for automatic detection of vein junctions in
wing venation of insects usually consist of several preprocess-
ing steps which include image registration, wing segmenta-
tion, noise removal, and contrast enhancement. In order to
extract lines that define wing venation pattern, in the next
stage are often applied edge detection, adaptive thresholding,
morphological filtering, skeleton extraction, pruning, and
interpolation, usually in the precisely given order. In this
way the locations of landmark-points corresponding to vein
junctions are found [1, 4] or moreover a polynomial model
of the whole venation pattern is made on the basis of line
junctions and intersections [1, 2, 5]. This may be easier
to achieve if the light source is precisely aligned during
the image acquisition phase, so that it produces uniform
background [4], or when it is allowed to use additional colour
information, as in the case of leaf venation patterns [9], but it
is not always possible. Some of the reasons can be noisy and
damaged images due to the dust, pigmentation, differentwing
sizes, image acquisition, or bad specimen handling.

The Syrphidae family of hoverflies are of special interest
due to a number of important roles they have in pollination,
indication of biodiversity level, and evolution research. The
paper presents an approach to their automatic classification
based on the method for automatic detection of landmark-
points in wing venation of flying insects, which is utilizing
supervised learning on a dataset of vein junction images
extracted by the human experts from the real-world images
of specimens’ wings.

Section 2 provides an overview of the dataset and the
proposed landmark-points detection method. The proposed
classification methodology based on automatically detected
landmark-points is presented in Section 3, while results
are given in Section 4. Finally, conclusions are drawn in
Section 5.

Table 1: Number of wing images per each class (species) in created
dataset.

Chrysotoxum Melanostoma
festivum vernale other mellinum scalare other
248 154 22 267 105 72

2. Landmark-Points Detection

The proposed method for landmark-points (vein junctions)
detection consists of computing specific, window based fea-
tures [10–13], which describe presence of textures and edges
in window and subsequent classification of these windows
as junctions (i.e., positives) or not-junctions (i.e., negatives)
using a junctions detector previously obtained by some
supervised learning technique.

2.1. Wing Images Dataset. The set of wing images used in the
presented study consists of high-resolutionmicroscopic wing
images of several hoverfly species.There is a total of 868wing
images of eleven selected hoverfly species from two different
genera, Chrysotoxum andMelanostoma, Table 1.

The wings have been collected from many different
geographic locations during a relatively long period of time
of more than two decades. Wing images are obtained from
the wing specimens mounted in the glass microscopic slides
by a microscopic device equipped with a digital camera with
image resolution of 2880×1550 pixels and are stored in TIFF
format. Each image is uniquely numbered and associated
with the taxonomy group it belongs to. Association of each
wing with a particular species is based on the classification
of the insect at the time when it was collected and before
the wings were detached. This classification was done after
examination by a skilled expert. The images s were acquired
later by biologists under relatively uncontrolled conditions
of nonuniform background illumination and variable scene
configuration without previous camera calibration. In that
sense, obtained images are not particularly suitable for exact
measurements.

Other shortcomings of the samples in the dataset are
result of variable wing specimens quality, damaged or badly
mounted wings, existence of artifacts, variable wing positions
during acquisition, and dust. In order to overcome these
limitations and make images amenable to automatic hoverfly
species discrimination, they were first preprocessed. The
preprocessing consisted of image rotation to a unified hori-
zontal position, wing cropping, and scaling. Cropping elim-
inates unnecessary background containing artifacts, while
aspect ratio-preserving image scaling enables overcoming
the problem of variable size among the wings of the same
species. After computing average width and average height
of all cropped images, they were interpolated to the same
width of 1680 pixels using bicubic interpolation.Wing images
obtained in this way form the final wing images dataset
used for sliding-window detector training, its performance
evaluation, and subsequent hoverfly species discrimination
using the trained detector. Number of images per species is
not uniform, Table 1, so only four species with significant
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number of images are selected for later experimental eval-
uation of the proposed method for species discrimination
(classification) based on detected landmark-points. These
four species include 774 images from the two different genera
of the Syrphidae family and are illustrated in Figure 1.

2.2. Training/Test Set. In order to analyze the applicability
and the efficiency of the proposed methodology, when it
comes to the problem of landmark-points detection, special
vein junctions training/test set was created from the collected
images in the wing images dataset described in Section 2.1.
It consists of the characteristic wing regions (patches) that
correspond to vein junctions in the wing venation pattern,
that is, positives, and randomly selected patches without
vein junctions, that is, negatives, which still can contain
parts of wing venation. From each wing image 18 uniquely
numbered positive patches, whose centers are shown as red
dots in Figure 1, were manually extracted and saved using
specially created user application. In the case of severely
damaged wings which were damaged or missing landmarks,
the corresponding patches were not selected. As a result, the
training/test set with 15590 positives and 22466 manually
selected negatives was created by using all available hoverfly
wing images, where the total number of positives was slightly
smaller than expected due to the mentioned reasons. The
created set was then used for the detailed study of the
effects of various implementation choices on the detector’s
performance, as described in Section 2.3.

2.3. Landmark-Points Detector. Discriminative descriptors of
vein junctions that are used in the proposed landmark-
points sliding-window detector are HOG (histogram of
oriented gradients) [12] and the robust version of CLBP
(complete local binary pattern) [14], proposed in [11]. HOG
and LBP operators were first presented in [10, 12]. In order
to determine and compare performance of different detectors
based on these image descriptors and evaluate the impact
of different sets of pertinent parameters, descriptors were
considered separately and combined, in the same way as
described in [13, 15].

Since the wing color is varying characteristic in the given
classification problem due to many factors and consequently
cannot be reliably used for discrimination among different
species, it was decided that all descriptors should be based
only on features derived fromgrayscale images.Therefore, the
first step in all computations is the conversion of input color
images into their grayscale versions by standard conversion of
RGB color space intoHSI and selection of computed intensity
channel as the final grayscale image.

The CLBP is one of the numerous improvements of LBP
descriptor which have been proposed in recent years. The
robust version of CLBP, that is, RCLBP, is just utilization of
the idea implemented in the conventional LBP [10] that was
suggested recently by one of its original authors [11].

When it comes to HOG, a feature vector consisting of a
number of discrete histograms of image gradient orientation
[12] is employed. Discrete histograms are computed over
small rectangular spatial regions in image, called cells, which

are obtained by subdivision of the main feature extraction
window. The first step in the histogram computation is
gradient discretization, done for each pixel by projection of
pixel gradient onto the two closest allowed bins, that is, the
two closest of several predefined uniformly spaced discrete
directions. Before finally computing discrete histograms of
gradient orientation for each cell, 2-D CTI (convoluted
trilinear interpolation) filtering described in [13] is addi-
tionally applied. The CTI filtering is used to smooth results
of gradient discretization from the previous step, and it
is achieved through interpolation of computed discretized
gradient values between spatially adjacent pixels.The filtering
is performed by convolution with Gaussian-like kernel of
each of gradient orientation planes, that is, each of the created
gradient images corresponding to different predefined possi-
ble orientations of image gradient. Thus, instead of only two
nonzero values representing the discretized image gradient at
some pixel (spatial position), after filtering the image gradient
at each pixel is represented as the sum of several components
with differentmagnitude corresponding to all predefined dis-
crete directions. As suggested in [12], before the construction
of the final feature vector, values of discrete histogram are
locally normalized by the normalization procedure which
includes accumulating histograms over somewhat larger
overlapping spatial regions, called blocks, and using the 𝐿

2

vector norm.These values, representing normalized values of
several spatially adjacent discrete histogramswhich belong to
the cells inside the same block, are then concatenated block
by block to form the final HOG feature vector per window.

The HOG vector length and the dimensionality of the
corresponding feature space depend on the choice of param-
eters that define window, cell and block size, extent of block
overlapping, and a number of allowed discrete histogram
values (orientation bins). We used nine bins evenly spaced
over 0∘–180∘, 64 × 64 pixels for detection window, blocks
containing 2×2 cells, and the one cell wide blocks’ overlapping
width. In order to measure detector’s performance different
cell sizes (8, 16, and 32 pixels) were used. As a result,
depending on the cell size, possible dimensions of used
HOG feature vectors are: 1764 (hog8), 324 (hog16), and 36
(hog32). Extraction of HOG features for different cell sizes
on the example of one of the vein junction images from
the training/test set is illustrated in Figure 2, along the main
phases in the computation of HOG feature that are also
shown.

The CLBP descriptor integrates information about the
sign andmagnitude of difference𝑑 computed between central
pixel 𝑝

𝑐
and pixel 𝑝

𝑖
in its predefined neighborhood in some

grayscale image. On the other hand, the conventional LBP
utilizes only information about the sign of 𝑑, as can be seen
in

LBP
𝑛,𝑟

=

𝑛−1

∑

𝑖=0

𝑠 (𝑝
𝑐
− 𝑝
𝑖
) 2
𝑖
, 𝑠 (𝑥) = {

1, 𝑥 ≥ 0

0, 𝑥 < 0,
(1)

where 𝑛 denotes the number of neighbouring pixels at the
radius 𝑟 that are compared with the central pixel 𝑝

𝑐
.

As the main parameters of CLBP descriptor were used
the circular neighbourhood geometrywith eight surrounding
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(a) Chrysotoxum festivum (b) Chrysotoxum vernale

(c) Melanostoma mellinum (d) Melanostoma scalare

Figure 1: Images of the wing of four selected hoverfly species belonging to two different genera. Numbered red dots represent positions of
manually marked predefined landmark-points in wing venation which can be used for species discrimination.

HOG

0 80 160

(a) hog8 (b) hog16 (c) hog32

Figure 2: Illustration of HOG features on the example of one of the images from the training/test set, Section 2.2. In (a)–(c) are visualized
HOG features corresponding to different values of cell size: 8 × 8 pixels (a), 16 × 16 pixels (b), and 32 × 32 pixels (c). In each case (a)–(c), for
visualization are used two images: one depicting discrete histograms of gradient orientation on the level of single cells in the image (images
consisting of small histograms with blue, green, and red bars) and the second image which represents its grayscale counterpart (on the level
of each cell, i.e., histogram, are drawn lines which correspond to particular orientation of image gradient, while intensity of lines, i.e., their
normalized grayscale value, corresponds to the magnitude of the image gradient in the given direction after gradient discretization). Blue
arrow in (a) indicates equivalence between magnified histogram and its grayscale counterpart, with lines associated with the bars in the
histogram. Different color of bars in the histograms is used to ease distinction between allowed discrete orientations, 9 values in the range
0–180∘. Green arrows in the upper part of (a) describe the process of image gradient computation using Sobel filter, while the blue grid depicts
the cell size, also overlayed over gradient images in (b) and (c).

pixels at unit distance, and the same window size of 64 × 64

pixels, as in the case of HOG. The value of each difference
𝑑
𝑖
= 𝑝
𝑐
− 𝑝
𝑖
can be decomposed into two components 𝑠

𝑖

and 𝑚
𝑖
, which represent sign and magnitude of difference,

respectively, as given in (2). These components are used for
the construction of two types of CLBP codes which describe
local pixel intensity variations. The information about the
sign of difference is used for the construction of the CLBP S
code, in a similar way like in the case of conventional LBP
code, while the information about the difference’s magnitude
is used for the construction of CLBP M code, which is

introduced in order to provide additional discriminative
power. Consider

𝑑
𝑖
= 𝑠
𝑖
∗ 𝑚
𝑖
, 𝑠
𝑖
= sign (𝑑

𝑖
) , 𝑚
𝑖
=
󵄨󵄨󵄨󵄨𝑑𝑖

󵄨󵄨󵄨󵄨 . (2)

Definition of CLBP S code is the same as the one of
LBP in (1), while in the definition of CLBP M code in (3)
an additional threshold 𝑐, which is determined adaptively, is
introduced:

CLBP M
𝑛,𝑟

=

𝑛−1

∑

𝑖=0

𝑡 (𝑚
𝑖
, 𝑐) 2
𝑖
, 𝑡 (𝑥, 𝑐) = {

1, 𝑥 ≥ 𝑐

0, 𝑥 < 𝑐.
(3)
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The adaptive threshold 𝑐 used for obtaining CLBP M codes,
(3), is computed as the mean value of all 𝑚

𝑖
on the level of

whole image. However, in our situation this computation is
restricted to the regions of 32 × 32 pixels inside the patches
(windows) of 64 × 64 pixels.

There also exists the third type of CLBP code under the
nameCLBP Cwhich refers to the intensity of the central pixel
𝑝
𝑐
, but due to the issuewe consider here, in order to recognize

junctions in the vein structure and distinguish them from the
rest of the wing, we are more interested in the local variation
of pixel intensity values represented by CLBP S and CLBP M
codes. Therefore, CLBP C was not used, but for the sake
of completeness we still give its definition in the following
equation, where 𝑐

𝐼
is the mean value of pixel intensities over

the observed region:

CLBPC
𝑛,𝑟

= 𝑡 (𝑝
𝑐
, 𝑐
𝐼
) . (4)

Before computation of histograms of CLBP S and
CLBP M codes in the next step, a small but very important
additional code variation is made in both cases. Since we use
the circular pixel surrounding of 𝑛 = 8 pixels at radius 𝑟 = 1,
the following two substrings “010” and “101” in the binary
representation of codes are substituted with “000” and “111,”
respectively. The same code variation was performed in [11],
but it was applied to conventional LBP instead of CLBP S and
CLBP M. Under the assumption that these two substrings
are most likely caused by noise, this variation removes the
noise from features. Also, it substantially reduces the number
of bins in code histograms from 255 to 46 values. All 46
binary codes obtained in this way are termed “uniform,”
which means that 42 among them are characterized by two
0-1 or 1-0 transitions, that is, their uniformity measure is
2, while the remaining four are with four transitions; that
is, their uniformity measure is 4. This uniformity measure
was defined in [10] and expresses the fact that some local
binary patterns describe fundamental properties of texture
which makes them more important than some other. Hence,
one of the reasons for choosing RCLBP instead of uniform
LBP is that it is based on higher values of uniformity
measure for some codes. The common property of proposed
RCLBP codes is the uniform circular structure with very few
transitions, which makes them suitable to faithfully describe
expected form of edges in the local region determined by the
parameters 𝑛 and 𝑟. They will be denoted by RCLBP S and
RCLBP M in the rest of the paper.

The described RCLBP S and RCLBP M codes are graph-
ically illustrated in Figure 3, where differences between these
two types of CLBP codes utilized in the vein junctions
detection are shown. Figure 3 contains examples of images
(patches) of the vein junctions from the training/test set
described in Section 2.2, which correspond to the rectangular
image regions around different landmark-points in Figure 1.

The values of the formed histograms of CLBP S and
CLBP M codes are at the end normalized with the so called
min-max norm to the range between 0 and 1 and after that
concatenated to form RCLBP (robust complete local binary
pattern) feature vector per each region inside the window.
As a result the final RCLBP feature vector per each 64 × 64

window is composed of 4⋅92 features, obtained from four
nonoverlapping regions (blocks)with the size of 32×32pixels.

The combined feature vectors are formed by appending
described RCLBP feature vector at the end of the cor-
responding HOG feature vector. Both HOG and RCLBP
feature vectors were used separately and in all combinations
in order to measure their window based performance on
the training/test set using the same classifier. Performance
comparison was made using support vector machine (SVM)
classifier that has good generalization properties and ability to
cope with small number of samples in the case of high feature
space dimensionality [16].

Feature extraction was implemented in C++ using
OpenCV library [17], on computer with Intel i5 CPU
3.20GHz and 8GB of RAM, without any parallelization,
special adaptations, or GPU acceleration. Computation time
of HOG feature is determined by the chosen cell size, so as
expected hog8 has the highest computation time, which per
window is approximately 10%higher then in the case of hog32
on same configuration,whileCLBP feature has approximately
5% higher computation time than hog8.

Detector’s performance testing was done in the machine-
learning packageWeka [18] using LibSVM library [19], which
contains an implementation of SVM classifier. It consisted of
analyzing accuracy of the same classifier with different types
of window based features, whereas the classifier used SVM
with polynomial kernel defined in (5) and the following set
of parameters: 𝐶 = 1; 𝛾 = 1; 𝑐

0
= 0; and 𝑑 = 3. In

all cases, classifier’s performance was measured using 10-fold
cross-validation on the training/test set. The cross-validated
window level results in terms of the true positives and the
false positives rates are shown in Figure 4. Consider

𝐾 (𝑢, V) = 𝛾 (𝑢 ⋅ V + 𝑐
0
)
𝑑

. (5)

The usage of HOG and RCLBP features as descriptors of
vein junctions shows acceptable results withmiss rate smaller
than 1% in most cases, Figure 4. When used separately,
RCLBP features give better result than HOG features. The
HOG features with the cell size of 32 pixels are too coarse to
properly describe vein junction in the middle of the window,
because in this case window contains only 4 cells, as shown
in Figure 2(c). On the other hand the smallest cell size of 8
pixels, illustrated in Figure 2(a), gave the best result among all
HOG features. As can be seen from Figure 4, combinedHOG
and RCLBP features have the best performance but are more
memory and time demanding during the training phase due
to larger dimensionality of their feature space. Nevertheless,
presented results weremotivation for the construction of vein
junctions sliding-window detector.

As a result, combined HOG-RCLBP features with the cell
size of 16 pixels were selected as the best choice for the auto-
matic hoverfly species discrimination based on the sliding-
window landmark-points detection. Computation time per
image for the chosen set of features and sliding-window
step size was approximately 57 s on the given computer
configuration.
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(a) RCLBP S codes (b) Types of vein junctions

(c) RCLBP M codes (d) Values of RCLBP S codes

(e) Values of RCLBP M codes

Figure 3: Visualization of RCLBP S and RCLBP M codes. In the middle, (b), is an artificial mosaic formed by images which represent
different types of vein junctions in wings of hoverflies. Positive class of training/test set used for supervised learning of vein junctions detector,
Section 2.2, consists of images like those shown in (b). Mosaic images on the left (a) and on the right (c) sides of (b) represent generated
grayscale visualizations of the computed RCLBP S and RCLBP M codes, respectively. Values of computed 8-bit binary codes are in the
[0, 255] grayscale range, which makes them suitable for direct visualization. In (d) and (e) are magnified details from (a) and (b). These
details represent values of the corresponding codes, computed for each pixel of vein junction outlined with blue frame in (b). Additionally,
in order to emphasize difference between values of binary codes corresponding to junctions and those corresponding to the surrounding
background, in (d)-(e) with green and blue color are also written their integer values, zoom figure.
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rclbp hog8 +
rclbp

hog16 +
rclbp

hog32 +
rclbp hog8 hog16 hog32

TP rate 0.997 0.998 0.998 0.997 0.995 0.995 0.985
FP rate 0.003 0.003 0.002 0.003 0.006 0.006 0.019

0
0.02
0.04
0.06
0.08
0.1

0.975
0.98

0.985
0.99

0.995
1

FP
 ra

te

TP
 ra

te

Detection rate

Figure 4: Performance comparison of detectors with different input features using SVM with polynomial kernel and true positives and false
positives rates as complementary performance measures.

3. Species Discrimination

Automatic hoverfly species discriminationwas limited to four
selected hoverfly species from the wing images dataset which
have significant number of instances, Table 1.The discrimina-
tion is based on the output of the functional block performing
automatic detection of vein junctions in the wing image. The
vein junctions detection is done using a sliding window that
is densely searching through the image using the proposed
sliding-window detector described in Section 2. For better
performance, an optimally trained SVM classifier with the
polynomial kernel implemented in [17] is used. Its optimal
parameters were determined through exponential parameter
grid search using 10-fold cross-validation across the whole
training/test set described in Section 2.2, as searching criteria
used the minimum of false positives rate. Once the optimal
values were determined, that is, 𝐶 = 12.5 and 𝛾 = 0.03375,
where other kernel parameters 𝑐

0
= 0 and 𝑑 = 3 were set in

advance, the whole training/test set was used once again in
order to train the final detector.

The constructed detector scans the wing image and
returns discrete responses indicating whether a vein junction
is present or not in the current window. The same size of the
slidingwindow step is used for both image dimensions. In the
case of detection, center coordinates of the current window
which correspond to possible vein junction are saved together
with classifier’s soft response value. This value describes how
far from the separating hyperplane defined by support vectors
is the current feature vector or how trustworthy the detector’s
decision is. This soft information is later used to improve the
precision of final landmark-points detections.

Due to the multiple detections of the same vein joint
and possible false detections, additional postprocessing of
obtained detections is needed at the end of the sliding-
window search, that is, once the detector finishes scanning
through the image. In Figure 5 with the red dots are shown
four examples of detection results, which include multiple
detections of the same vein joint, as well as the false detec-
tions.

The postprocessig consists of clustering of detected
points, where the clusters which have less than 3 points
(detections) associated with them at the end of clustering are
discarded from further consideration in order to eliminate
possible false detections, since it is expected that in the
region where the true vein junction exists there will be

more than 3 detections due to the dense scanning, that is,
small window step size. The centroids are computed by using
previously obtained detector’s soft response values which are
normalized at the level of each cluster using 𝐿

1
norm so that

they can correspond to probability of correct vein junction
detection and consequently can be used as appropriate weight
coefficients of multiple detections inside the cluster.

The clustering procedure is based on an iterative algo-
rithm that in each iteration searches through the detections
that have not yet been associated with any existing cluster
until all detections are assigned to some cluster. It uses a
distance criterion based on the sliding window step size and
initializes clusters with the existing unassociated detections.
Once the clustering is completed, as it has been mentioned,
clusterswith 3 or less points are discarded and the centroids of
the remaining clusters are determined as weighted average of
all detections inside the cluster. Obtained centroids represent
possible vein junctions that have been found in an image by
the sliding window detector.

Even though we tried to remove false detection by elimi-
nating clusters with less than 3 detections, there is no guaran-
tee that the remaining clusters contain all expected landmark-
points or that there are no false detections.There are multiple
reasons for this, damaged wings, presence of artifacts, dust,
and wing specimens with missing parts. Consequently, fixed
length feature vectors, which would be based on obtained
automatic detections, are not an appropriate choice for image
classification. Therefore, we propose generalized approach
that is not sensitive to the number of detected landmark-
points.

For the purpose of the characterization of points con-
stellation in the wing, we computed convex hull of obtained
centroids. Let us denote the set of cluster centroids with 𝑆.
Convex hull of set 𝑆 denoted by conk𝑆 is the set of all convex
combinations of points in 𝑆:

conk𝑆 = {𝜃
1
𝑘
1
+ ⋅ ⋅ ⋅ + 𝜃

𝑛
𝑘
𝑛
| 𝑘
𝑖
∈ 𝑆,

𝜃
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛, 𝜃

1
+ ⋅ ⋅ ⋅ + 𝜃

𝑛
= 1} ,

(6)

where 𝑘
𝑖
represents centroid of cluster 𝑖. Because conk𝑆 is

the smallest convex set that contains 𝑆, we are particularly
interested in those points from the set 𝑆 which belong to
the boundary of conk𝑆. The boundary point of conk𝑆, 𝑥 ∈

bdconk𝑆, satisfies the following property: for all 𝜖 > 0, there
exist 𝑘 ∈ conk𝑆 and 𝑧 ∉ conk𝑆with ‖𝑘−𝑥‖

2
≤ 𝜖, ‖𝑧−𝑥‖

2
≤ 𝜖;
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(a) Chrysotoxum festivum (b) Chrysotoxum vernale

(c) Melanostoma mellinum (d) Melanostoma scalare

(e) Multiple detections (f) Multiple detections

Figure 5: An example of automatic detection of vein junctions in wing images of four selected hoverfly species: (a)–(d), detections are shown
as red dots. Since detector is based on sliding-window, each vein junction is detected several times in the same image. Based on detector’s
confidence level, different significance is given to each of the multiple detections corresponding to the same junction. Several magnified
details from (b)-(c) are illustrated in (f) and (e), respectively.

that is, there exist arbitrarily close points in conk𝑆 and also
arbitrarily close points that are not in conk𝑆.

Hence, after determining boundary points of conk𝑆,
we compute the following measures which characterize the
convex hull: the centroid of points in bdconk which belong
to 𝑆, median of distances between all boundary points of
conk𝑆 which belong to 𝑆 and their centroid, root mean
square difference of previously described distances from their
median, perimeter of contour which envelops conk𝑆, and
area of conk𝑆. Their summary is given in Table 2.

A common property of these features is that they, as
descriptive statistics, do not depend significantly on the
number of landmark-points used for their computation and
are also rotation-invariant. Under the assumption that they
are discriminative enough to distinguish different hoverfly
species and do not change significantly inside the same
species, they are used as elements of the feature vector that
describes particular wing image.

The described procedure for characterization of convex
hull of detections’ centroids is repeated consecutively 3 times
for each image, with elimination of detections’ centroids
belonging to the boundary of current convex hull after
each characterization step. This means that, after computing
convex hull in each step, centroids on the boundary of convex
hull are removed and the same procedure is repeated again.
At the end, the result is that each wing image is characterized
by 18 features (values) which describe the properties of 3

Table 2: Summary of convex hull based features.

𝐹1 𝑥
𝑐

𝐹2 𝑦
𝑐

𝐹3
median(√(𝑥

𝑏
− 𝑥
𝑐
)
2
+ (𝑦
𝑏
− 𝑦
𝑐
)
2
),

(𝑥
𝑏
, 𝑦
𝑏
) ∈ 𝐴 = {bdconk𝑆 ∩ 𝑆}

𝐹4 √
1

|𝐴|
∑

𝑏

(√(𝑥
𝑏
− 𝑥
𝑐
)
2
+ (𝑦
𝑏
− 𝑦
𝑐
)
2
− 𝐹3)

2

, (𝑥
𝑏
, 𝑦
𝑏
) ∈ 𝐴

𝐹5 Perimeter(bdconk𝑆)
𝐹6 Area(conk𝑆)

convex hulls constructed per each image, while each of them
is characterized by 6 previously described features, Table 2.As
an illustration, in Figure 6 are shown examples of detections’
centroids and created convex hulls in the case of four selected
hoverfly species.

Since during evaluation some of the predefined
landmark-points (landmarks numbered 0 and 1 in Figure 1)
proved to be not descriptive enough to properly and
reliably describe wing images of different species, they were
discarded from further analysis, although at first they were
marked as landmarks. The reason is their greater variability
due to specific position in the wing, which in combination
with relatively small dataset makes their detection and even
proper manual selection during detector’s training phase
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(a) Chrysotoxum festivum (b) Chrysotoxum vernale

(c) Melanostoma mellinum (d) Melanostoma scalare

Figure 6: Illustration of constructed convex hulls used for characterization of each wing image in automatic discrimination of four selected
hoverfly species. Convex hulls are created using detected landmark-points, which are drawn as red dots. Position of each landmark-point is
computed as a centroid of multiple detections of the same junction. Multiple detections are illustrated in Figure 5.

much harder.Therefore, before characterization of each wing
image by its convex hulls, detections which are expected to
correspond to these landmark-points are removed.

Automatic discrimination of four selected hoverfly
species is then made using SVM classifier with polynomial
kernel (5) implemented in [18], with the following set of
parameters: 𝛾 = 1, 𝐶 = 1.5, 𝑑 = 3, and 𝑐

0
= −0.5. The

results of 10-fold cross-validation using 774 wing images are
presented in Tables 4 and 3 and discussed in the following
section.

4. Results

The performance of automatic landmark-points detection
using different sliding window step sizes was analyzed. The
step sizes of 8, 16, and 32 pixels were used and differ-
ent degrees of landmark-points detection per image were
achieved. Using the sliding window with the largest step
size is significantly faster than the alternatives but with the
smallest number of detected landmarks per image and it is the
most imprecise due to the absence ofmultiple detections.The
highest detection accuracy was achieved using the smallest
step size, so this sliding-window detector was selected to
serve as the basis for species discrimination (classification)
using polynomial SVM described in Section 3. Classification
results, obtained using 10-fold cross-validation, are presented
using different performance measures in Table 4 and by
accuracy assessment matrix given in Table 3. The accuracy
assessment matrix (confusion matrix), Table 3, is a represen-
tation ofmisclassification errors and ideally contains nonzero
values only on themain diagonal.The values outside themain
diagonal in Table 3 show the number of images of a class
indicated on the left (reference data) that have been labeled
by the classification algorithm as the class indicated on the
top (classified data). The average classification accuracy of

Table 3: Classification results, accuracy assessment matrix for four
selected hoverfly species, denoted by letters (a)–(d): Chrysotoxum
festivum (a), Chrysotoxum vernale (b), Melanostroma mellinum (c),
andMelanostroma scalare (d).

Classified Total samples
a b c d

Reference

a 211 35 0 2 248
b 45 102 4 3 154
c 3 1 243 20 267
d 2 3 25 77 105

81.6% was achieved among the four different species, while
from the accuracy assessment matrix in Table 3 it can be
observed that the classification accuracy between the genera
(Chrysotoxum and Melanostoma), that is, the two different
groups of hoverfly species, is much higher and is 97.7%. The
reason is that the intergenera differences are much higher
than the differences between the species inside the same
genus.

These results confirm the applicability of the proposed
approach in the sense that the used features, based on
obtained automatic detections, enable very high discrimina-
tion between the two genera inside the same flying insects
family, Table 3.

Finally, in order to better understand and further inves-
tigate properties of the given classification problem and
descriptive capacity of the proposed convex hull based
and simple low-dimensional features, binary classification
of selected four species was also analyzed. Instead of a
performance of a single multiclass classifier, performance
of four binary classifiers was measured. The same type of
classifier and the same convex hull based features as in the
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Table 4: Classification performance of multiclass classifier which utilizes convex hull based features: true positives (TP) rate, false positives
(FP) rate, precision, and recall.

Chrysotoxum Melanostoma Weighted average
festivum vernale mellinum scalare

TP rate 0.851 0.662 0.910 0.720 0.816
FP rate 0.095 0.063 0.057 0.037 0.067
Precision 0.808 0.723 0.893 0.755 0.813
Recall 0.851 0.662 0.910 0.720 0.816
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(b) Chrysotoxum vernale
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(c) Melanostoma mellinum
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(d) Melanostoma scalare

Figure 7: ROC curves corresponding to four binary classification problems, (a)–(d). In all cases instances of the class denoted in subcaption
were considered as positives, while instances of the remaining three classes were labeled as negatives. The same type of SVM binary classifier
with different sets of parameters was used in all experiments.
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previously described multiclass scenario were used in all
experiments. Receiver operating characteristics (ROC) of the
corresponding binary classifiers with different sets of param-
eters are shown in Figures 7(a)–7(d). Classifiers represented
by the curves (a) and (c) exhibit better performance, that
is, have steeper curves than the classifiers described by the
curves (b) and (d). This is interesting behaviour because
positive instances of the first two classifiers, (a) and (c),
belong to hoverfly species from different genera, which is
also true in the case of the last two classifiers, (b) and
(d). It is a consequence of the fact that the positive classes
corresponding to curves (a) and (c) have significantly higher
number of samples in comparison to the number of instances
corresponding to the positive classes in curves (b) and (d), as
it can be observed fromTable 3 or Table 1. It also suggests that
the complexity of the classification task, which is based on the
proposed features derived from automatically detected vein
joints in wing images, is more influenced by the unbalanced
training set than by some wing image characteristics specific
for particular genera (Chrysotoxum or Melanostoma). These
results are also in accordance with multiclass case in Table 3,
where themostmisclassification errors appeared between the
species inside the same genus.

All datasets that were used in this paper and the accom-
panying C++ code, which was used for feature extraction
and classification, can be found at http://www.biosensecenter
.com/index.php/hoverflies-classification.

5. Conclusion

Systems for automatic classification of insects are generally
intended for field use. Therefore, it is desirable that they are
robust and as general as possible. At the present time image
based systems are considered as the preferred choice in com-
parison to some other alternative solutions, like for example,
DNA analysis, since they are mobile and more affordable. An
image processing approach to hoverfly species discrimination
presented in this paper showed promising results on the
collected wing images dataset. Its advantage is that it utilizes
robust method for detection of landmark-points in wing
venation patterns of flying insects which is based on the
proposed combination of HOG and RCLBP descriptors and
can copewith different image imperfections. Simple rotation-
invariant features chosen for later wing classification are one
possible solution for the problem of unpredictable number of
automatic detections and proved to be discriminative enough
to distinguish correctly between two different hoverfly genera
with the very high accuracy of 97.7%, and to a lesser extent
between the two species that comprise each genus. The
proposed classification method may be used for engineering
of a complex automated hoverfly species identification system
which would achieve high accuracy and significant level of
robustness.
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