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The alternating direction method of multipliers (ADMM) has been widely explored due to its broad applications, and its
convergence has been gotten in the real field. In this paper, an ADMM is presented for separable convex optimization of real
functions in complex variables. First, the convergence of the proposed method in the complex domain is established by using the
Wirtinger Calculus technique. Second, the basis pursuit (BP) algorithm is given in the form of ADMM in which the projection
algorithm and the soft thresholding formula are generalized from the real case. The numerical simulations on the reconstruction
of electroencephalogram (EEG) signal are provided to show that our new ADMM has better behavior than the classic ADMM for
solving separable convex optimization of real functions in complex variables.

1. Introduction

The augmented Lagrangian methods (ALMs) are a certain
class of algorithms for solving constrained optimization
problems, which were originally known as the method of
multipliers in 1969 [1], and were studied much in the 1970s
and 1980s as a good alternative to penalty methods. They
have similarities to penalty methods in that they replace
a constrained optimization problem by a series of uncon-
strained problems and add a penalty term to the objective.
In particular, a variant of the standard ALMs that uses partial
updates (similar to theGauss-Seidelmethod for solving linear
equations) known as the alternating direction method of
multipliers (ADMM) gained some attention [2].The ADMM
has been extensively explored in recent years due to broad
applications and empirical performance in a wide variety
of problems such as image processing [3], applied machine
learning and statistics [4], sparse optimizations, and other
relevant fields [2]. Specifically, an advantage of the ADMM
is that it can handle linear equality constraint of the form
{(𝑥, 𝑧) | 𝐴𝑥 + 𝐵𝑧 = 𝑐}, which makes distributed optimiza-
tion by variable splitting in a batch setting straightforward.

Recently, the convergence rates of order 𝑂(1/𝑘) for the real
case are considered under some additional assumptions; see,
for example, [5–10]. For a survey on the ALMs and the
ADMM, we refer to the references [1, 2, 11–16].

Compressed sensing (CS) is a signal processing technique
for efficiently acquiring and reconstructing a signal by finding
solutions to underdetermined linear systems. In the CS
processing, the sparsity of a signal can be exploited to recover
it from samples far fewer than required by the Shannon-
Nyquist sampling theorem. The idea of CS got a new life
in 2006 when Candès et al. [17] and Donoho [18] gave
important results on the mathematical foundation of CS.
This methodology has attached much attention from applied
mathematicians, computer scientists, and engineers for a
variety of applications in biology [19], medicine [20], and
radar [21], and so forth. Algorithms for signal reconstruction
in a CS framework are expressed as sparse signal recon-
struction algorithms. One of the most successful algorithms,
known as basis pursuit (BP), is on the basis of constrained 𝑙

1
-

norm minimization [22]. Most of the work is focused on the
optimization in the real number field.
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Signals in complex variables emerge in many areas of
science and engineering and have become the objects of
signal processing. There have been many works on the signal
processing in complex variable. For example, independent
component analysis (ICA) for separating complex-valued
signals has found utility in many applications such as face
recognition [23], analysis of functional magnetic resonance
imaging [24], and electroencephalograph [25]. Taking impro-
priety and noncircularity of complex-valued signals into
consideration, the right type of processing can give significant
performance gains [26]. Methods of digital modulation
schemes that produce improper complex signals have been
studied in [27], such as binary phase shift keying and pulse
amplitude modulation. In these researches, most nonlinear
optimization methods use the first-order or second-order
approximation of the objective function to create a new step
or a descent direction, where the approximation is either
updated or recomputed in every iteration. Unfortunately, all
these functions do not satisfy the Cauchy-Riemann condi-
tions. There exists no Taylor series of 𝑓 at 𝑧

0
so that the

series converges to 𝑓(𝑧) in a neighborhood of 𝑧
0
. A common

solution is to convert the optimization problem to the real
domain by referring to 𝑓 as a function of the real and
imaginary parts of 𝑧. Reformulating an optimization problem
which is inherently complex to the real domain would miss
important insights on the structure of the problem thatmight
otherwise be exploited [28]. Even so, there are many primal-
dual optimization methods for optimization problems with
the complex variable in the literatures. The usual method
analyzing complex-valued optimization problem is to sepa-
rate it into the real part and the imaginary part and then to
recast it into an equivalent real-valued optimization problem
by doubling the size of the constraint conditions; see [29–31]
and the references therein. For some other related references
on optimization problems in complex variables, we refer to
[28, 32].

To overcome the above-mentioned difficulties, the pur-
pose of the paper is to generalizeADMMfor separable convex
optimization in the real number domain to the complex num-
ber domain.The concepts of convex function and subgradient
are expanded from the real field to the complex field. By
introducing the augmented complex variable, the definition
of the augmented Lagrange function in complex variables
is given. Under some mild assumptions, we establish the
convergence of the proposed method. For the applications,
we consider the BP algorithm which concludes projection
algorithm and the soft thresholding operator in the complex
field. Some numerical simulation results are reported to show
that the proposed algorithm is indeed more efficient and
more robust.

The outline of the paper is as follows. In Section 2, we
recall some elementary theories and methods of the complex
analysis and Wirtinger calculus. The ADMM for complex
separable convex optimization and its convergence are pre-
sented in Section 3. In Section 4, we study the BP algorithm
for the equality-constrained 𝑙

1
minimization problem in

the form of ADMM. In Section 5, some numerical simula-
tions are provided. Finally, some conclusions are drawn in
Section 6.

2. Preliminaries

In this section, we first give some notations used. Vectors
are denoted by lower case, for example, 𝑧, and matrices are
denoted by capital letters, for example, 𝐴. The 𝑘th entry of
a vector 𝑧 is denoted by 𝑧

𝑘
and element (𝑖, 𝑗) of a matrix

𝐴 by 𝑎
𝑖𝑗
. The subscripts ⋅re and ⋅im denote the real and

imaginary parts, respectively; for example, 𝑧re = Re{𝑧} and
𝐴 im = Im{𝐴}. The superscripts ⋅

𝑇
, ⋅, ⋅
𝐻 and ⋅

−1 are used for
the transpose, conjugate, Hermitian conjugate, and matrix
inverse. The dom𝑓 denotes the domain of function 𝑓. The
identity matrix of order 𝑛 is denoted by 𝐼

𝑛
. The one-norm

and two-norm are denoted by ‖ ⋅ ‖
1
and ‖ ⋅ ‖

2
, respectively.

𝑧
𝑅 denotes the real composite 2𝑛-dimensional vector; for
example, 𝑧𝑅 = (𝑧

𝑇

re, 𝑧
𝑇

im)
𝑇

∈ 𝑅
2𝑛, obtained by stacking 𝑧re

on the top of 𝑧im. The notation 𝜕𝑓 denotes the set of all
subgradients of 𝑓.

2.1. Wirtinger Calculus. We next recall some well-known
concepts and results on the complex analysis and Wirtinger
calculus which will be used in our future analysis. A com-
prehensive treatment of Wirtinger calculus can be found in
[33, 34].

Define the complex augmented vector as follows:

𝑧 = (𝑧
𝑇
, 𝑧
𝐻
)
𝑇

∈ 𝐶
2𝑛
, (1)

which is obtained by stacking 𝑧 on the top of its complex
conjugate 𝑧.The complex augmented vector 𝑧 ∈ 𝐶

2𝑛 is related
to the real composite vector 𝑧

𝑅
∈ 𝑅
2𝑛 as 𝑧 = 𝐽

𝑛
𝑧
𝑅 and

𝑧
𝑅

= (1/2)𝐽
𝐻

𝑛
𝑧, where the real-to-complex transformation

𝐽
𝑛
= (

𝐼
𝑛

𝑗𝐼
𝑛

𝐼
𝑛

−𝑗𝐼
𝑛

) ∈ 𝐶
2𝑛×2𝑛 (2)

is unitary up to a factor of 2; that is, 𝐽
𝑛
𝐽
𝐻

𝑛
= 𝐽
𝐻

𝑛
𝐽
𝑛
= 2𝐼
2𝑛
. The

linear map 𝐽
𝑛
is an isomorphismmap from 𝑅

2𝑛 to 𝐶
2𝑛 and its

inverse is given by (1/2)𝐽
𝐻

𝑛
.

Lemma 1. Let 𝐴 ∈ 𝐶
𝑝×𝑛, 𝐵 ∈ 𝐶

𝑝×𝑚, and 𝑐 ∈ 𝐶
𝑝. Then

𝐴𝑥 + 𝐵𝑧 = 𝑐 ⇐⇒ 𝐴𝑥 + 𝐵 𝑧 = 𝑐, (3)

where

𝐴 = (
𝐴 0

0 𝐴
) ∈ 𝐶

2𝑝×2𝑛
,

𝐵 = (
𝐵 0

0 𝐵
) ∈ 𝐶

2𝑝×2𝑚
.

(4)

Proof. Since

𝐴𝑥 + 𝐵 𝑧 − 𝑐 = (
𝐴 0

0 𝐴
)(

𝑥

𝑥
) + (

𝐵 0

0 𝐵
)(

𝑧

𝑧
) − (

𝑐

𝑐
)

= (
𝐴𝑥 + 𝐵𝑧 − 𝑐

𝐴𝑥 + 𝐵𝑧 − 𝑐
) ,

(5)
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then we have

𝐴𝑥 + 𝐵𝑧 = 𝑐 ⇐⇒ 𝐴𝑥 + 𝐵 𝑧 = 𝑐. (6)

This completes the proof.

Consider a complex-valued function

𝑓 (𝑧) = 𝑢 (𝑧re, 𝑧im) + 𝑗V (𝑧re, 𝑧im) , (7)

where 𝑧 = 𝑧re + 𝑗𝑧im, 𝑓 : 𝐶
𝑛

→ 𝐶, and 𝑢, V : 𝑅
𝑛
× 𝑅
𝑛

→ 𝑅.
The definition of complex differentiability requires that the
derivatives be defined as the limit

𝑓
󸀠
(𝑧) = lim

Δ𝑧→0

𝑓 (𝑧 + Δ𝑧) − 𝑓 (𝑧)

Δ𝑧
(8)

is independent of the direction in which Δ𝑧 approaches zero
in the complex plane.This requires that the Cauchy-Riemann
equations

𝜕𝑢

𝜕𝑧re
=

𝜕V
𝜕𝑧im

,

𝜕𝑢

𝜕𝑧im
= −

𝜕V
𝜕𝑧re

(9)

should be satisfied [35]. These conditions are necessary
for 𝑓(𝑧) to be complex-differentiable. A function which is
complex-differentiable on its entire domain is called analytic
or holomorphic. Clearly, the Cauchy-Riemann conditions do
not hold for real-valued functions which are V(𝑧re, 𝑧im) ≡ 0,
and thus cost functions are not analytic. These conditions
imply complex differentiability which are quite stringent and
impose a strong structure on 𝑢(𝑧re, 𝑧im) and V(𝑧re, 𝑧im) and,
consequently, on 𝑓(𝑧). Obviously, most cost functions do not
satisfy the Cauchy-Riemann equations as these functions are
typically 𝑓 : 𝐶

𝑛
→ 𝑅 with V(𝑧re, 𝑧im) = 0.

To overcome such a difficulty, a sound approach in
[33] relaxes this strong requirement for differentiability
and defines a less stringent form for the complex domain.
More importantly, it describes how this new definition can
be used for defining complex differential operators that
allow computation of derivatives in a very straightforward
manner in the complex number domain, by simply using
real differentiation results and procedures. A function is
called real differentiable when 𝑢(𝑧re, 𝑧im) and V(𝑧re, 𝑧im) are
differentiable as the functions of real-valued variables 𝑧re and
𝑧im. Then, one can write the two real variables as 𝑧re = (𝑧 +

𝑧)/2 and 𝑧im = −𝑗(𝑧 − 𝑧)/2 and use the chain rule to derive
the operators for differentiation given in the theorem below.
The key point in the derivation is regarding the two variables
𝑧 and 𝑧 as independent variables, which is also the main
approach allowing us tomake use of the elegance ofWirtinger
calculus.

In view of this, we consider the function (7) as 𝑓 : 𝑅
2𝑛

→

𝐶 by rewriting it as 𝑓(𝑧) = 𝑓(𝑢, V) and make use of the
underlying 𝑅

2𝑛 structure. The function 𝑓(⋅) can be regarded
as either 𝑓(𝑧re, 𝑧im) with variables 𝑧re and 𝑧im or 𝑓(𝑧, 𝑧) with
variables 𝑧 and 𝑧, and it can be simply written as 𝑓(𝑧). The
functions may take different forms; however, they are equally

valued. For convenience, we use the same function 𝑓 to
denote them as follows:

𝑓 (𝑧, 𝑧) = 𝑓 (𝑧re, 𝑧im) = 𝑓 (𝑧) . (10)

Themain result in this context is stated by Brandwood in [36].

Theorem 2. Let 𝑓 : 𝑅
2𝑛

→ 𝐶 be a function of real variables
𝑧re and 𝑧im such that 𝑓(𝑧) = 𝑓(𝑧re, 𝑧im), where 𝑧 = 𝑧re + 𝑗𝑧im,
and that 𝑓 is analytic with respect to 𝑧 and 𝑧 independently.
Then, consider the following:

(1) The partial derivatives

𝜕𝑓

𝜕𝑧
=

1

2
(

𝜕𝑓

𝜕𝑧re
− 𝑗

𝜕𝑓

𝜕𝑧im
) ,

𝜕𝑓

𝜕𝑧
=

1

2
(

𝜕𝑓

𝜕𝑧re
+ 𝑗

𝜕𝑓

𝜕𝑧im
)

(11)

can be computed by treating 𝑧 as a constant in 𝑓 and 𝑧 as a
constant, respectively.

(2) A necessary and sufficient condition for 𝑓 to have a
stationary point is that

𝜕𝑓

𝜕𝑧
= 0. (12)

Similarly,

𝜕𝑓

𝜕𝑧
= 0 (13)

is also a necessary and sufficient condition.

As for the applications of Wirtinger derivatives, we
consider the following two examples, which will be used in
the subsequent analysis.

Example 3. Consider the real function in complex variables
as follows:

𝑓 (𝑥, 𝑧) = 2Re {𝑦𝐻 (𝐴𝑥 + 𝐵𝑧 − 𝑐)} , (14)

where 𝑥 ∈ 𝐶
𝑛, 𝑧 ∈ 𝐶

𝑚, 𝑦 ∈ 𝐶
𝑝, 𝑐 ∈ 𝐶

𝑝, 𝐴 ∈ 𝐶
𝑝×𝑛, and

𝐵 ∈ 𝐶
𝑝×𝑚.

It follows fromTheorem 2 that

𝜕𝑓

𝜕𝑥
=

1

2
(

𝜕𝑓

𝜕𝑥re
− 𝑗

𝜕𝑓

𝜕𝑥im
)

= (𝑦re𝐴 re + 𝑦im𝐴 im) + 𝑗 (𝑦re𝐴 im − 𝑦im𝐴 re)

= 𝑦
𝐻
𝐴.

(15)

Similarly, we have

𝜕𝑓

𝜕𝑧
=

1

2
(

𝜕𝑓

𝜕𝑧re
− 𝑗

𝜕𝑓

𝜕𝑧im
)

= (𝑦re𝐵re + 𝑦im𝐵im) + 𝑗 (𝑦re𝐵im − 𝑦im𝐵re) = 𝑦
𝐻
𝐵.

(16)
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Example 4. Consider the real function in complex variables
as follows:

𝑓 (𝑥, 𝑧) = ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖
2

2
, (17)

where 𝑥 ∈ 𝐶
𝑛, 𝑧 ∈ 𝐶

𝑚, 𝑐 ∈ 𝐶
𝑝, 𝐴 ∈ 𝐶

𝑝×𝑛, and 𝐵 ∈ 𝐶
𝑝×𝑚.

We have
𝑓 (𝑥, 𝑧) = (𝐴𝑥 + 𝐵𝑧 − 𝑐)

𝐻
(𝐴𝑥 + 𝐵𝑧 − 𝑐)

= (𝑟re − 𝑗𝑟im) (𝑟re + 𝑗𝑟im) = 𝑟
2

re + 𝑟
2

im,

(18)

where 𝑟 = 𝐴𝑥 + 𝐵𝑧 − 𝑐. Then
𝜕𝑓

𝜕𝑥
=

1

2
(

𝜕𝑓

𝜕𝑥re
− 𝑗

𝜕𝑓

𝜕𝑥im
)

=
1

2
(

𝜕 (𝑟
2

re + 𝑟
2

im)

𝜕𝑥re
− 𝑗

𝜕 (𝑟
2

re + 𝑟
2

im)

𝜕𝑥im
)

= (𝑟re𝐴 re + 𝑟im𝐴 im) + 𝑗 (𝑟re𝐴 im − 𝑟im𝐴 re) = 𝑟
𝐻
𝐴,

𝜕𝑓

𝜕𝑧
=

1

2
(

𝜕𝑓

𝜕𝑧re
− 𝑗

𝜕𝑓

𝜕𝑧im
)

=
1

2
(

𝜕 (𝑟
2

re + 𝑟
2

im)

𝜕𝑧re
− 𝑗

𝜕 (𝑟
2

re + 𝑟
2

im)

𝜕𝑧im
)

= (𝑟re𝐵re + 𝑟im𝐵im) + 𝑗 (𝑟re𝐵im − 𝑟im𝐵re) = 𝑟
𝐻
𝐵.

(19)

2.2. Convex Analysis in the Complex Number Domain. In
order to meet the demands of next work, we give some
definitions in the complex number domain.

Definition 5 (see [37]). A set 𝐴 is convex if the line segment
between any two points in𝐴 lies in𝐴; that is, if for any 𝑧

1
, 𝑧
2
∈

𝐴 and any 𝜃 ∈ 𝑅 with 0 ≤ 𝜃 ≤ 1, then

𝜃𝑧
1
+ (1 − 𝜃) 𝑧

2
∈ 𝐴. (20)

Definition 6 (see [34]). Let 𝑧 = 𝑧re + 𝑗𝑧im ∈ 𝐶
𝑛. The complex

gradient operator 𝜕/𝜕𝑧 is defined by

𝜕

𝜕𝑧
= (

𝜕

𝜕𝑧
,
𝜕

𝜕𝑧
) . (21)

The linear map 𝐽
𝑛
also defines a one-to-one correspon-

dence between the real gradient 𝜕/𝜕𝑧
𝑅 and the complex

gradient 𝜕/𝜕𝑧; namely,
𝜕

𝜕𝑧𝑅
= 𝐽
𝑇

𝑛

𝜕

𝜕𝑧
. (22)

For real function in complex variable 𝑓 : 𝐶
𝑛

→ 𝑅, it has
an equivalent form as 𝑓(𝑧) = 𝑢(𝑧re, 𝑧im) according to (10). So
we can similarly extend some concepts of the functions in the
real number domain [38, 39] to the complex number domain.

Definition 7. A real function in complex variable𝑓 : 𝐶
𝑛

→ 𝑅

is convex if dom𝑓 is a convex set and if for any 𝑥, 𝑦 ∈ dom𝑓

and any 𝜃 ∈ 𝑅 with 0 ≤ 𝜃 ≤ 1, then

𝑓 (𝜃𝑥 + (1 − 𝜃) 𝑦) ≤ 𝜃𝑓 (𝑥) + (1 − 𝜃) 𝑓 (𝑦) . (23)

Definition 8. A real function in complex variable 𝑓 : 𝐶
𝑛

→

𝑅 is proper if its effective domain is nonempty and it never
attains −∞.

Definition 9. A real function in complex variable𝑓 : 𝐶
𝑛

→ 𝑅

is closed if, for each 𝛼 ∈ 𝑅, the sublevel set {𝑥 ∈ dom𝑓 |

𝑓(𝑥) ≤ 𝛼} is a closed set.

Definition 10. Given any real function in complex variable𝑓 :

𝐶
𝑛

→ 𝑅 ∪ +∞, a vector V ∈ 𝐶
𝑛 is said to be a subgradient of

𝑓 at 𝑧
0
if

𝑓 (𝑧) ≥ 𝑓 (𝑧
0
) + 2Re {V𝐻 (𝑧 − 𝑧

0
)} . (24)

3. ADMM for Convex Separable Optimization

In this section, we will first recall the ADMM for real convex
separable optimization. Then we will study the ADMM for
convex separable optimization of real functions in complex
variables.

3.1. ADMM for Real Convex Separable Optimization. The
ADMM has been well studied for the following linearly
constrained separable convex programming whose objective
function is separated into two individual convex functions
with nonoverlapping variables as follows:

minimize {𝑓 (𝑥) + 𝑔 (𝑧) : 𝐴𝑥 + 𝐵𝑧 = 𝑐, 𝑥 ∈ 𝜒
1
, 𝑧 ∈ 𝜒

2
} , (25)

where 𝜒
1
⊂ 𝑅
𝑛 and 𝜒

2
⊂ 𝑅
𝑚 are closed convex sets; 𝐴 ∈ 𝑅

𝑝×𝑛

and𝐵 ∈ 𝑅
𝑝×𝑚 are givenmatrices; 𝑐 ∈ 𝑅

𝑝 is a given vector; and
𝑓 : 𝑅
𝑛

→ 𝑅 ∪ {+∞} and 𝑔 : 𝑅
𝑚

→ 𝑅 ∪ {+∞} are proper,
closed, and convex functions.

More specifically, the Lagrangian function and the aug-
mented Lagrangian function of (25) are given by

𝐿
0
(𝑥, 𝑧, 𝑦) = 𝑓 (𝑥) + 𝑔 (𝑧) + 𝑦

𝑇
(𝐴𝑥 + 𝐵𝑧 − 𝑐) , (26)

𝐿
𝜌
(𝑥, 𝑦, 𝑧) = 𝑓 (𝑥) + 𝑔 (𝑧) + 𝑦

𝑇
(𝐴𝑥 + 𝐵z − 𝑐)

+
𝜌

2
‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖

2

2
,

(27)

respectively. Then the iterative scheme of the ADMM for
solving (25) is given by

𝑥
𝑘+1

= argmin
𝑥

𝐿
𝜌
(𝑥, 𝑧
𝑘
, 𝑦
𝑘
) ,

𝑧
𝑘+1

= argmin
𝑧

𝐿
𝜌
(𝑥
𝑘+1

, 𝑧, 𝑦
𝑘
) ,

𝑦
𝑘+1

= 𝑦
𝑘
+ 𝜌 (𝐴𝑥

𝑘+1
+ 𝐵𝑧
𝑘+1

− 𝑐) .

(28)

Without loss of generality, we give the following two assump-
tions.

Assumption 11. The (extended-real-valued) functions 𝑓 :

𝑅
𝑛

→ 𝑅 ∪ {+∞} and 𝑔 : 𝑅
𝑚

→ 𝑅 ∪ {+∞} are proper,
closed, and convex.
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Assumption 12. The Lagrangian function 𝐿
0
has a saddle

point; that is, there exists (𝑥∗, 𝑧∗, 𝑦∗), not necessarily unique,
for which

𝐿
0
(𝑥
∗
, 𝑧
∗
, 𝑦) ≤ 𝐿

0
(𝑥
∗
, 𝑧
∗
, 𝑦
∗
) ≤ 𝐿
0
(𝑥, 𝑧, 𝑦

∗
) (29)

holds for all 𝑥, 𝑧, and 𝑦.

The convergence of the ADMM for real convex separable
optimization is established in the following theorem.

Theorem 13 (Section 3.2.1 in [2]). Under Assumptions 11 and
12, the ADMM iterates (28) satisfy the following.

(1) Residual Convergence. 𝑟𝑘 = 𝐴𝑥
𝑘
+𝐵𝑧
𝑘
−𝑐 → 0 as 𝑘 → ∞;

that is, the iterates approach feasibility.

(2) Objective Convergence. 𝑓(𝑥
𝑘
) + 𝑔(𝑧

𝑘
) → 𝑓(𝑥

∗
) + 𝑔(𝑧

∗
)

as 𝑘 → ∞; that is, the objective function of the iterates
approaches the optimal value.

(3) Dual Variable Convergence. 𝑦𝑘 → 𝑦
∗ as 𝑘 → ∞, where

𝑦
∗ is a dual optimal point.

3.2. ADMM for Complex Convex Separable Optimization.
According to (10), we can consider the real functions in
complex variables 𝑓 : 𝐶

𝑛
→ 𝑅 ∪ {+∞} and 𝑔 : 𝐶

𝑚
→

𝑅 ∪ {+∞}. Then, the convex separable optimization of real
functions in complex variables becomes

minimize {𝑓 (𝑥) + 𝑔 (𝑧) : 𝐴𝑥 + 𝐵𝑧 = 𝑐, 𝑥 ∈ 𝜒
1
, 𝑧 ∈ 𝜒

2
} , (30)

where 𝑓 and 𝑔 are proper, closed, and convex functions;
𝜒
1

⊂ 𝐶
𝑛 and 𝜒

2
⊂ 𝐶
𝑚 are closed convex sets; 𝐴 ∈ 𝐶

𝑝×𝑛

and 𝐵 ∈ 𝐶
𝑝×𝑚 are given matrices; and 𝑐 ∈ 𝐶

𝑝 is a given
vector.

From (10) and Lemma 1, we can conclude that the
complex convex separable optimization (30) is equivalent to
the following convex separable optimization problem:

minimize {𝑓 (𝑥, 𝑥) + 𝑔 (𝑧, 𝑧) : 𝐴𝑥 + 𝐵 𝑧 = 𝑐, 𝑥 ∈ 𝜒
1
, 𝑧 ∈ 𝜒

2
} . (31)

The Lagrangian function of (31) is

𝐿
0
(𝑥, 𝑧, 𝑦) = 𝑓 (𝑥, 𝑥) + 𝑔 (𝑧, 𝑧) + 𝑦

𝐻
(𝐴 𝑥 + 𝐵 𝑧 − 𝑐)

= 𝑓 (𝑥, 𝑥) + 𝑔 (𝑧, 𝑧)

+ 2Re {𝑦𝐻 (𝐴𝑥 + 𝐵𝑧 − 𝑐)} ,

(32)

where 𝑦 ∈ 𝐶
𝑝. Then, the augmented Lagrangian function of

(31) is

𝐿
𝜌
(𝑥, 𝑧, 𝑦) = 𝑓 (𝑥, 𝑥) + 𝑔 (𝑧, 𝑧) + 𝑦

𝐻
(𝐴 𝑥 + 𝐵 𝑧 − 𝑐)

+
𝜌

2

󵄩󵄩󵄩󵄩𝐴𝑥 + 𝐵 𝑧 − 𝑐
󵄩󵄩󵄩󵄩
2

2

= 𝑓 (𝑥, 𝑥) + 𝑔 (𝑧, 𝑧)

+ 2Re {𝑦𝐻 (𝐴𝑥 + 𝐵𝑧 − 𝑐)}

+ 𝜌 ‖𝐴𝑥 + 𝐵𝑧 − 𝑐‖
2

2
,

(33)

where 𝜌 > 0 is called the penalty parameter. The ADMM for
complex convex separable optimization is composed of the
iterations

𝑥
𝑘+1

= argmin
𝑥

𝐿
𝜌
(𝑥, 𝑧
𝑘
, 𝑦
𝑘
) ,

𝑧
𝑘+1

= argmin
𝑧

𝐿
𝜌
(𝑥
𝑘+1

, 𝑧, 𝑦
𝑘
) ,

𝑦
𝑘+1

= 𝑦
𝑘
+ 𝜌 (𝐴𝑥

𝑘+1
+ 𝐵𝑧
𝑘+1

− 𝑐) .

(34)

Let 𝑟 = 𝐴𝑥 + 𝐵𝑧 − 𝑐. Then we have

2Re {𝑦𝐻𝑟} + 𝜌 ‖𝑟‖
2

2
= 𝜌 ‖𝑟 + 𝑢‖

2

2
− 𝜌 ‖𝑢‖

2

2
, (35)

where 𝑢 = (1/𝜌)𝑦 is the scaled dual variable. Using the scaled
dual variable, we can express the ADMM iterations (34) as

𝑥
𝑘+1

= arg min
𝑥

{𝑓 (𝑥, 𝑥) + 𝜌
󵄩󵄩󵄩󵄩󵄩
𝐴𝑥 + 𝐵𝑧

𝑘
− 𝑐 + 𝑢

𝑘󵄩󵄩󵄩󵄩󵄩

2

2
} ,

𝑧
𝑘+1

= arg min
𝑧

{𝑔 (𝑧, 𝑧) + 𝜌
󵄩󵄩󵄩󵄩󵄩
𝐴𝑥
𝑘+1

+ 𝐵𝑧 − 𝑐 + 𝑢
𝑘󵄩󵄩󵄩󵄩󵄩

2

2
} ,

𝑢
𝑘+1

= 𝑢
𝑘
+ 𝐴𝑥
𝑘+1

+ 𝐵𝑧
𝑘+1

− 𝑐.

(36)

3.3. Optimality Conditions. Thenecessary and sufficient opti-
mality conditions for the ADMM problem (31) are primal
feasibility,

𝐴𝑥
∗
+ 𝐵𝑧
∗
− 𝑐 = 0, (37)

and dual feasibility,

0 ∈ 𝜕𝑓 (𝑥
∗
) + (𝑦

∗
)
𝐻

𝐴, (38)

0 ∈ 𝜕𝑔 (𝑧
∗
) + (𝑦

∗
)
𝐻

𝐵. (39)

Because 𝑧
𝑘+1 minimizes 𝐿

𝜌
(𝑥
𝑘+1

, 𝑧, 𝑦
𝑘
), we have

0 ∈ 𝜕𝑔 (𝑧
𝑘+1

) + (𝑦
𝑘
)
𝐻

𝐵 + 𝜌 (𝑟
𝑘+1

)
𝐻

𝐵

= 𝜕𝑔 (𝑧
𝑘+1

) + (𝑦
𝑘+1

)
𝐻

𝐵.

(40)

This means that 𝑧
𝑘+1 and 𝑦

𝑘+1 always satisfy (39); thus
attaining optimality leads to satisfying (37) and (38).
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Because 𝑥
𝑘+1 minimizes 𝐿

𝜌
(𝑥, 𝑧
𝑘
, 𝑦
𝑘
), we have

0 ∈ 𝜕𝑓 (𝑥
𝑘+1

) + (𝑦
𝑘
)
𝐻

𝐴 + 𝜌 (𝐴𝑥
𝑘+1

+ 𝐵𝑧
𝑘
− 𝑐)
𝐻

𝐴

= 𝜕𝑓 (𝑥
𝑘+1

) + (𝑦
𝑘
)
𝐻

+ 𝜌 (𝑟
𝑘+1

)
𝐻

𝐴

+ 𝜌 (𝐵 (𝑧
𝑘
− 𝑧
𝑘+1

))
𝐻

𝐴

(41)

or equivalently

𝜌 (𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻

𝐴 ∈ 𝜕𝑓 (𝑥
𝑘+1

) + (𝑦
𝑘+1

)
𝐻

𝐴. (42)

From (38), 𝑠𝑘+1 = 𝜌(𝐵(𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻
𝐴 can be viewed as a

residual for the dual feasibility condition. By (37), 𝑟
𝑘+1

=

𝐴𝑥
𝑘+1

+ 𝐵𝑧
𝑘+1

− 𝑐 can be viewed as a residual for the primal
feasibility condition. These two residuals converge to zero as
the ADMM proceeds.

3.4. Convergence. Similar to theADMMfor separable convex
optimization in the real number domain, we can establish
the convergence of the ADMM for complex separable convex
optimization.

In this paper, we make the following two assumptions on
the separable convex optimization of the real functions in
complex variables.

Assumption 14. The (extended-real-valued) functions 𝑓 :

𝐶
𝑛

→ 𝑅 ∪ {+∞} and 𝑔 : 𝐶
𝑚

→ 𝑅 ∪ {+∞} are proper,
closed, and convex.

Assumption 15. The Lagrangian function 𝐿
0
(32) has a saddle

point; that is, there exists (𝑥∗, 𝑧∗, 𝑦∗), not necessarily unique,
for which

𝐿
0
(𝑥
∗
, 𝑧
∗
, 𝑦) ≤ 𝐿

0
(𝑥
∗
, 𝑧
∗
, 𝑦
∗
) ≤ 𝐿
0
(𝑥, 𝑧, 𝑦

∗
) (43)

holds for all 𝑥, 𝑧, and 𝑦.

Theorem 16. Under Assumptions 14 and 15, the ADMM
iterations (36) have the following conclusions.

(1) Residual Convergence. 𝑟𝑘 = 𝐴𝑥
𝑘
+𝐵𝑧
𝑘
−𝑐 → 0 as 𝑘 → ∞;

that is, the iterates approach feasibility.

(2) Objective Convergence. 𝑓(𝑥
𝑘
) + 𝑔(𝑧

𝑘
) → 𝑓(𝑥

∗
) + 𝑔(𝑧

∗
)

as 𝑘 → ∞; that is, the objective function of the iterates
approaches the optimal value.

(3) Dual Variable Convergence. 𝑦𝑘 → 𝑦
∗ as 𝑘 → ∞, where

𝑦
∗ is a dual optimal point.

Proof. Let (𝑥
∗
, 𝑧
∗
, 𝑦
∗
) be the saddle point for 𝐿

0
and 𝑞

∗
=

𝑓(𝑥
∗
) + 𝑔(𝑥

∗
). Then we have

𝐿
0
(𝑥
∗
, 𝑧
∗
, 𝑦
∗
) ≤ 𝐿
0
(𝑥
𝑘+1

, 𝑧
𝑘+1

, 𝑦
∗
) . (44)

Since 𝐴𝑥
∗
+ 𝐵𝑧
∗
− 𝑐 = 0 and 𝐿

0
(𝑥
∗
, 𝑧
∗
, 𝑦
∗
) is equivalent to

𝑞
∗, then we have

𝑞
∗
≤ 𝑞
𝑘+1

+ 2Re {(𝑦∗)𝐻 (𝐴𝑥
𝑘+1

+ 𝐵𝑧
𝑘+1

− 𝑐)} . (45)

FromTheorem 2 and Examples 3 and 4, we get

𝜕𝐿
𝜌

𝜕𝑥
=

𝜕𝑓 (𝑥
𝑘+1

, 𝑥
𝑘+1

)

𝜕𝑥
+ (𝑦
𝑘
)
𝐻

𝐴

+ 𝜌 (𝐴𝑥
𝑘+1

+ 𝐵𝑧
𝑘
− 𝑐)
𝐻

𝐴.

(46)

Note that 𝐿
𝜌
is a real-valued function; then we get

𝜕𝐿
𝜌

𝜕𝑥
= (

𝜕𝐿
𝜌

𝜕𝑥
). (47)

By (36), 𝑥𝑘+1minimizes 𝐿
𝜌
(𝑥, 𝑧
𝑘
, 𝑦
𝑘
) for𝑓 is convex, which is

subdifferentiable, and so is 𝐿
𝜌
(𝑥, 𝑧, 𝑦). Based on Theorem 2,

the optimality condition is

0 ∈ 𝜕𝐿
𝜌
(𝑥
𝑘+1

, 𝑧
𝑘
, 𝑦
𝑘
)

= 𝜕𝑓 (𝑥
𝑘+1

, 𝑥
𝑘+1

) + (𝑦
𝑘
)
𝐻

𝐴

+ 𝜌 (𝐴𝑥
𝑘+1

+ 𝐵𝑧
𝑘
− 𝑐)
𝐻

𝐴.

(48)

Since

𝑦
𝑘+1

= 𝑦
𝑘
+ 𝜌 (𝐴𝑥

𝑘+1
+ 𝐵𝑧
𝑘+1

− 𝑐) , (49)

we have

0 ∈ 𝜕𝑓 (𝑥
𝑘+1

, 𝑥
𝑘+1

) + (𝑦
𝑘+1

− 𝜌𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻

𝐴, (50)

which implies that 𝑥𝑘+1 minimizes

𝑓 (𝑥, 𝑥) + 2Re {(𝑦𝑘+1 − 𝜌𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻

𝐴𝑥} . (51)

Similarly, we may have that 𝑧𝑘+1 minimizes

𝑔 (𝑧, 𝑧) + 2Re {(𝑦𝑘+1)
𝐻

𝐵𝑧} . (52)

From (51) and (52), we have

𝑓 (𝑥
𝑘+1

, 𝑥
𝑘+1

)

+ 2Re {(𝑦𝑘+1 − 𝜌𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻

𝐴𝑥
𝑘+1

}

≤ 𝑓 (𝑥
∗
, 𝑥
∗
)

+ 2Re {(𝑦𝑘+1 − 𝜌𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻

𝐴𝑥
∗
} ,

𝑔 (𝑧
𝑘+1

, 𝑧
𝑘+1

) + 2Re {(𝑦𝑘+1)
𝐻

𝐵𝑧
𝑘+1

} ≤ 𝑔 (𝑧
∗
, 𝑧
∗
)

+ 2Re {(𝑦𝑘+1)
𝐻

𝐵𝑧
∗
} .

(53)

From (53) and𝐴𝑥
∗
+𝐵𝑧
∗
−𝑐 = 0, we canmake the conclusion

that

𝑝
𝑘+1

− 𝑝
∗
≤ 2Re {− (𝑦

𝑘+1
)
𝐻

𝑟
𝑘+1

− (𝜌𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻

(−𝑟
𝑘+1

+ 𝐵 (𝑧
𝑘+1

− 𝑧
∗
))} ,

(54)

where 𝑟
𝑘+1

= 𝐴𝑥
𝑘+1

+ 𝐵𝑧
𝑘+1

− 𝑐.
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Adding (45) and (54), we get

4Re {(𝑦𝑘+1 − 𝑦
∗
)
𝐻

𝑟
𝑘+1

− (𝜌𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻

𝑟
𝑘+1

+ (𝜌𝐵 (𝑧
𝑘+1

− z𝑘))
𝐻

(𝐵 (𝑧
𝑘+1

− 𝑧
∗
))} ≤ 0.

(55)

Let

𝑤
𝑘
= (

1

𝜌
)

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘
− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝜌

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑧
𝑘
− 𝑧
∗
)
󵄩󵄩󵄩󵄩󵄩

2

2
. (56)

By following manipulation and rewriting of (55), we have

𝑤
𝑘+1

≤ 𝑤
𝑘
− 𝜌

󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

2
− 𝜌

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

2
. (57)

Rewriting the first term of (55) as

4Re {(𝑦𝑘+1 − 𝑦
∗
)
𝐻

𝑟
𝑘+1

− (𝑦
𝑘
+ 𝜌𝑟
𝑘+1

− 𝑦
∗
)
𝐻

𝑟
𝑘+1

+ (𝑦
𝑘
− 𝑦
∗
)
𝐻

𝑟
𝑘+1

} + 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝜌

󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

2

(58)

and then substituting

𝑟
𝑘+1

= (
1

𝜌
) (𝑦
𝑘+1

− 𝑦
𝑘
) (59)

into the first two terms in (58) give

2Re{(
2

𝜌
) (𝑦
𝑘
− 𝑦
∗
)
𝐻

(𝑦
𝑘+1

− 𝑦
𝑘
)}

+ (
1

𝜌
)

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑦
𝑘󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝜌

󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

2
.

(60)

Since

𝑦
𝑘+1

− 𝑦
𝑘
= (𝑦
𝑘+1

− 𝑦
∗
) − (𝑦

𝑘
− 𝑦
∗
) , (61)

this can be expressed as

1

𝜌
(
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

2
−

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘
− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

2
) + 𝜌

󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

2
. (62)

Now let us regroup the remaining terms, that is,

𝜌
󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

2
− 2Re {2𝜌 (𝐵 (𝑧

𝑘+1
− 𝑧
𝑘
))
𝐻

𝑟
𝑘+1

+ 2𝜌 (𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻

(𝐵 (𝑧
𝑘+1

− 𝑧
∗
))} ,

(63)

where 𝜌‖𝑟
𝑘+1

‖
2

2
is taken from (62). Substituting

𝑧
𝑘+1

− 𝑧
∗
= (𝑧
𝑘+1

− 𝑧
𝑘
) + (𝑧

𝑘
− 𝑧
∗
) (64)

into the last term in (63) yields

𝜌
󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1

− 𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

2
+ 𝜌

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

2

+ 4𝜌Re {(𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))
𝐻

𝐵 (𝑧
𝑘
− 𝑧
∗
)}

(65)

and substituting

𝑧
𝑘+1

− 𝑧
𝑘
= (𝑧
𝑘+1

− 𝑧
∗
) − (𝑧

𝑘
− 𝑧
∗
) (66)

into the last two terms in (63), we get

𝜌
󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1

− 𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

2

+ 𝜌 (
󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

2
−

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑧
𝑘
− 𝑧
∗
)
󵄩󵄩󵄩󵄩󵄩

2

2
) .

(67)

It implies that (55) can be expressed as

𝑤
𝑘
− 𝑤
𝑘+1

≥ 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1

− 𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

2
. (68)

To obtain (57), it suffices to show that the middle term

−4Re {𝜌 (𝑟
𝑘+1

)
𝐻

(𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
))} (69)

of the expanded right-hand side of (68) is positive. To
understand this, by reviving that 𝑧

𝑘+1 minimizes 𝑔(𝑧, 𝑧) +

2Re{(𝑦𝑘+1)𝐻𝐵𝑧} and 𝑧
𝑘 minimizes 𝑔(𝑧, 𝑧) + 2Re{(𝑦𝑘)𝐻𝐵𝑧},

we can add

𝑔 (𝑧
𝑘+1

, 𝑧
𝑘+1

) + 2Re {(𝑦𝑘+1)
𝐻

𝐵𝑧
𝑘+1

}

≤ 𝑔 (𝑧
𝑘
, 𝑧
𝑘
) + 2Re {(𝑦𝑘+1)

𝐻

𝐵𝑧
𝑘
} ,

𝑔 (𝑧
𝑘
, 𝑧
𝑘
) + 2Re {(𝑦𝑘)

𝐻

𝐵𝑧
𝑘
}

≤ 𝑔 (𝑧
𝑘+1

, 𝑧
𝑘+1

) + 2Re {(𝑦𝑘)
𝐻

𝐵𝑧
𝑘+1

}

(70)

to obtain that

2Re {(𝑦𝑘+1 − 𝑦
𝑘
)
𝐻

𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
)} ≤ 0. (71)

Since 𝜌 > 0, if we substitute

𝑦
𝑘+1

− 𝑦
𝑘
= 𝜌𝑟
𝑘+1

, (72)

we can get (57).
This means that 𝑤

𝑘 decreases in each iteration by an
amount depending on the norm of the residual and on the
change in 𝑧 over one iteration. Since 𝑤

𝑘
≤ 𝑤
0, it follows that

𝑦
𝑘 and 𝐵𝑧

𝑘 are bounded. Iterating the inequality above gives

𝜌

∞

∑
𝑘=0

(
󵄩󵄩󵄩󵄩󵄩
𝑟
𝑘+1󵄩󵄩󵄩󵄩󵄩

2

2
+

󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

2
) ≤ 𝑤

0
, (73)

implying that 𝑟𝑘 → 0 and 𝐵(𝑧
𝑘+1

− 𝑧
𝑘
) → 0 as 𝑘 → ∞.

From (45), we have

𝑓 (𝑥
𝑘
, 𝑥
𝑘
) + 𝑔 (𝑧

𝑘
, 𝑧
𝑘
) 󳨀→ 𝑓 (𝑥

∗
, 𝑥
∗
) + 𝑔 (𝑧

∗
, 𝑧
∗
) (74)

as 𝑘 → ∞. Furthermore, since𝑤
𝑘

→ 0 as 𝑘 → ∞, we have
𝑦
𝑘

→ 𝑦
∗ as 𝑘 → ∞. This completes the proof.
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3.5. Stopping Criterion. We can find that

−𝑟
𝑘+1

+ 𝐵 (𝑧
𝑘+1

− 𝑧
𝑘
) = −𝐴 (𝑥

𝑘+1
− 𝑥
∗
) . (75)

Substituting this into (54), we get

𝑝
𝑘+1

− 𝑝
∗

≤ 2Re {− (𝑦
𝑘+1

)
𝐻

𝑟
𝑘+1

+ (𝑥
𝑘+1

− 𝑥
∗
)
𝐻

𝑠
𝑘+1

} .

(76)

This means that when the two residuals are small, the error
must be small. Thus an appropriate termination criterion is
that the primal residuals 𝑟𝑘+1 and dual residuals 𝑠𝑘+1 are small
simultaneously; that is, ‖𝑟𝑘+1‖

2
≤ 𝜀

pri and ‖𝑠
𝑘+1

‖
2

≤ 𝜀
dual,

where 𝜀
pri and 𝜀

dual are tolerances for the primal and dual
feasibility, respectively.

4. Basis Pursuit with Complex ADMM

Consider the equality-constrained 𝑙
1
minimization problem

in the complex number domain

minimize {‖𝑥‖1 : 𝐴𝑥 = 𝑏, 𝑥 ∈ 𝐶
𝑛
} , (77)

where 𝐴 ∈ 𝐶
𝑝×𝑛 is a given matrix, Rank(𝐴) = 𝑝, and 𝑏 ∈ 𝐶

𝑝

is a given vector.
Recall that

‖𝑥‖1 =

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑥𝑘
󵄨󵄨󵄨󵄨 =

𝑛

∑
𝑘=1

√(𝑥
𝑘
)
2

re + (𝑥
𝑘
)
2

im. (78)

Then
󵄩󵄩󵄩󵄩𝑥

󵄩󵄩󵄩󵄩1 = 2 ‖𝑥‖1 . (79)

In the form of the ADMM, the BP method can be expressed
as

minimize {𝑓 (𝑥) + ‖𝑧‖
1
: 𝑥 = 𝑧, 𝑥, 𝑧 ∈ 𝐶

𝑛
} , (80)

where 𝑓 is the indicator function of 𝑋 = {𝑥 ∈ 𝐶
𝑛
| 𝐴𝑥 = 𝑏};

that is, 𝑓(𝑥) = 0 for 𝑥 ∈ 𝑋 and 𝑓(𝑥) = +∞ otherwise. Then,
with the idea in [40], the ADMM iterations are provided as
follows:

𝑥
𝑘+1

= arg min
𝑥

{𝑓 (𝑥) + 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝑧
𝑘
+ 𝑢
𝑘󵄩󵄩󵄩󵄩󵄩

2

2
} ,

𝑧
𝑘+1

= arg min
𝑧

{‖𝑧‖1 + 𝜌
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑧 + 𝑢
𝑘󵄩󵄩󵄩󵄩󵄩

2

2
} ,

𝑢
𝑘+1

= 𝑢
𝑘
+ 𝑥
𝑘+1

− 𝑧
𝑘+1

.

(81)

The 𝑥-update, which involves solving a linearly constrained
minimum Euclidean norm problem, can be written as

minimize
𝑥
𝑘+1

{
1

2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− (𝑧
𝑘
− 𝑢
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

2
: 𝐴𝑥 = 𝑏} . (82)

Let 𝑥 = 𝑥
𝑘+1

− (𝑧
𝑘
− 𝑢
𝑘
). Then, (82) is equivalent to

minimize
𝑥

{
1

2
‖𝑥‖
2

2
: 𝐴𝑥 = 𝑏̃} , (83)

where 𝑏̃ = 𝑏 − 𝐴(𝑧
𝑘
− 𝑢
𝑘
).

Lemma 17 (see [41]). Theminimum-norm least-squares solu-
tion of 𝐴𝑥 = 𝑏̃ is 𝑥 = 𝐴

†
𝑏̃, where 𝐴

† is the Moore-Penrose
inverse of matrix 𝐴.

Theorem 18. The 𝑥-update of (81) is

𝑥
𝑘+1

= (𝐼 − 𝐴
𝐻

(𝐴𝐴
𝐻
)
−1

𝐴) (𝑧
𝑘
− 𝑢
𝑘
)

+ 𝐴
𝐻

(𝐴𝐴
𝐻
)
−1

𝑏 fl Π(𝑧
𝑘
− 𝑢
𝑘
) .

(84)

Proof. As 𝐴 is of full row rank, its full-rank factorization is
𝐴
𝑚×𝑛

= 𝐵
𝑚×𝑚

𝐶
𝑚×𝑛

. Then it yields that [41]

𝐴
†
= 𝐶
𝐻

(𝐶𝐶
𝐻
)
−1

(𝐵
𝐻
𝐵)
−1

𝐵
𝐻
. (85)

From Lemma 17, we have

𝑥 = 𝐶
𝐻

(𝐶𝐶
𝐻
)
−1

(𝐵
𝐻
𝐵)
−1

𝐵
𝐻
𝑏̃; (86)

that is,

𝑥
𝑘+1

− (𝑧
𝑘
− 𝑢
𝑘
)

= 𝐶
𝐻

(𝐶𝐶
𝐻
)
−1

(𝐵
𝐻
𝐵)
−1

𝐵
𝐻

(𝑏 − 𝐴 (𝑧
𝑘
− 𝑢
𝑘
)) .

(87)

Since 𝐵 is of full rank, we can rearrange (87) to obtain

𝑥
𝑘+1

= (𝐼 − 𝐴
𝐻

(𝐴𝐴
𝐻
)
−1

𝐴) (𝑧
𝑘
− 𝑢
𝑘
)

+ 𝐴
𝐻

(𝐴𝐴
𝐻
)
−1

𝑏.

(88)

This completes the proof.

If problem (82) is in the real number domain, we have

𝑥
𝑘+1

= (𝐼 − 𝐴
𝑇
(𝐴𝐴
𝑇
)
−1

𝐴) (𝑧
𝑘
− 𝑢
𝑘
)

+ 𝐴
𝑇
(𝐴𝐴
𝑇
)
−1

𝑏,

(89)

which is the same one obtained in Section 6.2 [2].
The 𝑧-update can be solved by the soft thresholding

operator 𝑆 in the following theorem, which is a generalization
of the soft thresholding in [2].

Theorem 19. Let 𝑡 = 1/(2𝜌). Then one has the following.
(1) If 𝑥𝑘+1 +𝑢

𝑘 is real-valued, that is, 𝑥𝑘+1 +𝑢
𝑘
= 𝑎, the soft

thresholding operator is

𝑆
𝑡
(𝑎) = max (0, 𝑎 − 𝑡) − max (0, −𝑎 − 𝑡)

=

{{{{

{{{{

{

𝑎 − 𝑡, 𝑎 > 𝑡;

0, |𝑎| ≤ 𝑡;

𝑎 + 𝑡, 𝑎 < −𝑡.

(90)
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(2) If 𝑥𝑘+1 + 𝑢
𝑘 is purely imaginary, that is, 𝑥𝑘+1 + 𝑢

𝑘
= 𝑏𝑗,

the soft thresholding operator is

𝑆
𝑡
(𝑏𝑗) = 𝑗 (max (0, 𝑏 − 𝑡) − max (0, −𝑏 − 𝑡))

=

{{{{

{{{{

{

(𝑏 − 𝑡) 𝑗, 𝑏 > 𝑡;

0, |𝑏| ≤ 𝑡;

(𝑏 + 𝑡) 𝑗, 𝑏 < −𝑡.

(91)

(3) If 𝑥𝑘+1 + 𝑢
𝑘
= 𝑎 + 𝑏𝑗, the soft thresholding operator is

𝑆
𝑡
(𝑎 + 𝑏𝑗)

= max (0, 𝑎 − 𝑡re) − max (0, −𝑎 − 𝑡re)

+ 𝑗 (max (0, 𝑏 − 𝑡im) − max (0, −𝑏 − 𝑡im))

=

{{{{{{{{{{

{{{{{{{{{{

{

0, √𝑎2 + 𝑏2 ≤ 𝑡;

(𝑎 − 𝑡re) + 𝑗 (𝑏 − 𝑡im) , √𝑎2 + 𝑏2 > 𝑡, 𝑎 > 0, 𝑏 > 0;

(𝑎 + 𝑡re) + 𝑗 (𝑏 − 𝑡im) , √𝑎2 + 𝑏2 > 𝑡, 𝑎 < 0, 𝑏 > 0;

(𝑎 − 𝑡re) + 𝑗 (𝑏 + 𝑡im) , √𝑎2 + 𝑏2 > 𝑡, 𝑎 > 0, 𝑏 < 0;

(𝑎 + 𝑡re) + 𝑗 (𝑏 + 𝑡im) , √𝑎2 + 𝑏2 > 𝑡, 𝑎 < 0, 𝑏 < 0,

(92)

where 𝑡re = 𝑡√𝑎2/(𝑎2 + 𝑏2) and 𝑡im = 𝑡√𝑏2/(𝑎2 + 𝑏2).

Proof. (1) Assume that 𝑥
𝑘+1

+ 𝑢
𝑘

= 𝑎, the updating of 𝑧

becomes minimizing the following function:

𝐹 (𝑧) = ‖𝑧‖1 + 𝜌 ‖𝑧 − 𝑎‖
2

2

=

𝑛

∑
𝑘=1

√(𝑧re)
2

𝑘
+ (𝑧im)

2

𝑘

+ 𝜌

𝑛

∑
𝑘=1

(((𝑧re)𝑘 − 𝑎
𝑘
)
2

+ (𝑧im)
2

𝑘
) .

(93)

FromTheorem 2, we have

𝜕𝐹

𝜕 (𝑧im)
𝑘

=
(𝑧im)
𝑘

√(𝑧re)
2

𝑘
+ (𝑧im)

2

𝑘

+ 𝜌 (𝑧im)
𝑘
= 0. (94)

This implies that (𝑧im)
𝑘
= 0. Then (93) can be rewritten as

𝐹 (𝑧) =
󵄩󵄩󵄩󵄩𝑧re

󵄩󵄩󵄩󵄩1 + 𝜌
󵄩󵄩󵄩󵄩𝑧re − 𝑎

󵄩󵄩󵄩󵄩
2

2

=

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨(𝑧re)𝑘
󵄨󵄨󵄨󵄨 + 𝜌

𝑛

∑
𝑘=1

((𝑧re)𝑘 − 𝑎
𝑘
)
2

.
(95)

When 𝑎
𝑘
≥ 0, (𝑧re)𝑘 should be positive. Then, we have

𝐹 (𝑧) =

𝑛

∑
𝑘=1

(𝑧re)𝑘 + 𝜌

𝑛

∑
𝑘=1

((𝑧re)𝑘 − 𝑎
𝑘
)
2

. (96)

It is clear that this is a simple parabola, and its results are

If 𝑎
𝑘
> 𝑡 =

1

(2𝜌)
, (𝑧re)𝑘 = (𝑧re)𝑘 − 𝑡

𝑘
;

if 0 ≤ 𝑎
𝑘
≤ 𝑡, (𝑧re)𝑘 = 0.

(97)

When 𝑎
𝑘
< 0, we can get the similar results as follows:

If 𝑎
𝑘
< −𝑡, (𝑧re)𝑘 = (𝑧re)𝑘 + 𝑡

𝑘
;

if − 𝑡 ≤ 𝑎
𝑘
< 0, (𝑧re)𝑘 = 0.

(98)

From the above discussion, we can complete the proof.
(2) Assume that 𝑥𝑘+1 + 𝑢

𝑘
= 𝑏𝑗; we have

𝐹 (𝑧) = ‖𝑧‖1 + 𝜌
󵄩󵄩󵄩󵄩𝑧 − 𝑏𝑗

󵄩󵄩󵄩󵄩
2

2

=

𝑛

∑
𝑘=1

√(𝑧re)
2

𝑘
+ (𝑧im)

2

𝑘

+ 𝜌

𝑛

∑
𝑘=1

((𝑧re)
2

𝑘
+ (𝑧im)

𝑘
− 𝑏
2

𝑘
) ,

(99)

and by adopting the same approach in the above (1), we can
get the results.

(3) Assume that 𝑥𝑘+1 + 𝑢
𝑘
= 𝑎 + 𝑏𝑗 and satisfy√𝑎2 + 𝑏2 >

𝑡, 𝑎 > 0, 𝑏 > 0; then

𝐹 (𝑧) = ‖𝑧‖1 + 𝜌
󵄩󵄩󵄩󵄩𝑧 − 𝑎 + 𝑏𝑗

󵄩󵄩󵄩󵄩
2

2

=

𝑛

∑
𝑘=1

√(𝑧re)
2

𝑘
+ (𝑧im)

2

𝑘

+ 𝜌

𝑛

∑
𝑘=1

(((𝑧re)𝑘 − 𝑎)
2

+ ((𝑧im)
𝑘
− 𝑏
𝑘
)
2

) .

(100)

It follows fromTheorem 2 that
𝜕𝑓

𝜕 (𝑧re)𝑘
=

(𝑧re)𝑘

√(𝑧re)
2

𝑘
+ (𝑧im)

2

𝑘

+ 2𝜌 ((𝑧re)𝑘 − 𝑎
𝑘
) = 0,

𝜕𝑓

𝜕 (𝑧im)
𝑘

=
(𝑧im)
𝑘

√(𝑧re)
2

𝑘
+ (𝑧im)

2

𝑘

+ 2𝜌 ((𝑧im)
𝑘
− 𝑏
𝑘
) = 0.

(101)

By resolving it, we may get (𝑧re)𝑘 = 𝑎
𝑘
− (𝑡re)𝑘, (𝑧im)

𝑘
= 𝑏
𝑘
−

(𝑡im)
𝑘
, where 𝑡re = 𝑡√𝑎2/(𝑎2 + 𝑏2) and 𝑡im = 𝑡√𝑏2/(𝑎2 + 𝑏2).

Other cases can be discussed similarly. Thus we omit the
proof here. This completes the proof.

From what has been discussed above on 𝑥-update and 𝑧-
update, the iteration of the BP algorithm is

𝑥
𝑘+1

= Π (𝑧
𝑘
− 𝑢
𝑘
) ,

𝑧
𝑘+1

= 𝑆
1/(2𝜌)

(𝑥
𝑘+1

+ 𝑢
𝑘
) ,

𝑢
𝑘+1

= 𝑢
𝑘
+ 𝑥
𝑘+1

− 𝑧
𝑘+1

,

(102)

whereΠ is projection onto {𝑥 ∈ 𝐶
𝑛
| 𝐴𝑥 = 𝑏} and 𝑆 is the soft

thresholding operator in the complex number domain.

5. Numerical Simulation

We give two numerical simulations with random data and
EEG data. All our numerical experiments are carried out on
a PC with Intel Core i7-4710MQ CPU at 2.50GHz and 8GB
of physical memory. The PC runs MATLAB Version: R2013a
on Window 7 Enterprise 64-bit operating system.
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Figure 1: Comparison with different parameter 𝜌.

5.1. Numerical Simulation of the BP Algorithm with Random
Data. Assume that 𝑥 ∈ 𝐶

𝑛 is a discrete complex signal
interested. 𝑥 itself is 𝑟-sparse, which contains (at most) 𝑟

nonzero entries with 𝑟 ≪ 𝑛. Select 𝑝 (𝑝 < 𝑛) measurements
uniformly at random matrix 𝐴

𝑝×𝑛
via 𝐴

𝑝×𝑛
𝑥 = 𝑏. Hence

reconstructing signal 𝑥 from measurement 𝑏 is generally an
ill-posed problem which is an undetermined system of linear
equations. However, the sparsest solution can be obtained by
solving the constrained optimization problem:

minimize {‖𝑥‖0 : 𝐴𝑥 = 𝑏, 𝑥 ∈ 𝐶
𝑛
} , (103)

where ‖𝑥‖
0
is the 𝑙

0
-norm of 𝑥. Unfortunately, (103) is a com-

binatorial optimization problem of which the computational
complexity grows exponentially with the signal size 𝑛. A key
result in [17, 18] is that if 𝑥 is sparse, the sparsest solution
of (103) can be obtained with overwhelming probability by
solving the convex optimization problem (77). Next, we
consider CS which is actually a kind of application of the BP
method in complex variables.

5.1.1. The Effects of the Parameter 𝜌. We demonstrate the
complex signal sampling and recovery techniques with a
discrete-time complex signal𝑥 of length 𝑛 = 300with sparsity
𝑟 = 30 which is generated randomly. 𝐴

𝑝×𝑛
is a random

sensing matrix with 𝑝 = 120. The variables 𝑢
0
and 𝑧

0
are

initialized to be zero. We set the two tolerances of primal and
dual residuals equal to 10

−6. In order to understand the effects
of the parameter 𝜌 on the convergence, we set the penalty

parameter 𝜌 from 0.1 to 20 with the step 0.1.We have repeated
the same experiment 100 times with the same parameter 𝜌.
The average runtime, the average numbers of iterations, and
the average primal and dual errors of the ADMM for the
different choices of the parameter 𝜌 are presented in Figure 1.

It is clear from Figure 1 (top) that when 2 ≤ 𝜌 ≤ 4, the
average runtime and the average iterations are reasonable.
From Figure 1 (bottom), we can observe that, with the
parameter 𝜌 increasing, the primal error decreases while the
dual error becomes bigger. Numerical simulations suggest
that choosing 𝜌 ∈ [2, 4] could accelerate the convergence of
the ADMM.

5.1.2. The Effects of Tolerances for the Primal and Dual
Residuals. Now, we take the different tolerances for the
primal residuals 𝜖

pri and the dual residuals 𝜖
dual to analyze

the performance of the ADMM, where sparse 𝑟 = 0.1𝑛,
measurements𝑝 = 4𝑟, the penalty parameter𝜌 = 2, and 𝜖

pri
=

𝜖
dual

= 𝜖. We take two different signal lengths 𝑛 = 400 and
𝑛 = 600. We have repeated the same experiment 100 times by
a set of randomly generated data. For different choices of 𝜖,
the average numbers of iterations and the executing time of
the above ADMM algorithm (102) are presented in Table 1. It
is shown that, with the increasing of precision, the number of
iterations increases accordingly while increasing of executing
time is not obvious.

In Figure 2(a), the full line describes the changes of the
primal residuals 𝑟

𝑘. In Figure 2(b), the full line describes the
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Table 1: Numerical results on the different tolerances for residuals.

𝑛 𝜖 Iteration Time 𝑛 𝜖 Iteration Time
400 10

−1 21.56 0.0459 600 10
−1 23.34 0.1182

400 10
−2 37.80 0.0482 600 10

−2 40.52 0.1474
400 10

−3 55.68 0.0571 600 10
−2 59.20 0.1720

400 10
−4 78.04 0.0603 600 10

−4 92.46 0.2238
400 10

−5 119.80 0.0951 600 10
−5 114.98 0.2590

400 10
−6 139.00 0.0956 600 10

−6 149.26 0.3063
400 10

−7 161.64 0.1056 600 10
−7 230.24 0.4346
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k
‖ 2
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(a)
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1010

100

10−10

(b)

Figure 2: Norms of primal residual (a) and dual residual (b) versus iteration.

changes of the dual residuals 𝑠
𝑘. The dotted lines in Figures

2(a) and 2 (b) represent the original residual tolerance 𝜖
pri

=

10
−6 and dual residuals tolerance 𝜖

dual
= 10
−6, respectively.

From Figure 2, we can see that the two residuals descend
monotonously.

5.2. Reconstruction of Electroencephalogram Signal by Using
Complex ADMM. Electroencephalogram (EEG) signal is
a weak bioelectricity of brain cells group, which can be
recorded by placing the available electrodes on the scalp
or intracranial detect. The EEG signal could reflect the
brain bioelectricity rhythmic activity regularity of random
nonstationary signal. In this area, much is known for clinical
diagnosis and brain function [42]. Because EEG data is large,
a very meaningful work is to compress EEG data. It is to
effectively reduce the amount of data at the same time and to
guarantee that the main features basically remain unchanged
[43, 44].

In this paper, EEG signals are recorded with a g.USBamp
and a g.EEGcap (Guger Technologies, Graz, Austria) with a
sensitivity of 100V, band pass filtered between 0.1 and 30Hz,
and sampled at 256Hz. Data are recorded and analyzed
using the ECUST BCI platform software package developed
through East China University of Science and Technology
[45, 46].

We get the complex signal 𝑥
𝑜
by performing the discrete

Fourier transform (DFT) on EEG signal 𝑠; that is, 𝑥
𝑜

=

F(𝑠), with signal 𝑠 with length 𝑛 = 2000. Original EEG
signal 𝑠 is not sparse, but its DFT signal 𝑥

𝑜
becomes the

approximate sparse signal; see Figure 3. The hard threshold
of 𝑥
𝑜
is properly set, which leads to 𝑥 with 90 percent zero

valued entries, and 𝑥 is the approximation of 𝑥
𝑜
.

To get the compression of sparse signal 𝑥, we can first
calculate 𝑏 from 𝑏 = 𝐴𝑥. 𝐴 is a random complex matrix of
size 𝑝 × 𝑛, where 𝑝 = 800, 𝑛 = 2000, and the sampling rate
is 40%. Substituting 𝐴 and 𝑏 into the optimization model as
presented in (77), that is,

minimize {‖𝑥‖1 : 𝐴𝑥 = 𝑏, 𝑥 ∈ 𝐶
𝑛
} , (104)

we can obtain the sparse optimal solution 𝑥 by employing the
ADMM algorithm (102) in Section 4, in which 𝑥 is a good
approximation of 𝑥. By applying the inverse discrete Fourier
transform (IDFT) on 𝑥, we can get the approximation 𝑠 of
original signal 𝑠; that is,

𝑠 = F
−1

𝑥. (105)
The original signal 𝑠 and its reconstruction signal 𝑠 can be
seen in Figure 4, in which (a) is the original signal 𝑠, (b) is the
reconstruction signal 𝑠, and (c) is the comparison of them.
With the comparison of (a), (b), and (c) in Figure 4, we can
observe that the reconstructed signal is in good agreement
with the original signal and retains the leading characteristic.
The relative error 𝛿 = norm(𝑠 − 𝑠)/norm(𝑠) = 0.1858.

Now we separate the complex signal 𝑥 into the real
part 𝑥re and the imaginary part 𝑥im and then recast it into
an equivalent real-valued optimization problem. We can
calculate 𝑏

1
from 𝑏

1
= 𝐴𝑥re and 𝑏

2
from 𝑏

2
= 𝐴𝑥im,

respectively. Here 𝐴 is a random real matrix of size 𝑝 × 𝑛,
where 𝑝 = 800, 𝑛 = 2000, and the sampling rate is 40%
which is similar to the one used in the complex number
domain. Substitute 𝐴 and 𝑏

1
, 𝑏
2
into the optimization model

as presented in (77); that is,
minimize {

󵄩󵄩󵄩󵄩𝑥re
󵄩󵄩󵄩󵄩1 : 𝐴𝑥re = 𝑏

1
, 𝑥re ∈ 𝑅

𝑛
} ,

minimize {
󵄩󵄩󵄩󵄩𝑥im

󵄩󵄩󵄩󵄩1 : 𝐴𝑥im = 𝑏
2
, 𝑥im ∈ 𝑅

𝑛
} .

(106)
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Figure 3: Original EEG signal and its DFT signal.
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Figure 4: Original EEG signal and its reconstructed signal in the complex number domain.
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Figure 5: Original EEG signal and its reconstructed signal in the real number domain.

Although 𝑥re and 𝑥im can approach 𝑥re and 𝑥im, respectively,
the reconstructed signal 𝑠 = F−1(𝑥re + 𝑖𝑥im) is not consistent
with the original signal 𝑠; see Figure 5. The relative error
𝛿 = norm(𝑠 − 𝑠)/norm(𝑠) = 0.5879. It can be seen that our
new ADMM proposed in this paper performs better than the
classic ADMM.

6. Conclusions

In this paper, the ADMM for separable convex optimization
of real functions in complex variables has been studied.
By using Wirtinger calculus, we have established the con-
vergence of the algorithm, which is the generalization of
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the one obtained in real variables. Furthermore, the BP
algorithm is given in the form of the ADMM, in which
projection algorithm and the soft thresholding formula are
generalized from the real number domain to the complex
case. The simulation results demonstrate that the ADMM
can quickly solve convex optimization problems in complex
variables within the scopes of the signal compression and
reconstruction, which is better than the results in the real
number domain.
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[31] J. Löfberg, “YALMIP: a toolbox for modeling and optimization
in MATLAB,” in Proceedings of the IEEE International Sympo-
sium on Computer Aided Control Systems Design, pp. 284–289,
IEEE, Taipei, Taiwan, September 2004.

[32] B. Jiang, S. Q. Ma, and S. Z. Zhang, “Alternating direction
method of multipliers for real and complex polynomial opti-
mization models,” Optimization, vol. 63, no. 6, pp. 883–898,
2014.

[33] W.Wirtinger, “Zur formalenTheorie der Funktionen vonmehr
komplexen Veränderlichen,” Mathematische Annalen, vol. 97,
no. 1, pp. 357–375, 1927.

[34] P. J. Schreier and L. L. Scharf, Statistical Signal Processing of
Complex-Valued Data: The Theory of Improper and Noncircular
Signals, Cambridge University Press, Cambridge, UK, 2010.

[35] T. Adali, P. J. Schreier, and L. L. Scharf, “Complex-valued signal
processing: the proper way to deal with impropriety,” IEEE
Transactions on Signal Processing, vol. 59, no. 11, pp. 5101–5125,
2011.

[36] D. H. Brandwood, “A complex gradient operator and its appli-
cation in adaptive array theory,” IEE Proceedings H:Microwaves,
Optics and Antennas, vol. 130, no. 1, pp. 11–16, 1983.

[37] H. Groemer, “On an inequality of Minkowski for mixed
volumes,” Geometriae Dedicata, vol. 33, no. 1, pp. 117–122, 1990.

[38] S. Boyd andL.Vandenberghe,ConvexOptimization, Cambridge
University Press, Cambridge, UK, 2004.

[39] D. Zhang, The p-perfectly convex set and absolutely p-persectly
convex set [M.S. thesis], Shanghai University, 2010, (Chinese).

[40] P. L. Combettes and J. C. Pesquet, “Proximal splitting methods
in signal processing,” in Fixed-Point Algorithms for Inverse
Problems in Science and Engineering, vol. 49, pp. 185–212,
Springer, Berlin, Germany, 2011.

[41] G. R.Wang, Y.Wei, and S. Z. Qiao,Generalized Inverses: Theory
and Computations, Science Press, Beijing, China, 2003.
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