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This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-
Sugeno fuzzymodel, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given.The
fractional order stability condition is transformed into a set of linearmatrix inequalities and the rigorous proof details are presented.
Furthermore, through fractional order linear time-invariant (LTI) interval theory, the approach is developed for fractional order
chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization
between an integer order three-dimensional (3D) chaos and a fractional order 3D chaos, anti-synchronization of two fractional
order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to
verify the theoretical results.

1. Introduction

Fractional order calculus can date back to 300 years ago.
Nevertheless, application of fractional order calculus into
actual project has not attracted much attention until recent
decades [1–4]. It is widely recognized that many systems by
introducing fractional order calculus can be better modeled
compared with integer order calculus, especially for systems
with memory and hereditary factors [5–7]. Many actual
projects can be elegantly described with fractional calculus.
For example, power system [8], physical system [9], chemical
system [10], mechanical system [11], and so on.

As we all know, integer order chaos is universal in
practical systems. In recent years, there are also many
reports on new fractional order chaos, for example, a new
fractional order hyperchaos [12], fractional order Liu chaos
[13], fractional order unified chaos [14], and a new double
wing fractional order chaos [15]. In particular, because of the
application in secure communication and signal processing,
chaos synchronization has become a hot topic.

Numerous studies about integer order chaos synchro-
nization have been presented [16–18], while fractional order

chaos synchronization in secure communication and signal
processing hasmore advantages than integer order chaos [19–
21]. However, could fractional order chaos be well synchro-
nized? It is worth studying. Until now, many synchronous
strategies have been presented for the synchronization of
fractional order chaos such as pinning synchronization [22],
function projective synchronization [23], adaptive synchro-
nization [24], and finite-time synchronization [25].

As we all know, fuzzy method is an effective and robust
control strategy, and it can process uncertain parameters
well. There is a lot of work reported in fuzzy control and
synchronization of chaos. For example, in [26], a new con-
troller is proposed via fuzzy logic for real-time substructuring
applications, and the effectiveness is proved by evaluating the
response of a framework fixed at one of the beam joints for El-
Centro earthquake. In [27], by introducing fuzzy techniques,
a command-filtered adaptive fuzzy neural network backstep-
ping control law is presented to restrain chaotic oscillation of
marine power system. In [28], a fuzzy adaptive control law
is proposed for the projective synchronization of unknown
multivariable chaos. There also has been a wide application
of integer order chaos fuzzy synchronization based on linear
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matrix inequality (LMI). In [29], by employing LMI method,
a new fuzzy controller based on Takagi-Sugeno (T-S) fuzzy
model is designed for chaos synchronization of two Rikitake
generator systems. In [30], the authors focus on the observer
design for application in secure communications procedure
and chaos synchronization based onT-S fuzzymodel, and the
sufficient stable condition is given as LMI. In [31], T-S fuzzy
receding horizon H-infinity synchronization (TSFRHHS)
approach is proposed and a novel set of LMI conditions
is given. And the scheme is applied to synchronize Lorenz
meteorological chaos. However, as we all know, fractional
order chaos has different controllability region with chaos
of integer order. Can fuzzy synchronization of fractional
order chaos be performed via LMI? If the hypothesis is true,
what are the specificmathematical derivation and application
conditions?There are no relevant results yet. It is still an open
problem.

In light of the above analysis, there are several advantages
whichmake our study attractive. Firstly, based on generalized
Takagi-Sugeno fuzzy model and fractional order stability
theorem, one efficient stability condition for fractional order
chaos synchronization or antisynchronization is given and
the rigorous proof details are presented. Secondly, through
the LTI interval theory for fractional order system, the
approach is developed for fractional order chaos synchro-
nization regardless the system with uncertain parameters.
Thirdly, antisynchronization of fractional order chaos can
be easily implemented by this approach. Finally, numerical
simulations agree well with theoretical results.

The contents of our paper are given as follows. Some
necessary preliminaries are presented in Section 2. Section 3
introduces the system description and fuzzy synchronization
design. Three typical examples are employed to verify the
validity of the designed approach and numerical simulation
results are also included in Section 4. Section 5 draws the
conclusions.

2. Mathematical Preparation

2.1. LTI Interval Theory. The LTI interval fractional order
system is presented:

𝑑
𝑞
𝑥

𝑑𝑡𝑞
= 𝐴𝑥 (𝑡) , (1)

where 𝑞 (0 < 𝑞 ≤ 1) are the orders of system (1) and 𝐴 is the
uncertainty meeting, 𝐴 ∈ 𝑁[𝐴𝑙, 𝐴𝑢] = {𝐴 ∈ 𝑅𝑛×𝑛 | 𝑎𝑙𝑖𝑗 ≤
𝑎𝑖𝑗 ≤ 𝑎

𝑢

𝑖𝑗, 𝑖, 𝑗 = 1, . . . , 𝑛}, where 𝐴
𝑙 and 𝐴𝑢 are the lower and

upper bounds, respectively.
The matrix 𝐴 is equivalent to

𝐴 = 𝐴0𝑖 + 𝐸∑𝐹, (2)

where

𝐴0𝑖 =
1

2
(𝐴
𝑙

𝑖 + 𝐴
𝑢

𝑖) ,

∑ ∈

∗

∑

= {∑

𝑖

∈ 𝑅
𝑛×𝑛
| ∑

𝑖

= diag (𝜀11, . . . , 𝜀1𝑛, . . . , 𝜀𝑛1, . . . , 𝜀𝑛𝑛) ,


𝜀𝑖𝑗

≤ 1, 𝑖, 𝑗 = 1, . . . , 𝑛} ,

𝐸 = (√ℎ11𝑒1, . . . , √ℎ1𝑛𝑒1, . . . , √ℎ𝑛1𝑒𝑛, . . . , √ℎ𝑛𝑛𝑒𝑛) ,

𝐹 = (√ℎ11𝑒1, . . . , √ℎ1𝑛𝑒𝑛, . . . , √ℎ𝑛1𝑒1, . . . , √ℎ𝑛𝑛𝑒𝑛)

𝑇

,

𝐻 = (ℎ𝑖𝑗)𝑛×𝑛
= 𝐻𝑖 =

1

2
(𝐴
𝑢

𝑖 − 𝐴
𝑙

𝑖) , 𝑒𝑖 (𝑖 = 1, . . . , 𝑛)

(3)

is the 𝑛 × 𝑛 identity matrix 𝑖th column.
Noticing that, for any 𝑖 and ∑ ∈ ∑∗, one has

∑∑
𝑇

= ∑
𝑇

∑ ≤ 𝐼 (𝐼 is 𝑛 × 𝑛 identity matrix) . (4)

2.2. Generalized Takagi-Sugeno Fuzzy Model. For a con-
tinuous nonlinear fractional order system, the generalized
Takagi-Sugeno fuzzy model is shown as

Rule 𝑅𝑖: IF 𝑧1 (𝑡) is 𝑀𝑖1 ⋅ ⋅ ⋅ 𝑧𝑛 (𝑡) is 𝑀𝑖𝑛

THEN 𝑑
𝑞
𝑥

𝑑𝑡𝑞
= 𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡) (𝑖 = 1, 2, . . . , 𝑟) ,

(5)

where fuzzy set is 𝑀𝑖𝑗 (𝑗 = 1, 2, . . . , 𝑛) and IF-THEN rules
number is 𝑟, system state vector is 𝑥(𝑡) ∈ 𝑅𝑛, 𝐴 𝑖 ∈ 𝑅

𝑛×𝑛, the
premise variables are 𝑧(𝑡) = [𝑧1(𝑡), 𝑧2(𝑡), . . . , 𝑧𝑛(𝑡)], and 𝑢(𝑡)
is control variable. Now we can get the generalized Takagi-
Sugeno fuzzy model:

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐴 𝑖𝑥 (𝑡) +

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐵𝑖𝑢 (𝑡) , (6)

where

ℎ𝑖 (𝑧 (𝑡)) =
∏
𝑛

𝑗=1
𝑀𝑖𝑗 (𝑧𝑗 (𝑡))

∑
𝑟

𝑖=1
∏
𝑛

𝑗=1
𝑀𝑖𝑗 (𝑧𝑗 (𝑡))

≥ 0,

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) = 1,

(7)

where ℎ𝑖(𝑧(𝑡)) represents IF-THEN rule normalized weight,
with𝑀𝑖𝑗(𝑧(𝑡)) being the grade of membership of 𝑧𝑗(𝑡) in𝑀𝑖𝑗.
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2.3. Parallel Distributed Compensation (PDC) Control Law.
There are two basic steps of PDC method. Firstly, each
subsystem of the fuzzy model needs to complete local state
feedback controller design. Then, the membership functions
determine the weights of each local state feedback controller.
So the local controllers form global fuzzy controller.

Therefore, the state feedback controller is given as

Rule 𝑅𝑖: IF 𝑧1 (𝑡) is 𝑀𝑖1 ⋅ ⋅ ⋅ 𝑧𝑛 (𝑡) is 𝑀𝑖𝑛

THEN 𝑢 (𝑡) = 𝐾𝑖𝑥 (𝑡) (𝑖 = 1, 2, . . . , 𝑟) .

(8)

The PDC control law is expressed in the following:

𝑢 (𝑡) =

𝑟

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑥 (𝑡) , (9)

where𝐾𝑖 is the controller gain.
Submitting (9) into (6), one gets

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐴 𝑖𝑥 (𝑡)

+

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐵𝑖

𝑟

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑥 (𝑡) .

(10)

To simplify (10), make the following variants:
𝑟

∑

𝑖=1

ℎ𝑖𝐴 𝑖 = ℎ1𝐴1 + ℎ2𝐴2 + ⋅ ⋅ ⋅ + ℎ𝑟𝐴𝑟. (11)

Taking into account ∑𝑟
𝑖=1
ℎ𝑖(𝑧(𝑡)) = 1 in (7), (11) could

be presented as
𝑟

∑

𝑖=1

ℎ𝑖𝐴 𝑖 = ℎ1 (ℎ1 + ℎ2 + ⋅ ⋅ ⋅ + ℎ𝑟) 𝐴1 + ⋅ ⋅ ⋅

+ ℎ𝑟 (ℎ1 + ℎ2 + ⋅ ⋅ ⋅ + ℎ𝑟) 𝐴𝑟

= (ℎ1
2
+ ℎ1ℎ2 + ⋅ ⋅ ⋅ + ℎ1ℎ𝑟)𝐴1 + ⋅ ⋅ ⋅

+ (ℎ𝑟ℎ1 + ℎ𝑟ℎ2 + ⋅ ⋅ ⋅ + ℎ𝑟
2
)𝐴𝑟

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ𝑖ℎ𝑗𝐴 𝑖.

(12)

In (10), ∑𝑟
𝑖=1
ℎ𝑖𝐵𝑖∑

𝑟

𝑗=1
ℎ𝑗𝐾𝑗 can be equivalent to

𝑟

∑

𝑖=1

ℎ𝑖𝐵𝑖

𝑟

∑

𝑗=1

ℎ𝑗𝐾𝑗

= (ℎ1𝐵1 + ℎ2𝐵2 + ⋅ ⋅ ⋅ + ℎ𝑟𝐵𝑟) (ℎ1𝐾1 + ℎ2𝐾2 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟)

= ℎ1𝐵1 (ℎ1𝐾1 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟) + ⋅ ⋅ ⋅

+ ℎ𝑟𝐵𝑟 (ℎ1𝐾1 + ℎ2𝐾2 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟)

= ℎ1
2
𝐵1𝐾1 + ℎ2

2
𝐵2𝐾2 + ⋅ ⋅ ⋅ + ℎ𝑖

2
𝐵𝑖𝐾𝑖 + ⋅ ⋅ ⋅

+ ℎ𝑟
2
𝐵𝑟𝐾𝑟 + ℎ1 (ℎ2𝐾2 + ℎ3𝐾3 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟) 𝐵1

+ ℎ2 (ℎ3𝐾3 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟) 𝐵2 + ⋅ ⋅ ⋅

+ ℎ𝑖 (ℎ𝑖+1𝐾𝑖+1 + ⋅ ⋅ ⋅ + ℎ𝑟𝐾𝑟) 𝐵𝑖 + ⋅ ⋅ ⋅

+ ℎ𝑟−1ℎ𝑟𝐾𝑟𝐵𝑟−1

+ ℎ2ℎ1𝐾1𝐵2 + ℎ3 (ℎ2𝐾2 + ℎ1𝐾1) 𝐵3 + ⋅ ⋅ ⋅

+ ℎ𝑗 (ℎ𝑗−1𝐾𝑗−1 + ℎ𝑗−2𝐾𝑗−2 + ⋅ ⋅ ⋅ + ℎ1𝐾1) 𝐵𝑗 + ⋅ ⋅ ⋅

+ ℎ𝑟 (ℎ𝑟−1𝐾𝑟−1 + ℎ𝑟−2𝐾𝑟−2 + ⋅ ⋅ ⋅ + ℎ1𝐾1) 𝐵𝑟

=

𝑟

∑

𝑖=1

ℎ𝑖
2
𝐵𝑖𝐾𝑗 +

𝑟

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝐾𝑗𝐵𝑖 +

𝑟

∑

𝑖>𝑗

ℎ𝑖ℎ𝑗𝐾𝑗𝐵𝑖

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ𝑖ℎ𝑗𝐵𝑖𝐾𝑗.

(13)

Substituting (12) and (13) into (10), one has

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡)) (𝐴 𝑖 + 𝐵𝑖𝐾𝑗) 𝑥 (𝑡) . (14)

Consider uncertain system parameters of fractional order
system (14); that is, 𝐴 𝑖 is uncertain coefficient matrix. From
(2), system (14) could be rewritten in the following form:

𝑑
𝑞
𝑥

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡)) (𝐴0𝑖 + 𝐸∑𝐹 + 𝐵𝑖𝐾𝑗) 𝑥 (𝑡) .

(15)

3. Generalized Synchronization

3.1. System Description. The Caputo fractional derivative has
a popular application in engineering, which is adopted in this
paper. Considering a class of fractional order chaos, the drive
and response systems are described as follows, respectively:

𝐷
𝛼
𝑥 = 𝐴𝑥 (𝑡) + 𝑓 (𝑥) , (16)

𝐷
𝛽
𝑦 = 𝐶𝑦 (𝑡) + 𝑔 (𝑦) + 𝑢 (𝑡) , (17)

where 𝑥, 𝑦 ∈ 𝑅𝑛 are drive and response system state vectors,
respectively. 𝑓, 𝑔 : 𝑅𝑛 → 𝑅

𝑛 is a continuous vector function
for the system. 𝛼 and 𝛽 are 𝑛×1 vectors representing the drive
and response system chaotic orders. 𝐴 and 𝐶 are the linear
part of drive and response system parameter matrices. The
controller 𝑢(𝑡) needs to be designed.

The goal is to design a synchronous effective controller
𝑢(𝑡), which can make response system (17) track the trajec-
tories of drive system (16) and synchronization between the
two systems is finally achieved.

We define the synchronization error as

𝑒 = 𝑦 − 𝜒𝑥, (18)

where 𝜒 is an arbitrary regulating factor and 𝜒 ∈ 𝑅. Here, the
controller 𝑢(𝑡) is divided into two subcontrollers 𝑢1(𝑡) and
𝑢2(𝑡); that is, 𝑢(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡). The subcontroller 𝑢1(𝑡) is
designed as

𝑢1 (𝑡) = 𝐷
𝛽
(𝜒𝑥) . (19)



4 Mathematical Problems in Engineering

Submitting (19) to (17), one can get the dynamical error
system:

𝐷
𝛽
𝑒 = 𝐶𝑦 + 𝑔 (𝑦) + 𝑢2 (𝑡) . (20)

According to the Takagi-Sugeno fuzzy model, we can
rewrite dynamical error system (20) as

𝑑
𝑞
𝑒

𝑑𝑡
=

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐶𝑖𝑦 (𝑡) +

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐵𝑖𝑢2 (𝑡) . (21)

3.2. Fuzzy Controller Design. According to Section 2.3, using
the PDC control law, the subcontroller 𝑢2(𝑡) is composed as

𝑢2 (𝑡) =

𝑟

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑦 (𝑡) , (22)

where𝐾𝑗 is the controller gain.
Substituting (22) into (21), one has

𝑑
𝑞
𝑒

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐶𝑖𝑦 (𝑡) +

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐵𝑖𝑢2 (𝑡)

=

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐶𝑖𝑦 (𝑡)

+

𝑟

∑

𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐵𝑖

𝑟

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑦 (𝑡)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡)) (𝐶𝑖 + 𝐵𝑖𝐾𝑗) 𝑦 (𝑡)

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡)) (𝐶0𝑖 + 𝐸∑𝐹 + 𝐵𝑖𝐾𝑗) 𝑦 (𝑡) .

(23)

Combining (19) and (22), we can get the total controller:

𝑢 (𝑡) = 𝑢1 (𝑡) + 𝑢2 (𝑡)

= 𝐷
𝛽
(𝜒𝑥 (𝑡)) +

𝑟

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑦 (𝑡) .
(24)

Lemma 1 (see [32]). The following inequality holds when 𝜂 is
a positive constant and matrices𝑋, 𝑌, and 𝑅 have appropriate
dimensions:

𝑋𝑌 + (𝑋𝑌)
𝑇
≤ 𝜂𝑋𝑅

𝑇
+ 𝜂
−1
𝑌
𝑇
𝑌. (25)

Lemma 2 (see [33]). Fractional order system (23) will be
globally asymptotically stable if the system with real positive
symmetric 𝑃 matrix and semidefinite positive 𝑄 matrix is
meeting the following condition:

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄. (26)

Based on Lemma 2, amore flexible stability condition can
be described as follows.

Lemma3. Fractional order system (23) will be globally asymp-
totically stable if there exists a real positive definite symmetric
matrix 𝑃 meeting 𝐽 = 𝑥𝑇𝑃(𝑑𝑞𝑥/𝑑𝑡𝑞) ≤ 0. The 𝐽 function
𝐽 = 𝑥
𝑇
𝑃(𝑑
𝑞
𝑥/𝑑𝑡
𝑞
) ≤ 0 is equivalent to

𝐽0 = 𝑥
𝑇
𝑃
𝑑
𝑞
𝑥

𝑑𝑡𝑞
+ (
𝑑
𝑞
𝑥

𝑑𝑡𝑞
)

𝑇

𝑃𝑥 ≤ 0. (27)

Proof. From Lemma 2, one has

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄. (28)

We can easily get the equivalent transformation of (28) as
follows:

𝑥
𝑇
(𝐴𝑇𝑃 + 𝑃𝐴)𝑥 = −𝑥

𝑇
𝑄𝑥, (29)

where 𝑄 is semidefinite positive matrix. So the following
inequality holds:

𝑥
𝑇
(𝐴𝑇𝑃 + 𝑃𝐴)𝑥 = −𝑥

𝑇
𝑄𝑥 ≤ 0. (30)

Substituting (1) into (30), one has

𝑥
𝑇
𝑃
𝑑
𝑞
𝑥

𝑑𝑡𝑞
+ (
𝑑
𝑞
𝑥

𝑑𝑡𝑞
)

𝑇

𝑃𝑥 ≤ 0. (31)

Matrix 𝑃 is given as

𝑃 =

[
[
[
[
[
[

[

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛

𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛

.

.

.
.
.
. d

.

.

.

𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]
]
]
]
]
]

]

. (32)

The following inequality can be obtained via introducing
(32) to (31):

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗

𝑑
𝑞
𝑥𝑖

𝑑𝑡𝑞
+

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑖

𝑑
𝑞
𝑥𝑗

𝑑𝑡𝑞
≤ 0, (33)

where 𝑎𝑖𝑗 = 𝑎𝑗𝑖 (for all 𝑖, 𝑗).
Therefore, we can rewrite (33) as follows:

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑖

𝑑
𝑞
𝑥𝑗

𝑑𝑡𝑞
+

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗

𝑑
𝑞
𝑥𝑖

𝑑𝑡𝑞

= 2

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗

𝑑
𝑞
𝑥𝑖

𝑑𝑡𝑞

= 2𝑥
𝑇
𝑃
𝑑
𝑞
𝑥

𝑑𝑡𝑞

= 2(
𝑑
𝑞
𝑥

𝑑𝑡𝑞
)

𝑇

𝑃𝑥

≤ 0.

(34)

The proof is finished.
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Theorem 4. When response system (17) is driven by the con-
troller (24), suppose there exists a constant 𝜂 > 0 and matrix 𝑃
is positive, by selecting controller gains 𝐾1, 𝐾2, 𝐾3, 𝐾4 meeting
the inequality following; then dynamical error system (23) will
be stable and converge to zero so that the synchronization is
achieved. Consider

𝐺𝑖𝑖
𝑇
𝑃 + 𝑃𝐺𝑖𝑖 + 𝜂𝑃𝐸𝐸

𝑇
𝑃 + 𝜂
−1
𝐹
𝑇
𝐹 < 0 (𝑖, 𝑗 = 1, 2, 3, 4) ,

𝐺𝑖𝑗
𝑇
𝑃 + 𝑃𝐺𝑖𝑗 + 𝜂𝑃𝐸𝐸

𝑇
𝑃 + 𝜂
−1
𝐹
𝑇
𝐹 < 0 (𝑖 < 𝑗 < 4) ,

(35)

where

𝐺𝑖𝑖 = 𝐶0𝑖 + 𝐵𝑖𝐾𝑖, 𝐺𝑖𝑗 =
(𝐶0𝑖 + 𝐵𝑖𝐾𝑗) + (𝐶0𝑗 + 𝐵𝑗𝐾𝑖)

2
.

(36)

Proof. The proof of Theorem 4 is given in the Appendix.

Therefore, dynamical error system (23) is globally asymp-
totically stable after controller (24) is applied to response
system (17). That is to say, the synchronization is realized.
According to Schur complement theorem [34], we can easily
transform (35) into LMI form.

Remark 5. If the orders of drive system (16) are 𝛼𝑖 = 1, that is,
�̇� = 𝐴𝑥 + 𝑓(𝑥), then the synchronization between an integer
order chaos and a fractional order chaos can be achieved by
the controller (24).

Remark 6. Since there exists a scaling factor 𝜒 (𝜒 ∈ 𝑅), we
can choose the value of 𝜒 arbitrarily to meet our needs. For
example, the synchronization is realized when 𝜒 = 1, and
antisynchronization is achieved when 𝜒 = −1.

4. Numerical Simulation

To evaluate the effectiveness of the designed synchronization
method, we perform three typical examples in this section.
The simulation results are modeled in MATLAB software
using the fractional predictor-corrector algorithm.

Case 1. The case is as follows: synchronization between
an integer order chaos and a fractional order chaos with
uncertain parameters.

The integer order drive system [35] is written as

�̇�1 = 𝑎1 (𝑦1 − 𝑥1) ,

̇𝑦1 = (𝑐1 − 𝑎1) 𝑥1 − 𝑥1𝑧1 + 𝑐1𝑦1,

�̇�1 = 𝑥1𝑦1 − 𝑏1𝑧1,

(37)

where (𝑎1, 𝑏1, 𝑐1) = (35, 3, 28) and the initial values are
(𝑥1, 𝑦1, 𝑧1) = (1, 3, 5); assume that 𝑥1 ∈ (−𝑑, 𝑑), 𝑑 > 0.

Fractional order PMSM chaos [36] is presented as the
response system:

𝑑
𝑞
1𝑥2

𝑑𝑡𝑞1
= −𝑥2 + 𝑦2𝑧2,

𝑑
𝑞
2𝑦2

𝑑𝑡𝑞2
= −𝑦2 − 𝑥2𝑧2 + 𝑎2𝑧2,

𝑑
𝑞
3𝑧2

𝑑𝑡𝑞3
= 𝑏2 (𝑦2 − 𝑧2) ,

(38)

where 𝑞1 = 0.98, 𝑞2 = 1, and 𝑞3 = 0.99 are the orders of
the system. Figures 1(a)–1(d) show the phase diagramwithout
controller which exhibits chaotic behavior when 𝑎2 = 50 and
𝑏2 = 4 with the initial value [𝑥2, 𝑦2, 𝑧2]

𝑇
= [35, 0.02, 0.01]

𝑇.
Fractional order system (38) is bounded with 𝑥2(𝑡) ∈

[−𝑑1, 𝑑1] and 𝑦2(𝑡) ∈ [−𝑑2, 𝑑2], where 𝑑1 = 20 and 𝑑2 = 25.
According to Section 3.1, we can get the dynamical error

system:

𝑑
𝑞
1𝑒1

𝑑𝑡𝑞1
= −𝑥2 + 𝑦2𝑧2 + 𝑢21 (𝑡) ,

𝑑
𝑞
2𝑒2

𝑑𝑡𝑞2
= −𝑦2 − 𝑥2𝑧2 + 𝑎2𝑧2 + 𝑢22 (𝑡) ,

𝑑
𝑞
3𝑒3

𝑑𝑡𝑞3
= 𝑏2 (𝑦2 − 𝑧2) + 𝑢23 (𝑡) .

(39)

Consider the uncertain parameters 𝑎 ∈ [𝑎𝑙, 𝑎𝑢] and 𝑏 ∈
[𝑏
𝑙
, 𝑏
𝑢
] in system (39), where 𝑎𝑙 = 49.8, 𝑎𝑢 = 50.2, 𝑏𝑙 =

3.9, and 𝑏𝑢 = 4.1, through generalized Takagi-Sugeno fuzzy
model; (39) could be accurately expressed:

𝑅
1: IF 𝑥2(𝑡) is 𝑀1(𝑥1(𝑡)), THEN 𝑑

𝑞
𝑒(𝑡)/𝑑𝑡

𝑞
=

𝐶1𝑌(𝑡) + 𝐵1𝑢2(𝑡),
𝑅
2: IF 𝑥2(𝑡) is 𝑀2(𝑥1(𝑡)), THEN 𝑑

𝑞
𝑒(𝑡)/𝑑𝑡

𝑞
=

𝐶2𝑌(𝑡) + 𝐵2𝑢2(𝑡),
𝑅
3: IF 𝑦2(𝑡) is 𝑀3(𝑥2(𝑡)), THEN 𝑑

𝑞
𝑒(𝑡)/𝑑𝑡

𝑞
=

𝐶3𝑌(𝑡) + 𝐵3𝑢2(𝑡),
𝑅
4: IF 𝑦2(𝑡) is 𝑀4(𝑥2(𝑡)), THEN 𝑑

𝑞
𝑒(𝑡)/𝑑𝑡

𝑞
=

𝐶4𝑌(𝑡) + 𝐵4𝑢2(𝑡),

where 𝑌(𝑡) = [𝑥2(𝑡), 𝑦2(𝑡), 𝑧2(𝑡)]
𝑇 and 𝑢2(𝑡) = [𝑢21(𝑡), 𝑢22(𝑡),

𝑢23(𝑡)]
𝑇. Consider

𝐶1 =
[
[

[

−1 0 0

0 −1 −20 + 𝑎

0 𝑏 −𝑏

]
]

]

, 𝐶2 =
[
[

[

−1 0 0

0 −1 20 + 𝑎

0 𝑏 −𝑏

]
]

]

,

𝐶3 =
[
[

[

−1 0 25

0 −1 𝑎

0 𝑏 −𝑏

]
]

]

, 𝐶4 =
[
[

[

−1 0 −25

0 −1 𝑎

0 𝑏 −𝑏

]
]

]

.

(40)

𝐵1 = 𝐵2 = 𝐵3 = 𝐵4 = 𝐼4×4 (𝐼 is unit matrix).
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Figure 1: Phase diagram of fractional order PMSM chaotic system (38).

We select the fuzzy sets membership function as follows:

𝑀1 (𝑥2 (𝑡)) =
1

2
(1 +

𝑥2 (𝑡)

𝑑1

) ,

𝑀2 (𝑥2 (𝑡)) =
1

2
(1 −

𝑥2 (𝑡)

𝑑1

) ,

𝑀3 (𝑦2 (𝑡)) =
1

2
(1 +

𝑦2 (𝑡)

𝑑2

) ,

𝑀4 (𝑦2 (𝑡)) =
1

2
(1 −

𝑦2 (𝑡)

𝑑2

) .

(41)

Now the controller can be given in the Takagi-Sugeno
fuzzy model via PDC method in Section 2.3:

𝑅
1: IF 𝑥2(𝑡) is𝑀1(𝑥2(𝑡)), THEN 𝑢2(𝑡) = 𝐾1𝑌(𝑡),
𝑅
2: IF 𝑥2(𝑡) is𝑀2(𝑥2(𝑡)), THEN 𝑢2(𝑡) = 𝐾2𝑌(𝑡),
𝑅
3: IF 𝑦2(𝑡) is𝑀3(𝑦2(𝑡)), THEN 𝑢2(𝑡) = 𝐾3𝑌(𝑡),
𝑅
4: IF 𝑦2(𝑡) is𝑀4(𝑦2(𝑡)), THEN 𝑢2(𝑡) = 𝐾4𝑌(𝑡).

The subcontroller 𝑢2(𝑡) is obtained as

𝑢2 (𝑡) =

𝑟

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑦 (𝑡) . (42)

According to Section 3.2, the dynamical error system (39)
with uncertainty could be rewritten as

𝑑
𝑞
𝑒

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡)) (𝐶0𝑖 + 𝐸∑𝐹 + 𝐵𝑖𝐾𝑗) 𝑌 (𝑡) .

(43)

The overall control law can be got:

𝑢 (𝑡) = 𝐷
𝛽
𝑋 +

4

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑌 (𝑡) . (44)

The corresponding matrices can be given as follows.
𝐵1 = 𝐵2 = 𝐵3 = 𝐵4 = 𝐼4×4 (𝐼 is unit matrix):

𝐶01 =
[
[

[

−1 0 0

0 −1 30

0 4 −4

]
]

]

, 𝐶02 =
[
[

[

−1 0 0

0 −1 70

0 4 −4

]
]

]

,

𝐶03 =
[
[

[

−1 0 25

0 −1 50

0 4 −4

]
]

]

, 𝐶04 =
[
[

[

−1 0 −25

0 −1 50

0 4 −4

]
]

]

,
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𝐸 =
[
[
[

[

0 0 0 0 0 0 0 0 0

0 0 0 0 0 √0.2 0 0 0

0 0 0 0 0 0 0 √0.1 √0.1

]
]
]

]

,

𝐹 =
[
[
[

[

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 √0.1 0

0 0 0 0 0 √0.2 0 0 √0.1

]
]
]

]

𝑇

(45)

∑ can be selected as ∑ = diag(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5).

According to Schur complement theorem, formula (35)
can be transformed into solving linear matrix inequalities
(LMIs) problem. For a given positive number 𝜂 = 30 and
selecting 𝐸 and 𝐹 to meet the conditions of Theorem 4, the
results of solution are presented as follows:

𝑃 = diag (0.0335, 0.0551, 0.0743) ,

𝐾1 =
[
[

[

0.5000 −0.1634 −0.2227

0.0993 −0.0368 −32.1333

0.1004 −2.4181 2.5902

]
]

]

,

𝐾2 =
[
[

[

0.5000 −0.0092 −0.0170

0.0056 −0.0368 −18.7321

0.0077 −42.0156 2.5902

]
]

]

,

𝐾3 =
[
[

[

0.5000 21.8219 −10.6108

−13.2636 −0.0368 −28.5043

−6.4852 −19.9393 2.5902

]
]

]

,

𝐾4 =
[
[

[

0.5000 0.0295 12.5229

−0.0179 −0.0368 −26.6850

5.6234 −21.2883 2.5902

]
]

]

.

(46)

By substituting the obtained𝐾1,𝐾2,𝐾3, and𝐾4 into (44),
the expected controller (44) could be got. Figure 2 shows
the state time domain of error system (43) with controller
(44). We can clearly see when the controller is added, state
responses of dynamical error system (43) can be stabilized in
a finite time.

Case 2. The case is as follows: antisynchronization of two
fractional order hyperchaotic systems with uncertainty and
nonidentical orders.

Fractional order hyperchaotic Lorenz chaos [37] is
regarded as a drive system:

𝑑
𝛼
𝑥1

𝑑𝑡𝛼
= 𝑎1 (𝑦1 − 𝑥1) + 𝑤1,

𝑑
𝛼
𝑦1

𝑑𝑡𝛼
= 𝑐1𝑥1 − 𝑦1 − 𝑥1𝑧1,

𝑑
𝛼
𝑧1

𝑑𝑡𝛼
= −𝑏1𝑧1 + 𝑥1𝑦1,

𝑑
𝛼
𝜔1

𝑑𝑡𝛼
= −𝑦1𝑧1 − 𝑟1𝑤1,

(47)

where 𝑎1, 𝑏1, 𝑐1, 𝑟1 are the system parameters, (𝑎1, 𝑏1, 𝑐1, 𝑟1) =
(10, 8/3, 28, 1), and the fractional order is 𝛼 = 0.98 and its
initial conditions are (𝑥1, 𝑦1, 𝑧1, 𝑤1) = (0, 3, 19, 0); assume
that 𝑥1 ∈ (−𝑑, 𝑑), 𝑑 > 0.

The fractional order hyperchaotic Chen system [38] is
taken as a response system:

𝑑
𝛽
𝑥2

𝑑𝑡𝛽
= 𝑎2 (𝑦2 − 𝑥2) ,

𝑑
𝛽
𝑦2

𝑑𝑡𝛽
= 𝑟2𝑥2 + 𝑐2𝑦2 − 𝑥2𝑧2 − 𝑤2,

𝑑
𝛽
𝑧2

𝑑𝑡𝛽
= 𝑥2𝑦2 − 𝑏2𝑧2,

𝑑
𝛽
𝜔2

𝑑𝑡𝛽
= 𝑥2 + 𝑘,

(48)

where 𝛽 = 0.9 is orders of the system. Figures 3(a)–3(d) show
the phase diagram without controller which exhibits chaotic
behavior when [𝑎, 𝑏, 𝑐, 𝑟, 𝑘] = [36, 3, 28, −16, 0.5] with initial
value [𝑥2, 𝑦2, 𝑧2, 𝑤2] = [4, 5, 6, 3]. Fractional order system
(48) is bounded with 𝑥2(𝑡) ∈ [−𝑑1, 𝑑1], and 𝑦2(𝑡) ∈ [−𝑑2, 𝑑2],
where 𝑑1 = 20 and 𝑑2 = 25.

According to Section 3.1, the dynamical error system
could be obtained:

𝑑
𝛽
𝑒2

𝑑𝑡𝛽
= 𝑎2 (𝑦2 − 𝑥2) + 𝑢21 (𝑡) ,

𝑑
𝛽
𝑒2

𝑑𝑡𝛽
= 𝑟2𝑥2 + 𝑐2𝑦2 − 𝑥2𝑧2 − 𝑤2 + 𝑢22 (𝑡) ,

𝑑
𝛽
𝑒2

𝑑𝑡𝛽
= 𝑥2𝑦2 − 𝑏2𝑧2 + 𝑢23 (𝑡) ,

𝑑
𝛽
𝑒2

𝑑𝑡𝛽
= 𝑥2 + 𝑘 + 𝑢24 (𝑡) .

(49)

Consider the uncertain parameters 𝑎 ∈ [𝑎𝑙, 𝑎𝑢] and 𝑏 ∈
[𝑏
𝑙
, 𝑏
𝑢
] in system (49), where 𝑎𝑙 = 35.8, 𝑎𝑢 = 36.2, 𝑏𝑙 = 2.9,

and 𝑏𝑢 = 3.1; the generalized Takagi-Sugeno fuzzy model of
error system (49) could be rewritten as

𝑅
1: IF 𝑥2(𝑡) is 𝑀1(𝑥1(𝑡)), THEN 𝑑

𝑞
𝑒(𝑡)/𝑑𝑡

𝑞
=

𝐶1𝑌(𝑡) + 𝐵1𝑢2(𝑡),
𝑅
2: IF 𝑥2(𝑡) is 𝑀2(𝑥1(𝑡)), THEN 𝑑

𝑞
𝑒(𝑡)/𝑑𝑡

𝑞
=

𝐶2𝑌(𝑡) + 𝐵2𝑢2(𝑡),
𝑅
3: IF 𝑦2(𝑡) is 𝑀3(𝑥2(𝑡)), THEN 𝑑

𝑞
𝑒(𝑡)/𝑑𝑡

𝑞
=

𝐶3𝑌(𝑡) + 𝐵3𝑢2(𝑡),
𝑅
4: IF 𝑦2(𝑡) is 𝑀4(𝑥2(𝑡)), THEN 𝑑

𝑞
𝑒(𝑡)/𝑑𝑡

𝑞
=

𝐶4𝑌(𝑡) + 𝐵4𝑢2(𝑡),
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Figure 2: State time domain of error system (43) with controller.

where 𝑌(𝑡) = [𝑥2(𝑡), 𝑦2(𝑡), 𝑧2(𝑡), 𝑤(𝑡)]
𝑇 and 𝑢2(𝑡) = [𝑢21(𝑡),

𝑢22(𝑡), 𝑢23(𝑡), 𝑢24(𝑡)]
𝑇. Consider

𝐶1 =
[
[
[

[

−𝑎 𝑎 0 0

−16 28 −20 −1

0 20 −𝑏 0

1 0 0 0

]
]
]

]

,

𝐶2 =
[
[
[

[

−𝑎 𝑎 0 0

−16 28 20 −1

0 −20 −𝑏 0

1 0 0 0

]
]
]

]

,

𝐶3 =
[
[
[

[

−𝑎 𝑎 0 0

−16 28 0 −1

25 0 −𝑏 0

1 0 0 0

]
]
]

]

,

𝐶4 =
[
[
[

[

−𝑎 𝑎 0 0

−16 28 0 −1

−25 0 −𝑏 0

1 0 0 0

]
]
]

]

.

(50)

𝐵1 = 𝐵2 = 𝐵3 = 𝐵4 = 𝐼4×4 (𝐼 is unit matrix).

We select the fuzzy sets membership function as follows:

𝑀1 (𝑥2 (𝑡)) =
1

2
(1 +

𝑥2 (𝑡)

𝑑1

) ,

𝑀2 (𝑥2 (𝑡)) =
1

2
(1 −

𝑥2 (𝑡)

𝑑1

) ,

𝑀3 (𝑦2 (𝑡)) =
1

2
(1 +

𝑦2 (𝑡)

𝑑2

) ,

𝑀4 (𝑦2 (𝑡)) =
1

2
(1 −

𝑦2 (𝑡)

𝑑2

) .

(51)

Now the controller can be given in the Takagi-Sugeno
fuzzy model via PDC method in Section 2.3:

𝑅
1: IF 𝑥2(𝑡) is𝑀1(𝑥2(𝑡)), THEN 𝑢2(𝑡) = 𝐾1𝑌(𝑡),
𝑅
2: IF 𝑥2(𝑡) is𝑀2(𝑥2(𝑡)), THEN 𝑢2(𝑡) = 𝐾2𝑌(𝑡),
𝑅
3: IF 𝑦2(𝑡) is𝑀3(𝑦2(𝑡)), THEN 𝑢2(𝑡) = 𝐾3𝑌(𝑡),

𝑅
4: IF 𝑦2(𝑡) is𝑀4(𝑦2(𝑡)), THEN 𝑢2(𝑡) = 𝐾4𝑌(𝑡).
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Figure 3: Phase diagram of fractional order chaos (48).

The subcontroller 𝑢2(𝑡) is obtained as

𝑢2 (𝑡) =

𝑟

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑦 (𝑡) . (52)

According to Section 3.2, the dynamical error system (39)
with uncertainty could be rewritten as

𝑑
𝑞
𝑒

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡)) (𝐶0𝑖 + 𝐸∑𝐹 + 𝐵𝑖𝐾𝑗) 𝑌 (𝑡) .

(53)

The overall control law is given by

𝑢 (𝑡) = 𝐷
𝛽
(−𝑋) +

4

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑌 (𝑡) . (54)

The corresponding matrices can be given as follows.

𝐵1 = 𝐵2 = 𝐵3 = 𝐵4 = 𝐼4×4 (𝐼 is the identity matrix):

𝐶01 =

[
[
[
[
[

[

−36 36 0 0

−16 28 −20 −1

0 20 −3 0

1 0 0 0

]
]
]
]
]

]

,

𝐶02 =

[
[
[
[
[

[

−36 36 0 0

−16 28 20 −1

0 −20 −3 0

1 0 0 0

]
]
]
]
]

]

,

𝐶03 =

[
[
[
[
[

[

−36 36 0 0

−16 28 0 −1

25 0 −3 0

1 0 0 0

]
]
]
]
]

]

,

𝐶04 =

[
[
[
[
[

[

−36 36 0 0

−16 28 0 −1

−25 0 −3 0

1 0 0 0

]
]
]
]
]

]

,
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𝐸 =

[
[
[
[
[
[

[

√0.2 √0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 √0.1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
]
]
]
]
]

]

,

𝐹=

[
[
[
[
[
[

[

√0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 √0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 √0.1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
]
]
]
]
]

]

(55)

∑ can be selected as ∑ = diag(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5).

According to Schur complement theorem, formula (35)
can be transformed into solving LMIs problem. For a given
positive number 𝜂 = 10 and selecting 𝐸 and 𝐹 to meet the
conditions ofTheorem 4, the results of solution are presented
as follows:

𝑃 = diag (0.1951, 0.1951, 0.1630, 0.0999) ,

𝐾1 =

[
[
[
[
[

[

34.5689 −97.4840 11.9780 −2.4525

77.4840 −29.0410 61.8576 2.0523

−14.3304 −70.0782 2.0541 −0.5901

3.7874 −2.0542 0.9627 −0.5000

]
]
]
]
]

]

,

𝐾2 =

[
[
[
[
[

[

34.5689 7.4034 0.8774 −2.7930

−27.4034 −29.0410 −2.0402 1.3120

−1.0497 −1.4870 2.0541 0.0343

4.4520 −0.6091 −0.0560 −0.5000

]
]
]
]
]

]

,

𝐾3 =

[
[
[
[
[

[

34.5689 −3.8880 −23.4164 −10.0226

−16.112 −29.041 0.1552 −1.9103

3.0153 −0.1857 2.0541 −0.1122

18.5645 5.6810 0.1831 −0.5000

]
]
]
]
]

]

,

𝐾4 =

[
[
[
[
[

[

34.5689 −22.4474 10.5407 1.3966

2.4474 −29.0410 −0.0161 0.4665

12.3892 0.0193 2.0541 −0.2996

−3.7261 1.0414 0.4888 −0.5000

]
]
]
]
]

]

.

(56)

By substituting the obtained𝐾1,𝐾2,𝐾3, and𝐾4 into (54),
the expected controller (54) could be got. Figure 4 shows
the state time domain of error system (53) with controller
(54). We can clearly see when the controller is added, state
responses of dynamical error system (53) can be stabilized
in a finite time which implies the anti-synchronization is
achieved.

Case 3. The case is as follows: synchronization between an
integer order chaos and a fractional order chaoswith different
dimensions and uncertain parameters.

In this case, integer order Chen system (37) and fractional
order Chen hyperchaos (48) are regarded as the drive system
and response system, respectively.

Now let 𝑋 = [𝑥1, 𝑦1, 𝑧1, 0]
𝑇 of system (37), so that we

can control the state 𝑤2 in response system (48) to zero. The
dynamical error system is written as

𝑑
𝑞
𝑒

𝑑𝑡𝑞
=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡)) (𝐶0𝑖 + 𝐸∑𝐹 + 𝐵𝑖𝐾𝑗) 𝑌 (𝑡) .

(57)

The overall control law is given by

𝑢 (𝑡) = 𝐷
𝛽
𝑋 +

4

∑

𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑌 (𝑡) , (58)

where the fractional orders are 𝛽 = 0.95, the initial value
𝑋 = [𝑥2, 𝑦2, 𝑧2, 𝑤2]

𝑇
= [4, 5, 6, 3]

𝑇, and the other parameters
are selected the same as above. Figure 5 shows the numerical
simulation results, which imply the achievement of synchro-
nization for systems (37) and (48) with different dimensions.

From the above simulations of Cases 1, 2, and 3, we can
clearly see when the controller was added, state responses of
the dynamical error system could be stabilized in a finite time,
which shows the effectiveness and robustness of the proposed
scheme.

5. Conclusions

This paper studied the application condition of linear matrix
inequality for fuzzy synchronization and antisynchronization
of fractional order chaos. Based on fractional order stabil-
ity theorem and generalized Takagi-Sugeno fuzzy model,
one efficient stability condition for fractional order chaos
synchronization and antisynchronization was given. The
stability condition was transformed into a set of linear
matrix inequalities and the rigorous mathematical proof was
presented. And the approach was developed for fractional
order chaos synchronization regardless of the system with
uncertain parameters with the help of fractional order LTI
interval theory. Lastly, three typical examples were employed
to verify the effectiveness and robustness of the designed
scheme.

Appendix

Proof of Theorem 4. According to Lemma 3, select 𝐽0 =

𝑦
𝑇
𝑃(𝑑
𝑞
𝑦/𝑑𝑡
𝑞
)+(𝑑
𝑞
𝑦/𝑑𝑡
𝑞
)
𝑇
𝑃𝑦 (𝑃 is a positive definitematrix)

as 𝐽 function for the error system (23). Consider

𝐽0 = 𝑦
𝑇
𝑃
𝑑
𝑞
𝑦

𝑑𝑡𝑞
+ (
𝑑
𝑞
𝑦

𝑑𝑡𝑞
)

𝑇

𝑃𝑦

=

4

∑

𝑖=1

4

∑

𝑗=1

ℎ𝑖ℎ𝑗𝑦
𝑇
{[(𝐶0𝑖 + 𝐵𝑖𝐾𝑗)

𝑇

𝑃 + 𝐹
𝑇
∑𝐸
𝑇
𝑃]

+ [𝑃 (𝐶0𝑖 + 𝐵𝑖𝐾𝑗) + 𝑃𝐸∑𝐹] } 𝑦
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Figure 4: State trajectories of error system (53) with controller.

=

4

∑

𝑖=𝑗

ℎ𝑖
2
𝑦
𝑇
[(𝐶0𝑖 + 𝐵𝑖𝐾𝑖)

𝑇
𝑃 + 𝐹

𝑇
∑𝐸
𝑇
𝑃

+𝑃 (𝐶0𝑖 + 𝐵𝑖𝐾𝑖) + 𝑃𝐸∑𝐹]𝑦

+

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
[(𝐶0𝑖 + 𝐵𝑖𝐾𝑗)

𝑇

𝑃 + 𝐹
𝑇
∑𝐸
𝑇
𝑃

+ 𝑃 (𝐶0𝑖 + 𝐵𝑖𝐾𝑗) + 𝑃𝐸∑𝐹]𝑦

+

4

∑

𝑖>𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
[(𝐶0𝑖 + 𝐵𝑖𝐾𝑗)

𝑇

𝑃 + 𝑃 (𝐶0𝑖 + 𝐵𝑖𝐾𝑗)

+𝐹
𝑇
∑𝐸
𝑇
𝑃 + 𝑃𝐸∑𝐹]𝑦

=

4

∑

𝑖=1

ℎ𝑖
2
𝑦
𝑇
[(𝐶0𝑖 + 𝐵𝑖𝐾𝑖)

𝑇
𝑃 + 𝑃 (𝐶0𝑖 + 𝐵𝑖𝐾𝑖)] 𝑦

+

4

∑

𝑖=1

ℎ𝑖
2
𝑦
𝑇
(𝐹
𝑇
∑𝐸
𝑇
𝑃 + 𝑃𝐸∑𝐹)𝑦

+ 2

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
(𝐹
𝑇
∑𝐸
𝑇
𝑃 + 𝑃𝐸∑𝐹)𝑦

+

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
[(𝐶0𝑖 + 𝐵𝑖𝐾𝑗)

𝑇

𝑃 + 𝑃 (𝐶0𝑖 + 𝐵𝑖𝐾𝑗)] 𝑦

+

4

∑

𝑖>𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
[(𝐶0𝑖 + 𝐵𝑖𝐾𝑗)

𝑇

𝑃 + 𝑃 (𝐶0𝑖 + 𝐵𝑖𝐾𝑗)] 𝑦.

(A.1)

According to the term ∑𝑟
𝑖=1
ℎ𝑖(𝑧(𝑡)) = 1 in (7), one has

4

∑

𝑖=1

ℎ𝑖
2
+ 2

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗 = 1. (A.2)

From (A.2), one obtains

4

∑

𝑖=1

ℎ𝑖
2
𝑦
𝑇
(𝐹
𝑇
∑𝐸
𝑇
𝑃 + 𝑃𝐸∑𝐹)𝑦

+ 2

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
(𝐹
𝑇
∑𝐸
𝑇
𝑃 + 𝑃𝐸∑𝐹)𝑦

= 𝑦
𝑇
(𝐹
𝑇
∑𝐸
𝑇
𝑃 + 𝑃𝐸∑𝐹)𝑦.

(A.3)
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Figure 5: State trajectories of error system (57) with controller.

For the following term in (A.1), one has

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
[(𝐶0𝑖 + 𝐵𝑖𝐾𝑗)

𝑇

𝑃 + 𝑃 (𝐶0𝑖 + 𝐵𝑖𝐾𝑗)] 𝑦

+

4

∑

𝑖>𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
[(𝐶0𝑖 + 𝐵𝑖𝐾𝑗)

𝑇

𝑃 + 𝑃 (𝐶0𝑖 + 𝐵𝑖𝐾𝑗)] 𝑦

=

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
{[(𝐶0𝑖 + 𝐵𝑖𝐾𝑗) + (𝐶0𝑗 + 𝐵𝑗𝐾𝑖)]

𝑇

𝑃

+𝑃 [(𝐶0𝑗 + 𝐵𝑗𝐾𝑖) + (𝐶0𝑗 + 𝐵𝑗𝐾𝑖)] } 𝑦

= 2

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
{

{

{

[
(𝐶0𝑖 + 𝐵𝑖𝐾𝑗) + (𝐶0𝑗 + 𝐵𝑗𝐾𝑖)

2
]

𝑇

𝑃

+ 𝑃[
(𝐶0𝑖 + 𝐵𝑖𝐾𝑗) + (𝐶0𝑗 + 𝐵𝑗𝐾𝑖)

2
]
}

}

}

𝑦.

(A.4)

Select
𝐺𝑖𝑖 = 𝐶0𝑖 + 𝐵𝑖𝐾𝑖

𝐺𝑖𝑗 =
(𝐶0𝑖 + 𝐵𝑖𝐾𝑗) + (𝐶0𝑗 + 𝐵𝑗𝐾𝑖)

2
(1 ≤ 𝑖 < 𝑗 ≤ 4) .

(A.5)

Substituting (A.3), (A.4), and (A.5) into (A.1), one obtains

𝐽0 =

4

∑

𝑖=1

ℎ𝑖
2
𝑦
𝑇
(𝐺𝑖𝑖
𝑇
𝑃 + 𝑃𝐺𝑖𝑖) 𝑦

+ 2

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
(𝐺𝑖𝑗
𝑇
𝑃 + 𝑃𝐺𝑖𝑗) 𝑦

+ 𝑦
𝑇
𝐹
𝑇
∑𝐸
𝑇
𝑃𝑦 + 𝑦

𝑇
𝑃𝐸∑𝐹𝑦.

(A.6)

From Lemma 1, select

𝑋 = 𝑦
𝑇
𝑃𝐸,

𝑌 = ∑𝐹𝑦,

𝑅 = 𝑦
𝑇
𝑃𝐸.

(A.7)
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One gets

𝑦
𝑇
𝐹
𝑇
∑𝐸
𝑇
𝑃𝑦 + 𝑦

𝑇
𝑃𝐸∑𝐹𝑦

≤ 𝜂𝑦
𝑇
𝑃𝐸𝐸
𝑇
𝑃𝑦 + 𝜂

−1
𝑦
𝑇
𝐹
𝑇
∑
𝑇

∑𝐹𝑦

≤ 𝑦
𝑇
(𝜂𝑃𝐸𝐸

𝑇
𝑃 + 𝜂
−1
𝐹
𝑇
𝐹) 𝑦.

(A.8)

By substituting (A.8) into (A.6), one has

𝐽0 ≤

4

∑

𝑖=1

ℎ𝑖
2
𝑦
𝑇
(𝐺𝑖𝑖
𝑇
𝑃 + 𝑃𝐺𝑖𝑖) 𝑦

+ 2

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
(𝐺𝑖𝑗
𝑇
𝑃 + 𝑃𝐺𝑖𝑗) 𝑦

+ 𝑦
𝑇
(𝜂𝑃𝐸𝐸

𝑇
𝑃 + 𝜂
−1
𝐹
𝑇
𝐹) 𝑦.

(A.9)

By applying (A.2) to (A.9), one gets

𝐽0 ≤

4

∑

𝑖=1

ℎ𝑖
2
𝑦
𝑇
(𝐺𝑖𝑖
𝑇
𝑃 + 𝑃𝐺𝑖𝑖 + 𝜂𝑃𝐸𝐸

𝑇
𝑃 + 𝜂
−1
𝐹
𝑇
𝐹) 𝑦

+ 2

4

∑

𝑖<𝑗

ℎ𝑖ℎ𝑗𝑦
𝑇
(𝐺𝑖𝑗
𝑇
𝑃 + 𝑃𝐺𝑖𝑗 + 𝜂𝑃𝐸𝐸

𝑇
𝑃 + 𝜂
−1
𝐹
𝑇
𝐹) 𝑦.

(A.10)

Therefore, when (35) holds, one gets

𝐽0 = 𝑦
𝑇
𝑃
𝑑
𝑞
𝑦

𝑑𝑡𝑞
+ (
𝑑
𝑞
𝑦

𝑑𝑡𝑞
)

𝑇

𝑃𝑦 ≤ 0. (A.11)
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