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How to find the optimal transportation route in sea-trade is very important for the logistics industry. The traditional routing
problem is solved by performing the combinatorial optimization over a specified transportation network. Facing the huge network
extracted from the foreign trading industry as well as the complex constraints, it is impossible for the traditional optimization
methods to find the solution in a short time, which motivates our work. In this paper, we first carefully study the property of
foreign trade network, and then convert the transportation network into a hierarchical one and propose a novel framework based
on graphical model to solve this large scale network optimization problem.The experimental results demonstrate that our approach
is superior to the famous ant colony optimization algorithm (ACO) in terms of accuracy and the time spent.

1. Introduction

With the rapid economic globalization, logistics industry has
become a critical component in the commercial link. In addi-
tion to providing transportation services, modern logistics
industry has brought many additional values into our society,
such as electronic tracking, warehousing, and resources dis-
tribution. It consists of service center, information processing
center, and resource allocation center. The logistics network
is required to build seamless connection such that the afore-
mentioned threemain components can operate efficiently [1–
3].

However, one important issue, path programming prob-
lem, aroused is how to find the optimal transportation route
such that its transportation cost isminimal amidst all possible
routes on the logistics network. The traditional approaches
seek the help of combinatorial optimization performed on the
complete transportation network. In nature, the problem is
NP-hard, and thus those methods can only get the approx-
imate solutions. With the logistics network growing hugely,
for example, in sea-trade industry, as well as the increasing
diverse constraints posed by law or user requirements, it
becomes harder to acquire efficient and effective solutions via

traditionalmethods.Then some heuristic algorithms or intel-
ligent agent based algorithms are proposed by researchers,
such as genetic algorithm, ant colony algorithm, and immune
algorithm. Unfortunately, the above methods are also prob-
lematic. Firstly, the assumption, held by those methods, is
in doubt that all edges’ costs of the logistics network are
known. In fact, it is unachievable to exactly compute the cost
of each edge of such large scale logistics network. Secondly,
with the large amount of constraints, it is every difficult to
directly optimize the entire network. Thirdly, due to the lack
of adaptive learning ability, little knowledge could be learnt
from the historical data, and thus, the traditional models fail
to gradually improve the model performance.

Motivated by these problems, we propose, in this paper, a
graph based framework to acquire the optimal route in logis-
tics network. The main contributions of the proposed frame-
work are on (1) proposing a graph based learning framework
to handle the route selection problem in sea-trade logistics;
meanwhile traditional approaches are almost heuristic algo-
rithms or intelligent agent based algorithms; (2) defining
time and cost constraints to deal with users’ requirement in
reality; (3) proposing an incremental algorithm which can
utilize additional data to update route optimization model.
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In this framework, hence, three algorithms are designed for
different scenario, which are briefly listed as follows:

(1) A random walk model based transportation route
algorithm (RWTR) is proposed. It, without prior
knowledge, calculates the probability of the edge
using historical data of routes, and the edge probabil-
ity represents how likely a route exists between those
two nodes.

(2) A constraints oriented transportation route algorithm
(CTR) is proposed, which extends the RWTR algo-
rithm and considers diverse customer requirements
such as time constraint and price constraint.

(3) An incremental transportation route algorithm
(ICTR) is proposed as the adaptive version of the
CTR algorithm and it automatically adjusts themodel
parameters according to the new operating data.

The rest of the paper is organized as follows. Section 2
reviews some related works. The route optimization problem
is formulated, especially in sea-trade industry, in Section 3.
Section 4 introduces aforementioned three routing algo-
rithms. Experiments and evaluation results are demonstrated
in Section 5. Section 6 concludes the paper.

2. Related Works

Route optimization in logistics network has become a widely
researched topic in its own right over the years. A lot of
research works have proposed this problem. In its infancy,
Holland [4] adopted the genetic algorithm (GA) to this
problem and the GA is an adaptive heuristic based search
algorithm premised on the evolution of natural selections
and genetic variations.This spirit was then widely adopted to
optimize the logistics routes inmany research works in [5–7].

Of late years, the evolutionary algorithms (EA) [8, 9] tried
to optimize the route using similar techniques like inheri-
tance, mutation, selection, and crossover. Immune algorithm
is a variation of genetic algorithms imitating the immune sys-
tem to solve the multimodal function optimization problem
[10, 11]. Ant colony optimization (ACO) is then proposed, as
an intelligent agent based technique, for combinatorial opti-
mization problems, which mimics the foraging behavior of
ants driven by sensing pheromone produced by other ants
that successfully found foods. InACO, a number of intelligent
agents, virtual ants, were first constructed, and the agent
released decaying information along the path it walked
together what it found. Other agents chose the path having
stronger pheromone and, after a long-term, the optimal route
was automatically achieved [12–14].

Randomwalk algorithm is another important task related
to this research which is an effective way to traverse graph
nodes. Following its assumption, a walker randomly chooses
its next visited node (among direct neighbors of current
node) with certain probabilistic preference for each neighbor
node [15]. Given initial nodes, the algorithm can produce
a ranked node path with several steps of the random walk,
which follows a desired probability distribution (transition
probability matrix). Tong et al. propose a useful measure of
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Figure 1: Logistics network of sea-trade.

node proximity based on graph topology [16].Then, Fujiwara
et al. propose a fast top-K search based on random walk
algorithm, which uses BFS tree based pruning technique to
skip unnecessary scanning of nodes for top-K results [17].
Recently, Yu andLin [18] have developed an incremental algo-
rithm that can update random walk algorithm on dynamical
graphs.

Although those algorithms have been applied in a variety
of domains such as graph coloring, routing selection, and the
traveling salesman problem, they have several disadvantages
for sea-trade, for example, slow convergence rate, high time
complexity, less learning ability, and massive parameters to
be learnt, which stems it from being applied in large scale
applications.

3. Problem Formulation

Generally speaking, as seen in Figure 1, the logistics network
of sea-trade includes six types of entities, for example, start-
ing point (exporter), agency, shipping company, warehouse
station, transportation company, and destination (importer).
The business process of foreign is simplified as follows.
Assume that an exporter at Weihai wants to sell his/her com-
modities to the USA through an agent. After finding the
importer, the export agency employs a shipping company sat-
isfying the requirements of exporter. Then, some warehouse
stations are chosen to temporarily store the commodities.The
transport company is in charge of transporting commodities
from the warehouse station to the destinations.

According to the business process, the following charac-
teristics can be extracted from the logistics network of sea-
trade, which are given as follows:

(1) Logistics network of sea-trade is a hierarchical one
with each node belonging to a unique type which
could be grouped by the same type layer.

(2) Each layer has its unique position in the logistics
chain.

(3) A complete logistics route consists of edges sequen-
tially connecting the adjacent layers.

With these characteristics, the logistics network can be
modeled using Figure 1 and can be further abstracted as
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Figure 2: Abstracted network of sea-trade.

Figure 2. As shown in Figure 2, a logistics network is
abstracted as a undirected graph𝐺 = ⟨𝑉, 𝐸⟩, where𝑉 denotes
the set of nodes and 𝐸 denotes the set of edges. Node set 𝑉
can be divided into 𝑘 disjoint subsets: 𝑉 = 𝑆

1
∪ 𝑆

2
∪ ⋅ ⋅ ⋅ ∪ 𝑆

𝑘,
where 𝑆

𝑖
∩ 𝑆
𝑗
= ⌀, 𝑖, 𝑗 ∈ {1, . . . , 𝑘}. Internal nodes in 𝑆

𝑖 are
independent of each other. The incoming degree of all nodes
in 𝑆

1 is zero and the outdegree of all nodes in 𝑆
𝑘 is zero. A

node is represented by V𝑖 = (V𝑖1, V
𝑖

2, . . . , V
𝑖

𝑛
), where V𝑖

𝑛
∈ 𝑆
𝑖.

Edge set is written as 𝐸 = {⟨V𝑖, V𝑗⟩ | V𝑖 ∈ 𝑆
𝑖
, V𝑗 ∈ 𝑆

𝑖+1
},

𝑖 ∈ {1, . . . , 𝑘 − 1}, and each edge, 𝑒 = ⟨V𝑖, V𝑗⟩, has a weight
𝑤𝑖𝑗, indicating the probability that 𝑒 = ⟨V𝑖, V𝑗⟩ exists in a
logistics route. Therefore, the route optimization problem is,
in essence, a ranking problemwhich can be decomposed into
the following three subproblems:

(1) Given a source node 𝑠 ∈ 𝑆
1, a destination node 𝑑 ∈

𝑆
𝑘, and the historical business data 𝐷; how to output
one optimal sequence {𝑟2, . . . , 𝑟𝑛} where 𝑟𝑖 ∈ 𝑆

𝑖
(𝑖 =

2, . . . , 𝑘).
(2) Given a source node 𝑠 ∈ 𝑆

1, a destination node 𝑑 ∈ 𝑆
𝑘,

the historical business data𝐷, and a set of constraints
𝐿 = {𝑙𝑖(𝑠𝑗) | 𝑠𝑗 ∈ 𝑉 − 𝑆

1
}; how to output the optimal

sequence {𝑟2, . . . , 𝑟𝑛} where 𝑟𝑖 ∈ 𝑆
𝑖
(𝑖 = 2, . . . , 𝑘),

satisfying constraint set 𝐿.

(3) Given a source node 𝑠 ∈ 𝑆
1, a destination node 𝑑 ∈ 𝑆

𝑘,
the historical business data𝐷, a set of constraints 𝐿 =

{𝑙𝑖(𝑠𝑗) | 𝑠𝑗 ∈ 𝑉− 𝑆
1
}, and a new business data𝐷𝑡; how

to output the optimal sequence {𝑟2, . . . , 𝑟𝑛}, where 𝑟𝑖 ∈
𝑆
𝑖
(𝑖 = 2, . . . , 𝑘), which also satisfies constraint set 𝐿.

4. The Proposed Algorithm

In this paper, the random walk model was adopted to opti-
mize the logistics network. To make the analogy, the possi-
bility to select next routing node can be viewed as the tran-
sition probability between the two nodes of the random
walk process. Then, a transition probability matrix𝑀 of two
adjacent node sets can be generated. Assume that a random
path could be selected in the matrix𝑀; the model will grad-
ually converge to its stable distribution [19], indicating the
possibility that a route is chosen.

Let element V𝑖𝑗 denote the probability that node 𝑗 is cho-
sen in the optimal route. Each pair ⟨𝑆𝑖, 𝑆𝑖+1⟩ in graph 𝐺 gen-
erates a transition probability matrix 𝑀. Hence, there exist
5 transition probability matrices: 𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5.

Matrix 𝑀𝑖 is the transition probability matrix on ⟨𝑆
𝑖
, 𝑆
𝑖+1

⟩.
The iterative equations to optimize the route are defined as
follows:

V1 = (1− 𝑐)𝑀1V
2
+ 𝑐𝑝,

V2 =
1
2
𝑀1
𝑇V1 +

1
2
𝑀2V

3
,

V3 =
1
2
𝑀2
𝑇V2 +

1
2
𝑀3V

4
,

V4 =
1
2
𝑀3
𝑇V3 +

1
2
𝑀4V

5
,

V5 =
1
2
𝑀4
𝑇V4 +

1
2
𝑀5V

6
,

V6 = (1− 𝑐)𝑀5
𝑇V6 + 𝑐𝑞,

(1)

where vectors 𝑝 and 𝑞 are the initial value and 𝑐 is a constant
which is empirically set to 0.5.

In (1), the transition probability matrices, 𝑀1, 𝑀2, 𝑀3,
𝑀4, and 𝑀5, are unknown and should be calculated first.
They can be calculated by the following procedure using
the historical data. The weight of edge is calculated as
𝑤𝑖𝑗 = 𝑓𝜓(V𝑖, V𝑗), where 𝑓𝜓 is used to compute the transition
probability between V𝑖 and V𝑗.

Let 𝐹(V𝑖, V𝑗, 𝜓) = −∑
𝑛

𝑘=1 𝜓𝑘sim(V𝑘
𝑖
, V𝑘
𝑗
) be the similarity

between V𝑖 and V𝑗, with sim(V𝑘
𝑖
, V𝑘
𝑗
) quantifying similarity

between V𝑖 and V𝑗 on the 𝑘th-dimension. Then the transition
probability can be defined as

𝑓𝜓 (V𝑖, V𝑗) =
1

1 + exp (−∑
𝑛

𝑘=1 𝜓𝑘 ∗ sim (V𝑘
𝑖
, V𝑘
𝑗
))

. (2)

The parameter 𝜓 can be estimated using the maximum
likelihood. The likelihood function is 𝑙(𝜓) = log(∏

𝑚
𝑓𝜓(V𝑖,

V𝑗)), where𝑚 is number of edges.Themaximization step can
be derived as

𝜕𝐹 (V𝑖, V𝑗, 𝜓)
𝜕𝜓𝑘

= sim (V𝑘
𝑖
, V𝑘
𝑗
) ,

𝜕𝐿

𝜕𝜓𝑘

= (−1)∑
𝑚

exp (−𝐹 (V𝑖, V𝑗, 𝜓))

1 + exp (−𝐹 (V𝑖, V𝑗, 𝜓))

𝜕𝐹 (V𝑖, V𝑗, 𝜓)
𝜕𝜓𝑘

= (−1)∑
𝑚

exp (−𝐹 (V𝑖, V𝑗, 𝜓))

1 + exp (−𝐹 (V𝑖, V𝑗, 𝜓))
sim (V𝑘

𝑖
, V𝑘
𝑗
) ,

𝜓𝑡 = 𝜓𝑡−1 + 𝜂
𝜕𝐿

𝜕𝜓
,

(3)

where 𝜂 is iterative parameter, and the iterationwill stopwhen
the difference |𝜓𝑡 − 𝜓𝑡−1| is smaller than a predefined value 𝜀.

With (1), (2), and (3), all transition probability matrix
could be acquired. Now, we will introduce the proposed
algorithms, RWTR, CTP, and ICTR, respectively.When there
are no special requirements (or constraints), the RWTR
algorithm can be adopted to acquire the optimal route.
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As this algorithm directly adopts the random walk model to
optimize the route, we just give the details in Algorithm 1.

Algorithm 1 (RWTR algorithm).

Input.

Properties of exporter commodity 𝑃

Business dataset𝐷.

Output. A route in graph 𝐺 and transition probability matrix

(1) generate transition probability matrix 𝑀1, 𝑀2, 𝑀3,
𝑀4,𝑀5

(2) according to 𝑃, generate the vector 𝑝 and 𝑞;
(3) initialize vector V1, V2, V3, V4, V5, V6

(4) while isNotConvergence (V1, V2, V3, V4, V5, V6) do
(5) compute (1)
(6) end while
(7) obtain index of 𝑘th-dimension in V𝑖, 𝑖 ∈ {2, 3, 4, 5},

where the possibility of 𝑖th-dimension is maximum.
(8) obtain route is make up of source and destination and

indexes in V2, V3, V4, V5.

When constraints, such as time spent in the transporta-
tion and price to be charged, are considered, the RWTR was
extended to the CTR algorithm. In this algorithm, the global
constraint can be segmented into several fragments which is
based on the statistical estimation on its historical data. The
number of those fragments is set to the number of layers in
the network with each constraint fragment corresponding to
a layer. For example, in the statistics of historical information,
if the average time the network takes to transport the same
goods is ten days and five days are spent on warehouse
station, then the percentage of the layer of warehouse station
is initialized as 50% when we consider the time constraint.
All layers are initialized according to their historical statistics.
Similarly, the remaining constraints could be processed. The
model learning part is slightly revised and details of the CTR
are given in Algorithm 2.

Algorithm 2 (CTR algorithm).

Input.

Properties of exporter commodity 𝑃

transition probability matrix𝑀1,𝑀2,𝑀3,𝑀4,𝑀5

Constraints of 𝐿 = {𝑙𝑖(𝑠𝑗) | 𝑠𝑗 ∈ 𝑉 − 𝑆
1
− 𝑆
𝑘
}

Business dataset𝐷.

Output. A route in graph 𝐺:

(1) according to 𝑃, generate the vector 𝑝 and 𝑞;
(2) initialize vector V1,V2, V3, V4, V5,V6

(3) while isNotConvergence (V1, V2, V3, V4, V5, V6) do
(4) compute (1)

(5) end while
(6) obtain index of 𝑘th-dimension in V𝑖, 𝑖 ∈ {2, 3, 4, 5},

where the possibility of 𝑖th-dimension is descending
order and the 𝑘th-node satisfies the constraint 𝐿 𝑖

(7) obtain route is make up of source and destination and
indexes in V2, V3, V4, V5.

To further consider the effect of incoming data, the
ICTR algorithm is proposed, shown inAlgorithm 3. Once the
incremental data set𝐷𝑡 is received, the transition probability
matrices 𝑀1, 𝑀2, 𝑀3, 𝑀4, and 𝑀5 are updated by (4)
immediately, which is given as

𝑀


𝑖
=

|𝐷|

|𝐷| +
𝐷𝑡



𝑀𝑖 +

𝐷𝑡


|𝐷| +
𝐷𝑡



𝑀𝑖𝑡. (4)

Algorithm 3 (ICTR algorithm).

Input.

Properties of exporter commodity 𝑃

transition probability matrix𝑀1,𝑀2,𝑀3,𝑀4,𝑀5

Constraints of 𝐿 = {𝑙𝑖(𝑠𝑗) | 𝑠𝑗 ∈ 𝑉 − 𝑆
1
− 𝑆
𝑘
}

Business data set𝐷 and New business data𝐷𝑡.

Output. A route in graph 𝐺

(1) generate transition probability matrix 𝑀


1, 𝑀


2, 𝑀


3,
𝑀


4,𝑀


5 by (4)
(2) according to 𝑃, generate the vector 𝑝 and 𝑞;
(3) initialize vector V1, V2, V3, V4, V5, V6

(4) while isNotConvergence (V1, V2, V3, V4, V5, V6) do
(5) compute (1)
(6) end while
(7) obtain index of 𝑘th-dimension in V𝑖, 𝑖 ∈ {2, 3, 4, 5},

where the possibility of 𝑖th-dimension is descending
order and the 𝑘th-node satisfies the constraint 𝐿 𝑖

(8) obtain route is make up of source and destination and
indexes in V2, V3, V4, V5.

5. Experiments Analysis

In this section, a set of synthetic data sets are constructed for
the evaluation of the proposed RWTR, CTR, and ICTR algo-
rithms. The experimental results showed that the optimized
route acquired by our methods is superior to those acquired
by the baseline algorithmswith respect to total price and total
time spent.

5.1. Experiment Design. As there is no benchmark data set,
a set of synthetic data sets will be generated as follows. The
network, shown in Figure 2, is simulated. The nodes in the
network are generated as (1) each node is generated with 5
attributes, shown in Table 1, and these attributes are consid-
ered in this model as they are commonly accepted as the key
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Table 1: Node attributes.

Attribute Description Scope
Location Location of nodes 1–5
Destination Destination of goods (in station layer, it means the location of station) 1–5
Weight The weight of the goods or the maximum ability of dealing with goods 1–5

Time constraint The minimum time of dealing with issues (in starting point, it means the time
constraint needed by exporter) 1–5

Price The cost for going through a node 1–5

Table 2: Calculation formula for attribute distances.

Attribute Formula

Location
{

{

{

0 where V𝑖𝑘 = Vj𝑘

0.2 where V𝑖𝑘 ̸= Vj𝑘

Destination
{

{

{

1 where V𝑖𝑘 ̸= Vj𝑘

0 where V𝑖𝑘 = Vj𝑘

Weight
{

{

{


V𝑖𝑘 − Vj𝑘


other

∞ where V𝑖𝑘 > Vj𝑘

Time constraint
{

{

{

V𝑖𝑘 − 𝜃𝑘
 other

∞ where V𝑖𝑘 > 𝜃𝑛

where 𝜃𝑖 is the time constraint of layer 𝑖

Price 1
V𝑗𝑘

factors affecting the selection of route and (2) the attributes
belonging to the node in the layer of starting point need
to reflect some constraints posed by the customers, which
make them different from nodes of other layers. For example,
the time constraint attribute of the nodes, in starting point
layer, indicates the delivery time of the goods, whereas it
only means, in the remaining layers, the processing time a
node takes. In starting point layer, weight attribute is thought
as the weight of goods, but it means, in other layers, the
maximum weight could be processed by the node. The price
attributes are usually set to zero as exporters focus more on
other constraints, which can be retrieved in nodes of other
types. In the rest of this paper, node, not in the starting point
layer or destination layer, will be called internode and its layer
is called interlayer.

In the generated network, there are 5 locations, 5 des-
tinations, and 10 internodes. The attributes of these nodes
are illustrated in Table 1. To eliminate the ambiguousness
of the transition probability matrix, each node in the start
point layer is duplicated 4 times, with each node reflecting
one constraint. Then, the time constraint attribute will be
classified into 2 classes, namely, short-term and long-term,
normalized by 10. The weight attribute will also be split into
2 classes, namely, heavy goods and light goods, normalized
by 50. Therefore, the combination of requirements on the
location is total of 4 different categories, that is, short-
term, heavy goods, long-term, heavy goods, short-term,
light goods, and short-term, light goods. To match these 4
categories, the duplicated nodes are generated. In the end, the
synthetic network consists of 65 nodes (20 starting nodes, 5
destination nodes, and 40 internodes).

Two data sets are generated based on previous network,
the first one does not consider the time constraints, and 70
routes are selected. Among them, 50 routes are randomly
selected out for the training of parameter psi, and the
remaining 20 routes will be used to test the performance of
the RWTR. The second data set is generated to consider the
time constraint, in which 100 routes are manually created.
Each node in starting point layer has at least one route. A
random sample of 50 routes is chosen to train parameter psi, a
random sample of 20 routes is chosen to test the performance
of the CTR, and the remaining 30 routes are to test the
performance of the ICTR.

To evaluate the model performance, the ACO is chosen
as the baseline algorithm for the comparison. The ACO is
a probabilistic approach which can find the optimal paths
through its self-learning process. We first describe the ACO
in Algorithm 4. In the ACO, the quality of the path of the
ant is inversely proportional to the objective function value
of ACO. The objective function of ACO can be defined as
𝑓(route) = ∑

𝑖=1 ∑𝑗=1 𝐹(V𝑖, V𝑗, 𝜓), where 𝐹(V𝑖, V𝑗, 𝜓) is defined
in (2). Parameters of the ACO are set as follows. The number
of ants is 60, themaximumnumber of cycles is set to 300, 𝛼 =

0.5, 𝛽 = 1, and 𝜌 = 0.7. As Euclidean distance is not applica-
ble, Table 2 shows howwe calculate the distance in predefined
attributes, in which V𝑖𝑘 is the 𝑘th component of V𝑖, and V𝑖 is
the predecessor node of V𝑗 in the network. For attribute of
location, if the two nodes belong to the same city, the distance
between two nodes is 0; otherwise the distance is 0.2. For
attribute of destination, if the export destination of two nodes
is the same in sea-trade, the distance between two nodes is 0;
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Table 3: Evaluation for parameters of ACO.

Type Correct route number
Location first 11
Destination first 11
Weight first 12
Time constraint first 14
Price first 12
Attributes equally 11

otherwise the distance is 1. For attribute of weight, if themax-
imum loading weight of predecessor node V𝑖 is larger than
node V𝑗 in sea-trade, then the merchandise cannot be trans-
ported from V𝑖 to V𝑗; the distance between two nodes is ∞;
otherwise the distance is |V𝑖𝑘 − V𝑗𝑘|. For attribute of time con-
straint, if the time cost in successor node V𝑗 is larger than time
limitation of 𝜃𝑘, then the path between V𝑖 and V𝑗 is unavailable,
and then the distance between two nodes is ∞; otherwise
the distance is |V𝑖𝑘 − 𝜃𝑘|. For attribute of price, the distance
between V𝑖 and V𝑗 is inversely proportional to cost in node V𝑖.

Algorithm 4 (ACO algorithm in logistics).

Input.

Properties of exporter commodity 𝑃

Constraints of 𝐿 = {𝑙𝑖(𝑠𝑗) | 𝑠𝑗 ∈ 𝑉 − 𝑆
1
− 𝑆
𝑘
}

Business dataset𝐷.

Output. A route in graph 𝐺 and transition probability matrix

(1) while count (circle) <maxCircleCount do

(2) all ants complete parades

(3) update pheromone on the relative path, based on the
quality of ant parade.

(4) end while

(5) obtain route ismake up of edges onwhich the number
of ants is more than other edges.

5.2. Experimental Evaluation for Parameters of ACO. To
achieve the best performance of the ACO, parameters are first
carefully tuned with a focus on parameters 𝜓 as it directly
affects the objective function ofACO. In this evaluation, ACO
is performed on the second data set and 𝜓 can be estimated
on two scenarios: (1) attributes with priority: 𝜓𝑖 = 0.6 and
𝜓other = 0.1, where 𝑖 = 1, 2, . . . , 5, which means that the
𝑖th attribute is the most important attribute to the ants and
(2) equally weighted attributes: 𝜓 = [0.2, 0.2, 0.2, 0.2, 0.2],
which means all attributes are of equal importance to the
ants. The results can be seen in Table 3. The first scenario
achieves better performance than that of the second scenario,
as the ants are able to achieve a feasible route while paying less
attention to constraints like “weight.” Hence,𝜓 = [0.1, 0.1, 0.2,
0.4, 0.2] is used in the remaining experiments.

RWTR CTR ICTR
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Figure 3: Accuracy of the RWTR, CTR, and ICTR.

5.3. Experimental Results of the RWTR, CTR, and ICTR

5.3.1. Experimental Results of the RWTR. In this evaluation,
the RWTR algorithm is performed on the first data set and
the parameter 𝜓 is estimated using (3), and we have 𝜓 =
[0.005, 0.5608, 0.0732, 0.0683, 0.2477]. From the weight of
each attribute, it can conclude that destination is the most
important factor, the price attribute is the second important
factor, the location is the least important factor, and the
remaining two attributes are almost equal weighted. This
roughly matches customers’ intuitive way to select the route.
After acquiring 𝜓, all transition probability matrix can be
calculated. The results of the RWTR can then be achieved.
The ACO algorithm is directly performed on the test set.

From the comparison results in Figure 3, it was found
that the RWTR algorithm can get 15 correct optimal routes,
judged manually, in test data set, while the ACO algorithm
can find 14 correct optimal routes.The accuracy of the RWTR
is higher than the ACOby 7.1%.More importantly, the RWTR
algorithm is 10 times faster than the ACO algorithm, and the
speedup result is shown in Table 4. The reason lies in the fast
convergence rate of the random work model.

5.3.2. Experimental Result of the CTR. In this subsection, the
CTR algorithm is evaluated on the second data set. Similarly,
the parameter 𝜓 is calculated first, and the importance
priority is in descendent order as “destination, weight, time
constraint, price, and location,” in which the time constraint
becomes more important than the price. After the learning of
Ã, the transition matrix is computed and the CTR results can
be achieved. The ACO is performed on the test set, and the
results are shown in Figure 3. This time, the CTR algorithm
can obtain 14 correct optimal routes in test data set, while the
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Table 4: Running time.

RWTR CTR ICTR ACO without constraint ACO with constraint
Time 0.1032 0.1094 0.1087 1.2026 1.7832

ACOalgorithm also finds 14 correct optimal routes. However,
the CTR algorithm is 16 times faster than the ACO algorithm,
which is shown in Table 4.

5.3.3. Experimental Result of the ICTR. Similarly, the ICTR
algorithm is evaluated on the second data set by considering
both the time constraints and the incoming data. The calcu-
lated parameter 𝜓 indicates the importance priority of the
attributes is the same as that of the CTR.

From the comparison results in Figure 3, we can see that
ICTR can acquire 17 correct optimal routes in test data set,
while theACOalgorithmfinds only 14 correct optimal routes.
The ICTR algorithm is also 16 times faster than the ACO
algorithm.The improvement of themodel accuracy lies in the
knowledge acquired from the incoming data, which indicates
that the ICTR is the best choice among all three approaches
proposed.

6. Conclusions

In this paper, we have proposed a novel framework to find
the optimal sea-trade route in the logistics network. After a
careful study on the characteristics of the logistics network,
the route optimization problem is decomposed into several
subproblems, which is modeled as a hierarchical graph. With
this graph, the random walk model was adopted, and on top
of this, two extensions are proposed to consider the time
constraints and the effect of the incoming data, respectively.
By comparing with the ant colony learning algorithm, our
algorithms can achieve better routes but consume much
fewer time than that of the ACO. In the future, we will
investigate how to further improve the model performance
in a distributed manner.
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