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Classificationmodel of support vectormachine (SVM) overcomes the problemof a big number of samples. But the kernel parameter
and the punishment factor have great influence on the quality of SVMmodel. Particle swarm optimization (PSO) is an evolutionary
search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia
convergence classification model (NICCM) is proposed after the nonlinear inertia convergence (NICPSO) is developed in this
paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be
a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM.Then, NICCM classifier
is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally,
NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the
iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training
duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.

1. Introduction

Power cables play an extremely important role in industrial
production and modern life. At present, it is difficult for
people to accept a bank system chaos or a wrong airport
management system because of the power cable faults. In
order to decrease and avoid the economic loss, the correct
state classification of the online power cable is very necessary.

Nowadays, the commonly used fault diagnosis methods
of power cable are electrical bridge method and electrical
impulse method. Both of these methods are offline methods
[1]. Obviously, these offline methods cannot satisfy the
requirement.

In theory, the entropy of the zero-sequence components
[2] of 3-phase voltages and 3-phase currents of the online
power cable was used to extract the fault feature. In addition,
wavelet transform is useful for the feature extraction of the
early fault of the online cable, and then the voltages and
currents are detected to get the subtle singular points by
utilizing wavelet transform [3]. Furthermore, the artificial
neural network [4] was also used to build the state clas-
sification model of the power cable because it can realize
any nonlinear mapping. But artificial neural network needs

a large number of samples and the training process may go to
the local minimum point.The classificationmodel of support
vector machine (SVM) overcomes the disadvantage of big
samples by obeying the rule of the minimum structural risk
[5]. But the kernel parameter and the punishment factor have
great influence on the quality of SVMmodel.

Particle swarm optimization (PSO) is an evolutionary
search algorithm [6] based on the swarm intelligence, which
is suitable for parameter optimization. Therefore, the com-
bination of PSO and SVM can find the optimal kernel
parameter and the punishment factor of SVM and obtain a
high quality of SVM classification model.

This paper is organized as follows. After the introduction
in Section 1, SVM and PSO related to this study are given in
Section 2. It includes the conventional SVM and the tradi-
tional PSO as well as the specific PSOwith a convergence fac-
tor and an inertia factor. Then, the nonlinear inertia conver-
gence PSO (NICPSO) and the nonlinear inertia convergence
classification model (NICCM) are proposed in Section 3.
The experiments are implemented using NICPSO and
NICCM to classify the normal state and several fault states
of online power cable in Section 4. Finally, the conclusion is
obtained in Section 5.
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2. SVM and PSO

The basic idea of NICCM is that SVM is taken as the
classification model and PSO is taken to optimize the impor-
tant parameters of the punishment factor and the kernel
parameter of SVM. The principles of SVM and PSO are
reviewed below.

2.1. SVM. The principle of SVM is to find an optimal
classification hyperplane which separates as much as possible
patterns of two classes to the correct classes. Meanwhile,
the hyperplane ensures the maximum distance between the
two classes of separable samples [7]. If 𝑑

+
is the minimum

distance from the classification hyperplane to the positive
sample set, and 𝑑

−
is the minimum distance from the

classification hyperplane to the negative sample set, then the
margin of the classification hyperplane is “𝑑

+
+𝑑
−
”.The linear

SVM is to find the separation hyperplane with maximum
margin. Namely, all the training samples should satisfy the
following constraints of |𝑑

+
| = |𝑑
−
| = 1:

𝑥
𝑇

𝑖
𝑤 + 𝑏 ≥ +1, 𝑦

𝑖
= +1, 𝑖 = 1, 2, . . . , 𝑁,

𝑥
𝑇

𝑖
𝑤 + 𝑏 ≤ −1, 𝑦

𝑖
= −1, 𝑖 = 1, 2, . . . , 𝑁,

(1)

or the equivalent constraint

𝑦
𝑖
(𝑥
𝑇

𝑖
𝑤 + 𝑏) − 1 ≥ 0, ∀𝑖, (2)

where 𝑥
𝑖
is the 𝑖th training sample and 𝑦

𝑖
is the class label

of the training sample 𝑥
𝑖
; 𝑤 and 𝑏 are the parameters of the

classification hyperplane; 𝑇 represents the transposition of a
vector;𝑁 is the number of samples.

If a training sample satisfies (2), then it is a support vector.
The change of a support vector impacts the change of the
margin and the solution of problem.

Linear support vector machine is a maximization prob-
lem in the view of (2). Equivalently, it is a minimum problem
of ‖𝑤‖2 in the condition of (2); namely, it is an optimization
problem with the constraint

𝐽 = min{ 1

[2 ∗ ‖𝑤‖
2
]
}

s.t. 𝑦
𝑖
(𝑥
𝑇

𝑖
𝑤 + 𝑏) − 1 ≥ 0, ∀𝑖,

(3)

where 𝑥
𝑖
is the 𝑖th training sample and 𝑦

𝑖
is the class label of

the training sample 𝑥
𝑖
and 𝑤 and 𝑏 are the parameters of the

classification hyperplane. This is a typical convex quadratic
programming problem.

For the linear separable classification problem of two-
class, the minimum structural risk problem can be described
by the conditional quadratic optimization problem. SVM
perfectly solves the two-class classification problem by find-
ing the solution of a convex quadratic optimization problem
[8].

For the indivisible linear problem of two-class, SVM
reaches the optimal result by constructing a classification
hyperplane with a soft margin. According to Mercer kernel

expansion theorem, a sample space can be mapped to a
higher dimensional feature space in which the linear learning
machine can be used to solve the nonlinear classifica-
tion problem. The solution of inseparable linear two-class
problem makes SVM become one of the formal two-class
classifiers with two values [9].

Given a sample set𝑇,𝑇 = {𝑥
𝑖
, 𝑦
𝑖
| 𝑖 = 1, 2, . . . , 𝑁}. 𝑥

𝑖
is an

input vector; 𝑦
𝑖
∈ {+1, −1} denotes the corresponding desired

output vector;𝑁 is the sample number. The Lagrange multi-
plier 𝛼 is introduced to construct the optimal classification
function 𝑓(𝑥) of separable linear samples; then

𝑓 (𝑥) = sgn (𝑤∗ ⋅ 𝑥 + 𝑏∗) = sgn{
𝑙

∑

𝑖=1

𝑦
𝑖
𝛼
∗

𝑖
(𝑥 ⋅ 𝑥
𝑖
) + 𝑏
∗

} ,

(4)

where sgn is the sign function. The class of pattern 𝑥 is
determined by the sign of the brackets.

For the case of imperfect separable linear samples, the loss
introduced by classification error should be considered. The
relax factor 𝜀

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑁, is used to (2). There is

𝑦
𝑖
(𝑥
𝑇

𝑖
𝑤 + 𝑏) − 1 + 𝜀

𝑖
≥ 0, ∀𝑖. (5)

Then the classification hyperplane with a soft margin is
determined by the optimization problem

𝐽 = min{ 1

[2 ∗ ‖𝑤‖
2
]
+ 𝐶

𝑙

∑

𝑖=1

𝜀
𝑖
}

s.t. 𝑦
𝑖
(𝑥
𝑇

𝑖
𝑤 + 𝑏) − 1 + 𝜀

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑁,

(6)

where 𝑤 and 𝑏 are, respectively, the weights and constant
of classification hyperplane; 𝐶 is the punishment factor of
wrong classification which adjusts the balance between the
confidence range and the experienced error. The bigger 𝐶
implies the smaller experienced error, and the smaller 𝐶
means the bigger classification margin. In addition, 𝐶 is a
positive constant, and the bigger 𝐶 means the more serious
punishment.

To solve (6), Lagrangemultiplier 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑙
)
𝑇 and

Lagrange function 𝐿 are used to convert the problem (6) to a
quadratic programming problem

𝐿 =

𝑁

∑

𝑖=1

𝛼
𝑖
−
1

2

𝑁

∑

𝑖=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝑥
𝑇

𝑖
𝑥
𝑗
, 0 ≤ 𝛼

𝑖
≤ 𝐶, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁

s.t.
𝑁

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
= 0.

(7)

Most of the practical problems are nonlinear.Then kernel
function 𝐾(𝑥

𝑖
, 𝑥
𝑗
) = ⟨Φ(𝑥

𝑖
), Φ(𝑥

𝑗
)⟩ is introduced to convert

an inseparable linear problem in a lower dimensional space
to a separable linear problem in a higher dimensional space.
In this case, the quadratic programming problem is

𝐿 =

𝑁

∑

𝑖=1

𝛼
𝑖
−
1

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝐾(𝑥
𝑖
, 𝑥
𝑗
) . (8)
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So the nonlinear SVM classifier 𝑓(𝑥) is

𝑓 (𝑥) = sgn{
𝑁

∑

𝑖=1

𝑦
𝑖
𝛼
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏} , (9)

where sgn is the sign function and 𝐾(𝑥, 𝑥
𝑖
) is a kernel

function. The commonly used kernel functions are linear
function, polynomial function, Sigmoid function, and Gauss
redial basis kernel function which is used in this paper. Gauss
redial basis kernel function is given as follows:

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = 𝑒
−‖𝑥𝑖−𝑥𝑗‖

2
/(2𝜎
2
)

, (10)

where 𝑥
𝑖
and 𝑥

𝑗
are, respectively, the 𝑖th and 𝑗th sample; 𝜎 is

the width of redial basis function.
The punishment factor𝐶 controls the punishment degree

bywhich the samplewith over error is penalized [10]. Besides,
the generalization ability of SVM is determined by the kernel
parameter 𝜎 [11]. That is to say, these two parameters have
great influence on the quality of SVM classification model.

2.2. PSO. The basic idea of PSO is to take every particle with
a random initialization as a possible solution of optimization
problem, and the quality of the particle is determined by
a predefined fitness function. Each particle moves in the
possible solution space, and the direction and the distance are
determined by a velocity variable. Particles generally follow
the current optimal particle, and the optimal solution will
be obtained finally through each generation of searching
[12]. If 𝑝

𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝐷
) is the most optimal position

which has been experienced by the individual particle, and
𝑝
𝑔
= (𝑝
𝑔1
, 𝑝
𝑔2
, . . . , 𝑝

𝑔𝐷
) is the most optimal position which

has been experienced by the whole particle swarm, then
particle [13] updates velocity V and position 𝑧 according to
the following equations during the iterations:

V𝑘+1
𝑖𝑑
= V𝑘
𝑖𝑑
+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑑
− 𝑧
𝑘

𝑖𝑑
) + 𝑐
2
𝑟
2
(𝑝
𝑔𝑑
− 𝑧
𝑘

𝑖𝑑
) ,

𝑧
𝑘+1

𝑖𝑑
= 𝑧
𝑘

𝑖𝑑
+ V𝑘+1
𝑖𝑑
,

(11)

where 𝑘 is the iteration times; 𝑟
1
and 𝑟
2
are random numbers

in range of [0, 1] and they will keep the diversity of the
swarm; 𝑐

1
and 𝑐
2
are learning factors, and they make the

particle have the ability to summarize itself and learn from the
excellent individual in the whole particle swarm, and finally
the particle closes to the optimal positioning in its history and
in the whole particle swarm history.

To improve the movement velocity of particle and
enhance the local searching ability, PSO with convergence
factor 𝜇 is commonly used. The velocity V and position 𝑧 are
as follows [14]:

V𝑘+1
𝑖𝑑
= 𝜇 [V𝑘

𝑖𝑑
+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑑
− 𝑧
𝑘

𝑖𝑑
) + 𝑐
2
𝑟
2
(𝑝
𝑔𝑑
− 𝑧
𝑘

𝑖𝑑
)] ,

𝑧
𝑘+1

𝑖𝑑
= 𝑧
𝑘

𝑖𝑑
+ V𝑘+1
𝑖𝑑
,

(12)

where

𝜇 =
2


2 − 𝑙 − √𝑙2 − 4𝑙



,

𝑙 = 𝑐
1
+ 𝑐
2
, 𝑙 > 4,

(13)

𝑘 is the number of iteration.

The convergence factor 𝜇 and its parameter 𝑙 can control
the velocity. The optimal position, 𝑝

𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝐷
), is

experienced so far by the 𝑖th individual particle. The optimal
position,𝑝

𝑔
= (𝑝
𝑔1
, 𝑝
𝑔2
, . . . , 𝑝

𝑔𝐷
), is experienced so far by the

whole particle swarm [12, 13].
To keep the balance between the global searching and

the local searching, and decrease the iteration number for
optimal solution, the inertia PSO (IPSO) is usually used. The
velocity V and position 𝑧 of IPSO can be described as follows
[15]:

V𝑘+1
𝑖𝑑
= 𝑤V𝑘
𝑖𝑑
+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑑
− 𝑧
𝑘

𝑖𝑑
) + 𝑐
2
𝑟
2
(𝑝
𝑔𝑑
− 𝑧
𝑘

𝑖𝑑
) ,

𝑧
𝑘+1

𝑖𝑑
= 𝑧
𝑘

𝑖𝑑
+ V𝑘+1
𝑖𝑑
,

(14)

where 𝑤 is inertia factor which plays a role of a tradeoff
between global optimization and local optimization.

The probability of the global optimization can be
increased with a fewer iteration number by applying the
IPSO.

3. NICCM Classifier

As we know from the above section, the punishment factor𝐶
and the kernel parameter 𝜎 should be optimized to ensure
the quality of SVM classification model. That is to say,
the parameter selection processes of SVM are the optimal
searching processes, and each point in the searching space is
a potential solution of the optimal model [16, 17].

3.1. Definition of NICPSO. In order to make use of the
advantages of the PSO with inertia factor and the PSO with
convergence factor, these two PSOs are fused to construct the
NICPSO. The NICPSO velocity of a particle is defined as the
weighted velocity of the inertia PSO:

V𝑘+1
𝑖𝑑
= 𝜇 [𝑤

𝑛
V𝑘
𝑖𝑑
+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑑
− 𝑧
𝑘

𝑖𝑑
) + 𝑐
2
𝑟
2
(𝑝
𝑔𝑑
− 𝑧
𝑘

𝑖𝑑
)] , (15)

where 𝜇 is the convergence factor, 𝑤
𝑛
is the nonlinear inertia

factor, and 𝑘 is the control factor.
Besides, the nonlinear inertia factor 𝑤

𝑛
is selected to be

𝑤
𝑛
(𝑡) = 𝑤min + (𝑤max − 𝑤min) exp(−𝑚 × (

𝑡

𝑡max
)

2

) ,

(16)

where 𝑡 is the number of iterations and𝑚 is the control factor
which control the smoothness degree of the w-t curve. The
inertia factor 𝑤

𝑛
varies with the iteration time 𝑡 in Figure 1.

These 𝑤-𝑡 curves move from the right upper to the left lower
when𝑚 = 0.5, 1.5, 5, 10, 50.
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Figure 1: The nonlinear inertia factor 𝑤
𝑛
varies with the number 𝑡

of iterations for different control factor𝑚.

3.2. NICCM Classifier. Based on the above discussion, the
NICPSO can be written as

𝑤
𝑛
(𝑡) = 𝑤min + (𝑤max − 𝑤min) exp(−𝑚 × (

𝑡

𝑡max
)

2

) ,

V𝑘+1
𝑖𝑑
= 𝜇 [𝑤

𝑛
V𝑘
𝑖𝑑
+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑑
− 𝑧
𝑘

𝑖𝑑
) + 𝑐
2
𝑟
2
(𝑝
𝑔𝑑
− 𝑧
𝑘

𝑖𝑑
)] ,

𝑧
𝑘+1

𝑖𝑑
= 𝑧
𝑘

𝑖𝑑
+ V𝑘+1
𝑖𝑑
,

(17)

where 𝑤
𝑛
is the nonlinear inertia factor of NICPSO, 𝜇 is the

convergence factor, V is the speed of particle, and 𝑧 is the
position of particle.

To optimize the punishment factor 𝐶 and the kernel
parameter 𝜎, the proposed NICPSO and the NICCM are
used. As we know, these two parameters have great influence
on the quality of SVM.The NICCM 𝑓(𝑥) is given as

𝑓 (𝑥) = sgn{
𝑁

∑

𝑖=1

𝑦
𝑖
𝛼
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏} ,

0 ≤ 𝛼
𝑖
≤ 𝐶, 𝑖 = 1, . . . , 𝑁,

𝐾 (𝑥, 𝑥
𝑖
) = 𝑒
−‖𝑥−𝑥𝑖‖

2
/(2𝜎
2
)

,

(18)

where 𝑥
𝑖
and 𝑦

𝑖
are, respectively, the 𝑖th pattern and its class

label, 𝛼
𝑖
is the 𝑖th Lagrange multiplier, 𝑏 is the constant of the

classifier, and𝑁 is the number of samples.
The flow chart of NICCM is given in Figure 2.
The NICCM can be described as follows.

Step 1. Initialize the parameters of PSO.

Step 2. Evaluate every particle.

Step 3. Update the velocity and the position of each particle.

Step 4. Keep the particles as the optimal particles if the
searching result is satisfied. Otherwise, go back to Step 2.

Step 5. Train the NICCM classifier using the optical punish-
ment factor and the optical kernel parameter that comes from
the optimal particle.

Beginning

Set a group of velocities and positions

Calculate fitness value of each particle

Initialization

Calculate optimal speed and position of each particle

Update speed and position of each particle

Satisfy ending condition?

Training and test NICCM

Does NICCM meet the requirement?

End

Yes

No

No
Yes

Get optimum SVM parameters (C, 𝜎)

Figure 2: Flow chart of NICCM.

Step 6. Keep the trained NICCM as the classification model
and end the training process if the performance is satisfied.
Otherwise go back to Step 5.

Some parameters are set in Step 1. They are the size 𝑁
of PSO, the accelerators 𝑐

1
& 𝑐
2
, the maximum velocity Vmax,

and the maximum position 𝑝max. The particle is constructed
by a punishment factor and a kernel parameter. Namely, the
particle is a vector (𝐶, 𝜎).

For the particle evaluation, the fitness value of each
particle is calculated according to fitness function.The fitness
value of each particle is compared with the best one of all its
experienced positions. If the comparison result is better, then
this position is taken as the best local one instead of the old
best local one. Furthermore, if a fitness value is better than the
best one among all the particles, then this position is taken as
the best global one instead of the old best global one.

4. Simulated Experiments

In this section, we recognize the normal state and the fault
states of an online power cable by using NICPSO and
NICCM. The fault states include the short circuit between
phases (SCBP), the three-phase shirt circuit (TPSC), and the
normal state (NS).

4.1. Experimental Data. In the system model of the online
cable in Figure 3, the two power supplies are ideal, and they
provide voltage of 6000KV. The module of three-phase fault
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Figure 3: System model of online power cable.

is used to produce various types of fault states.Themodule of
three-phase V-I measurement is connected with the power
line in front of the fault module to measure the transient fault
signals. The sampling frequency is 10MHz.The 1024 samples
are collected after the initial traveling waves arrived.The fault
starts at the 0.03th second and ends at the 0.07th second.The
total length of the power cable line is 60 km.

The patterns of the states of online power cable system
can be constructed by two kinds of features of phase entropy
and amplitude entropy. We select the phase entropy 𝑒

𝑝
and

the amplitude entropy 𝑒
𝑎
as follows:

𝑒
𝑝
= ln



−∑

𝑘

𝐸
𝑘
ln𝐸
𝑘



,

𝐸
𝑘
= ∑

𝑗

𝑑
2

𝑘
(𝑝) ,

𝑒
𝑎
= ln



−∑

𝑘

𝐸
𝑘
ln𝐸
𝑘



,

𝐸
𝑘
= ∑

𝑗

𝑑
2

𝑘
(𝑎) ,

(19)

where 𝐸
𝑘
is the energy function of the 𝑘th frequency band

at scale 𝑗 of the zero-component of 3-phase currents and 𝑑
𝑘

is the coefficient of the 𝑘th frequency band of wavelet packet
decomposition [16].

The experimental sample numbers are given in Table 1
and partial sample data are shown in Table 2. The classes of
the data include the SCBP, the TPSC, and the NS. The first
dimension represents the phase entropy 𝑒

𝑝
, and the second

dimension represents the amplitude entropy 𝑒
𝑎
in the 2-

dimensional vectors of Table 2.
The distribution of the sample data is shown in Figure 4.

The red symbols “×” represent the training data of SCBP and
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Normal training data
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Figure 4: Distribution of the sample data.

Table 1: Sample number.

Class Number of
training samples

Number of test
samples

Total number of
samples

SCBP 11 9 20
TPSC 10 5 15
NS 15 10 25
Sum 36 24 60

the blue symbols “×” are the training data of TPSC and the
purple symbols “×” are the training data of NS. Meanwhile,
the red symbols “⬦” are the test data of SCBP, the blue
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Figure 5: Position change of 𝜇 = 1, 𝑤 = 1.
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Figure 6: Velocity change of 𝜇 = 1, 𝑤 = 1.

symbols “⬦” are the test data of TPSC, and purple symbols
“⬦” are the test data of NS.

4.2. NICCM Experiment. The position changes and velocity
changes of NICPSO are shown in Figures 5, 6, 7, 8, 9, 10, and
11 with different convergence factor 𝜇 and different inertia
factor 𝑤.

The changes of position and velocity are, respectively, in
Figures 5 and 6 for 𝜇 = 1, 𝑤 = 1. Furthermore, the changes
are in Figures 7 and 8 for 𝜇 = 1, 𝑤 ̸= 1. Figures 9 and 10 are
for 𝜇 ̸= 1, 𝑤 = 1. Figures 11 and 12 are for 𝜇 ̸= 1, 𝑤 = 1.

From Figures 5 and 11, it can be seen that the iteration
numbers of position decrease from 15 times to 5 times for
NICPSO to compare with SVM.

From Figures 6 and 12, it can be seen that the iteration
numbers of velocity are the same for SVM and NICPSO.The
value of both SVM and NICPSO is 12.

The classification model of SVM is trained and shown in
Figure 13. Obviously, all the training samples of NS, SCBP,
and TPSC are classified perfectly.
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Figure 7: Position change of 𝜇 = 1, 𝑤 ̸= 1.
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Figure 8: Velocity change of 𝜇 = 1, 𝑤 ̸= 1.
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Figure 9: Position change of 𝜇 ̸= 1, 𝑤 = 1.
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Figure 10: Velocity change of 𝜇 ̸= 1, 𝑤 = 1.
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Figure 11: Position change of 𝜇 ̸= 1, 𝑤 ̸= 1.
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Figure 12: Velocity change of 𝜇 ̸= 1, 𝑤 ̸= 1.
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Figure 13: Classification model of NS, SCBP, and TPSC using SVM.
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Figure 14: Test result of NS, SCBP, and TPSC using SVM.

The test result of SVM model is shown in Figure 14.
Training duration is 0.0575 s, and the recognition precision
is 87.55%.

The classification model of NICCM is trained and shown
in Figure 15. Obviously, all the training samples of NS, SCBP,
and TPSC are classified correctly.

The test result of NICCM model is shown in Figure 16.
Training duration is 0.0523 s, and it decreases by 0.0052 s
compared with SVM. Furthermore, the test results illustrate
that all the samples of NS are classified correctly, and all the
faulty samples of SCBP and TPSC are confirmed as faulty
state. The shortcoming is that 2 samples of SCBT are recog-
nized as TPSC, and 1 sample cannot be confirmed whether
it belongs to SCBT or TPSC. The recognition precision is
91.67%, and it increases by 4.12% compared with SVM.

4.3. Evaluation. The results obtained from the above experi-
ments are shown in Tables 3 and 4.
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Table 2: Partial sample data.

Class Data of training samples Data of test samples

SCBP

(−1.4826, 14.2146) (−1.7212, 13.8477)

(−1.4725, 14.3209) (−1.5111, 14.3149)

(−1.5333, 14.1438) (−1.5563, 14.3628)

(−1.4359, 14.2299) (−1.5268, 14.1465)

(−1.5196, 14.2148) (−1.7323, 14.1386)

(−1.4826, 14.0529) (−1.6713, 14.2635)

(−1.4848, 14.2394) (−1.9292, 13.8993)

(−1.4295, 14.1701) (−1.8366, 14.2588)

(−1.5818, 14.1710) (−1.8185, 14.3409)

TPSC

(−1.8482, 14.5948) (−2.0666, 14.3968)

(−1.7781, 14.3483) (−1.7447, 14.0400)

(−1.8164, 14.0203) (−1.8236, 14.3761)

(−2.0253, 14.2646) (−1.8498, 14.2612)

(−1.8436, 14.4213) (−1.5861, 14.5057)

NS

(−2.4852, 16.0696) (−2.3082, 15.9704)

(−2.3795, 15.8763) (−2.2841, 16.3121)

(−2.3672, 15.5368) (−2.4491, 16.7497)

(−2.3647, 16.3910) (−2.3021, 15.5935)

(−2.2980, 16.4249) (−2.5951, 16.1439)

(−2.3126, 16.0252) (−2.3489, 15.8276)

(−2.3036, 15.4120) (−2.7336, 16.3454)

(−2.2745, 16.1606) (−2.3253, 16.4116)

(−2.2515, 15.9785) (−2.4441, 16.4604)

(−2.2507, 15.5681) (−2.4040, 16.0707)

Table 3: Comparison of different PSOs.

Method Parameter
and factor

Iteration number
of velocity

Iteration number
of position

PSO 𝑢 = 1, 𝑤 = 1 12 15
IPSO 𝑢 = 1, 𝑤 ̸= 1 >40 39
CPSO 𝑢 ̸= 1, 𝑤 = 1 26 15
NICPSO 𝑢 ̸= 1, 𝑤 ̸= 1 12 5

Table 4: Evaluation 1 of NICCM.

Method Training duration Recognition precision
SVM 0.0575 87.55%
NICCM 0.0523 91.67%

5. Conclusion

In this paper, the NICPSO is developed to optimize the
punishment factor and the kernel parameter of SVM, and
then the NICCM is proposed to implement classification.
Finally, the NICCM is applied to classify the normal state
and fault states of online power cable. It is experimentally
proved that the iteration number for the proposedNICPSO to
reach the optimal position decreases from 15 to 5 compared
with the conventional PSO. All the samples of normal state
are classified correctly, and all the samples of fault state
are confirmed by using NICCM. Compared with SVM,
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Figure 15: Classification model of NS, SCBP, and TPSC using
NICCM.
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Figure 16: Test result of NS, SCBP, and TPSC using NICCM.

the training duration of NICCM is decreased by 0.0052 s.
Meanwhile, the recognition precision of NICCM is increased
by 4.12%.

NICCM is not only suitable for the classification of the
normal state and fault states of online power cable but also
suitable for other classifications with a small number of
samples and a quick recognition process.
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