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To avoid immature convergence and tune the selection pressure in the differential evolution (DE) algorithm, a new differential
evolution algorithm based on cellular automata and chaotic local search (CLS) or ccDE is proposed. To balance the exploration
and exploitation tradeoff of differential evolution, the interaction among individuals is limited in cellular neighbors instead of
controlling parameters in the canonical DE. To improve the optimizing performance of DE, the CLS helps by exploring a large
region to avoid immature convergence in the early evolutionary stage and exploiting a small region to refine the final solutions in
the later evolutionary stage. What is more, to improve the convergence characteristics and maintain the population diversity, the
binomial crossover operator in the canonical DE may be instead by the orthogonal crossover operator without crossover rate. The
performance of ccDE is widely evaluated on a set of 14 bound constrained numerical optimization problems compared with the
canonical DE and several DE variants.The simulation results show that ccDE has better performances in terms of convergence rate
and solution accuracy than other optimizers.

1. Introduction

Differential evolution (DE) algorithm, proposed by Storn and
Price [1], is a population-based parallel iterative optimiza-
tion algorithm and outperforms many other optimization
methods in terms of convergence speed and robustness
over common benchmark functions and real-world problems
[2]. Its optimization performance is mainly influenced by
three critical control parameters including scaling factor 𝐹,
population size 𝑁𝑃, and crossover rate CR. Nevertheless,
DE algorithm also has immature convergence and search
stagnation and other defects, which limit its application range
and its ability of optimization, which urgently need to be
explored in depth.

Most evolutionary algorithms use a single population of
individuals and apply stochastic operators to them as a whole
[3]. Some recent studies show that it is easy to implement
the parallel computing for those evolutionary algorithmswith
spatial structure [4]. However, the canonical DE algorithm
ignores the spatial structure and the complex interaction

among individuals of local groups during evolutionary pro-
cesses. For example, the population of the canonical DE will
not be affected by external disturbances and the individual
states. Namely, the death, resurrection, and migration of
the individual will never be modified, which is obviously
inconsistent with the actual process of biological evolution.
Amongnumerous evolutionary algorithmswith spatial struc-
ture [5], the cellular evolutionary algorithm (cEA) is a kind of
evolutionary algorithms of discrete groups based on spatial
structure. It means an individual may interact with its adja-
cent neighbors. The overlapped neighborhoods of cEA help
in exploring the search space while exploitation takes place
inside neighborhood by stochastic operators. Dorronsoro
and Bouvry [6] proposed a new cellular genetic algorithm
(cGA) that automatically manages its neighbors according to
the quality of individuals in a population and sets the most
reasonable population structure based on the convergence
speed. Then the traditional parameters configuration for
the population and the neighbor structure becomes less
necessary. According to the evolution characteristics of CA in
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a discrete space and ant optimization, a CA-based optimiza-
tion method is proposed for solving optimization problems
with geometric constraints [7]. Lu et al. [8] proposed a cellular
GA with the evolutionary rules and derived the selection
of the evolutionary rules, and this GA variant has a better
ability to maintain the diversity of the population relative to
canonical genetic algorithm. Lorenzo andGlisic [9] presented
a novel sequential genetic algorithm (SGA) to optimize the
relaying topology in multihop cellular networks aware of
the intercell interference and the spatial traffic distribution
dynamics. Noman and Iba [10] proposed cellular differential
evolution (cDE) algorithmwith linear and compact neighbor,
which only uses the cellular neighbor but does not con-
sider the dynamic population evolutionary. Noroozi et al.
[11] proposed CellularDE to address dynamic optimization
problems, which limits the number of individuals in each
cell to prevent convergence and maintain diversity of the
population. Jia et al. [12] proposed that chaotic local search
(CLS) can enhance the performance of DE.

To simulate the natural condition, the paper proposes a
CLS-based cDE (ccDE) algorithm to simulate its dynamic
process. First of all, the algorithm employs CA with the
parallel evolution to balance the exploration and exploitation
tradeoff for DE. Next, the CLS helps to avoid immature
convergence and search stagnation by utilizing chaotic search
with the ergodicity and randomicity. At last, the ccDE
employs the orthogonal crossover operator to replace the
binomial crossover operator in canonical DE, which con-
tributes to the improvement of the convergence speed and
maintenance of the population diversity.

The remainder of this paper is organized as follows.
Sections 2 and 3 describe the canonical DE and the ccDE,
respectively. Section 4 briefly illustrates the comparison of
the performance of the proposed ccDE algorithm with the
canonical DE algorithm and four DE variants over a suit of
14 problems. The findings of the paper are demonstrated in
Section 5.

2. Canonical DE

DEmakes use of a new mutation operator which depends on
the differences among randomly selected pairs of individuals
instead of predetermined probability distribution function
[1]. Its whole evolutionary process consists of two stages:
initialization stage and iterative evolutionary stage.

In the initialization stage, the initial individual population
is chosen at random in a 𝐷 dimensional search space. A
differential evolutionary population of 𝑔th generation is as
follows:
P𝑔 (X) = [X𝑔

1
, . . . ,X𝑔

𝑖
, . . . ,X𝑔

𝑁𝑃
] , 𝑖 = 0, 1, . . . , 𝑁𝑃,

X𝑔
𝑖
= [𝑥
𝑔

𝑖,1
, 𝑥
𝑔

𝑖,2
, . . . , 𝑥

𝑔

𝑖,𝑗
, . . . , 𝑥

𝑔

𝑖,𝐷
] ,

𝑗 = 1, 2, . . . , 𝐷,

(1)

wherein X𝑔
𝑖
denotes 𝑖th individual of 𝑔th generation which

denotes the generation counter, 𝑁𝑃 denotes the population
size, 𝐷 denotes the dimension of decision space, and P0(X)
denotes the initial population.

In the iterative evolutionary stage, each individual goes
through a succession of iterative processes including muta-
tion, crossover, and selection.Then the individual is evaluated
and updated by utilizing the fitness function.The above itera-
tive evolutionary stage is repeated generation after generation
until the termination criterion is met.

(1)Mutation.Themutant individual ofDE is decided from the
differences among randomly selected pairs of individuals. For
each target individualX𝑔

𝑖
, a mutant individual is generated as

follows:

V𝑔
𝑖
= X𝑔
𝑝
1

+ 𝐹 ⋅ (X𝑔
𝑝
2

− X𝑔
𝑝
3

) , (2)

whereinX𝑔𝑝
1
,X𝑔𝑝
2
, andX𝑔𝑝

3
are the best individual or randomly

selected individuals from the current population, all of which
are different from the target individual X𝑔

𝑖
. The scaling

factor 𝐹 is a predefined constant for scaling the differential
individual vector in (2).

(2) Crossover. In the canonical version, DE applies binomial
crossover operator to generate a trial individual by recom-
bining a target individual and its corresponding mutant
individual.The binomial crossover can be outlined as follows:

𝑢
𝑔

𝑖𝑗
=

{

{

{

V𝑔
𝑖𝑗
, rand (0, 1) ≤ CR

𝑥
𝑔

𝑖𝑗
, otherwise,

(3)

wherein 𝑢𝑔
𝑖𝑗
, V𝑔
𝑖𝑗
, and 𝑥𝑔

𝑖𝑗
are an element of the trial individual

U𝑔
𝑖
, the mutant individual V𝑔

𝑖
, and the target individual X𝑔

𝑖
,

respectively. The crossover factor CR ∈ (0, 1) is a predefined
constant to adapt to different optimization domain, which is
called crossover probability.

(3) Selection. The selection scheme in DE adopts one-to-one
competitive strategy. The trial individual U𝑔

𝑖
competes with

the target individualX𝑔
𝑖
, which is decided by the fitness value

of their individuals. The selection scheme can be outlined as
follows:

X𝑔+1
𝑖

=

{

{

{

U𝑔
𝑖
, if 𝑓 (U𝑔

𝑖
) ≤ 𝑓 (X𝑔

𝑖
)

X𝑔
𝑖
, otherwise.

(4)

3. ccDE Algorithm

3.1. The Evolution Mechanism of Cellular Automata. CA
proposed by Neumann [13] is a highly parallel computing
model. For the most usual 2D CA, every cell is arranged
into a 2D toroidal mesh and follows the same rule and
updates on the basis of the local rule synchronously. Different
evolutionary rules produce different cellular states. The basic
model of the evolution rule is defined as follows:

if 𝑆𝑡 = 1,

then 𝑆𝑡+1 =

{

{

{

1, 𝑆 ∈ 𝑆1

0, 𝑆 ∉ 𝑆1;
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Figure 1: Typical neighborhood structures in cEAs.

if 𝑆𝑡 = 0,

then 𝑆𝑡+1 =

{

{

{

1, 𝑆 ∈ 𝑆2

0, 𝑆 ∉ 𝑆2,

(5)

wherein 𝑆𝑡 and 𝑆𝑡+1 denote the cellular state of 𝑡th step and
(𝑡 + 1)th step. 𝑆1 is a set of the numbers of active neighbors
needed for the active cell to stay alive and 𝑆2 is a set of the
numbers of active neighbors in order to resuscitate a dead
cell.

The neighborhood structure actually affects the quality
of the search, such as the improvement of inferior solutions,
the avoidance of local optimum, and the maintenance of
the population diversity. The two most common cellular
neighbor structures are linear (L) pattern and compact (C)
pattern. Figure 1 shows four typical neighborhood structures
employed in cEAs.

3.2. Chaotic Local Search. Because of the ergodicity and
randomicity, a chaotic system changes randomly, but it even-
tually goes through every state with a long time duration.The
characteristics of chaotic systems can be used to build up a
search operator to optimize its objective functions. Probably,
the local search may lead to unacceptably rapid convergence;
hence it will result in a problem that the whole evolutionary
process would trap into local optima when exploring a large
search space. To avoid this problem, a CLS with shrinking
strategy is utilized with the optimization process [12].

In this paper, the Logistic chaotic function is employed as
follows:

𝛽
𝑘+1

𝑗
= 𝜇𝛽
𝑘

𝑗
(1 − 𝛽

𝑘

𝑗
) , 𝑘 = 1, 2, . . . , (6)

where 𝛽𝑘
𝑗
is the 𝑗th chaotic variable in 𝑘 generation and the

Logistic function comes into a thorough chaotic state when
𝜇 = 4. The formula of chaotic local search is

X𝑔(new)
𝑖

= (1 − 𝜆)X𝑔
𝑖
+ 𝜆𝛽, (7)

where X𝑔(new)
𝑖

is a new individual vector of X𝑔
𝑖
in 𝑔th gener-

ation generated by chaotic local search and 𝛽 is generated by
the Logistic chaotic function. Meanwhile, 𝜆 is the shrinking
scale related to the current function evaluations (FEs) and𝑚
decides the shrinking speed while more accurate results can
be obtained on most functions when𝑚 = 1500 [12]:

𝜆 = 1 −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

FEs − 1
FEs

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

. (8)

3.3. Orthogonal Crossover. Mostly, we did not have the prior
knowledge about the optimization problem [14], so it may
be very hard to choose an appropriate crossover strategy and
crossover rate. To seek the best combination of the mutant
and target individual for the trial individual, it is necessary
for a scientific experiment to select the best one from all
possible combinations. However, it is not possible to test all
combinations for cost effectiveness. It is advisable to select a
small but representative sample for testing [15].

For the above purpose, 𝐿𝑄(𝑛
𝐷
) is employed as the

orthogonal array for 𝐷 factors, 𝑛 levels, and 𝑄 combinations
of levels.There are𝑄 rows for this array in which every row is
a combination of levels. For 𝐿𝑄(2

𝐷
) in this paper, 2 represents

that all factors have two levels: 0 and 1. In like manner, it
is a similar process to choose every dimension parameter of
a trial individual from the target individual or its matching
individual of DE.𝐷 is the dimension of the individual vector
of DE, and 𝑄 is the total number of experiments. The design
of the orthogonal embedded crossover operation is called
orthogonal crossover.

3.4. Algorithmic Description of ccDE. The sizes of individual
vectors and cells are both𝑁𝑃 = 𝑛𝑝 × 𝑛𝑝, while the value of a
cell means live or dead status of a vector. The proposed ccDE
algorithm is elucidated as follows.

Step 1. Initialization is the first step.

Step 1.1. Set the population size 𝑁𝑃, the generation counter
𝐺 = 0, the initialization value of the scaling factor 𝐹, and the
termination criteria of the algorithm.
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Step 1.2. Initialize 𝑁𝑃 = 𝑛𝑝 × 𝑛𝑝 individuals composing the
initial population in the parameter space:

P𝐺 =

[
[
[
[
[
[
[
[
[
[
[

[

X𝐺
1,1

⋅ ⋅ ⋅ X𝐺
1,𝑗

⋅ ⋅ ⋅ X𝐺
1,𝑛𝑝

.

.

. d
.
.
. d

.

.

.

X𝐺
𝑖,1

⋅ ⋅ ⋅ X𝐺
𝑖,𝑗

⋅ ⋅ ⋅ X𝐺
𝑖,𝑛𝑝

.

.

. d
.
.
. d

.

.

.

X𝐺
𝑛𝑝,1

⋅ ⋅ ⋅ X𝐺
𝑛𝑝,𝑖

⋅ ⋅ ⋅ X𝐺
𝑛𝑝,𝑛𝑝

]
]
]
]
]
]
]
]
]
]
]

]𝑛𝑝×𝑛𝑝

, (9)

with X𝐺
𝑖,𝑗

= {𝑥
𝐺,1

𝑖,𝑗
, 𝑥
𝐺,2

𝑖,𝑗
, . . . , 𝑥

𝐺,𝐷

𝑖,𝑗
} uniformly distributed in

the range [X𝑙,X𝑢], where X𝑙 = {𝑥
1

𝑙
, . . . , 𝑥

𝐷

𝑙
} and X𝑢 =

{𝑥
1

𝑢
, . . . , 𝑥

𝐷

𝑢
}.

Step 1.3. Initialize the cellular automata with 𝑁𝑃 = 𝑛𝑝 × 𝑛𝑝

torus topology whichmean the living condition of𝑁𝑃 = 𝑛𝑝×

𝑛𝑝 individual vectors:

C𝐺 =

[
[
[
[
[
[
[
[
[
[
[

[

𝑐1,1 ⋅ ⋅ ⋅ 𝑐1,𝑗 ⋅ ⋅ ⋅ 𝑐1,𝑛𝑝

.

.

. d
.
.
. d

.

.

.

𝑐𝑖,1 ⋅ ⋅ ⋅ 𝑐𝑖,𝑗 ⋅ ⋅ ⋅ 𝑐𝑖,𝑛𝑝

.

.

. d
.
.
. d

.

.

.

𝑐𝑛𝑝,1 ⋅ ⋅ ⋅ 𝑐𝑛𝑝,𝑗 ⋅ ⋅ ⋅ 𝑐𝑛𝑝,𝑛𝑝

]
]
]
]
]
]
]
]
]
]
]

]𝑛𝑝×𝑛𝑝

, (10)

with 𝑐𝑖,𝑗 = {
0, rand<0.5
1, otherwise , where 0 indicates the cell is dead and

1 indicates the cell is alive.

Step 1.4. Generate the orthogonal crossover table 𝐿𝑄(𝑛𝐷).

Step 2. Target vectors X𝐺
𝑖,𝑗
evolution for matching living cells

with 𝑐𝑖,𝑗 = 1. If the cell matching current target vector is alive,
jump to Step 2.1, or jump to Step 2. Only if live cells never
exist, then jump to Step 3 and 𝐺 + 1.

Step 2.1. Select several candidate vectors {X𝐺
𝑝1
,X𝐺
𝑝2
,X𝐺
𝑝3
} from

the neighbors of current target vector X𝐺
𝑖,𝑗
specific neighbor-

hoodmodel for mutation operation according to their fitness
value:

{X𝐺
𝑝1
,X𝐺
𝑝2
,X𝐺
𝑝3
} = Select (Neighbors (X𝐺

𝑖,𝑗
)) . (11)

Step 2.2. Execute themutation operation to obtain themutant
individual according to (2) and select mutation strategy:

V𝐺
𝑖,𝑗
= X𝐺
𝑝1
+ 𝐹 ⋅ (X𝐺

𝑝2
− X𝐺
𝑝3
) . (12)

Step 2.3. Execute the orthogonal crossover operation to obtain
the trial individual.

After getting the orthogonal crossover table 𝐿𝑄(2
𝐷
) =

[𝛼
𝑇

1
, . . . ,𝛼

𝑇

𝑞
, . . . ,𝛼

𝑇

𝑄
]
𝑇, where 𝛼𝑞 = [𝛼𝑞,1, . . . , 𝛼𝑞,𝑑, . . . , 𝛼𝑞,𝐷],

we apply those 𝑄 combinations to generate the following

𝑄 chromosomes Û𝐺
𝑖,𝑗

= [u𝑇
1
, . . . , u𝑇

𝑞
, . . . , u𝑇

𝑄
]
𝑇 with u𝑞 =

[𝑢𝑞,1 ⋅ ⋅ ⋅ 𝑢𝑞,𝑑 ⋅ ⋅ ⋅ 𝑢𝑞,𝐷], where

𝑢𝑞,𝑑 =

{

{

{

𝑥
𝐺,𝑑

𝑖,𝑗
, if 𝛼𝑞,𝑑 = 1

V𝐺,𝑑
𝑖,𝑗
, otherwise.

(13)

Then select the best fitness from 𝑄 chromosomes, U𝐺
𝑖,𝑗

=

arg min
{u
1
,...,u
𝑞
,...,u
𝑄
}
fitness(u𝑞).

Step 2.4. Evaluate the trial individual vector U𝐺
𝑖,𝑗

and target
individual vectorX𝐺

𝑖,𝑗
according to the fitness value then select

the winner for the next generation according to (4).

Step 3. Execute the CLS on the best individual according to
(7).

Step 4. Update each cell survival of new generationC𝐺 on the
basis of the evolutional rule of cellular automata according to
(5).

Step 5. Output the result if the termination criterion is met;
otherwise jump back to Step 2.

4. Experimental Results and Discussions

4.1. Description of Problems. To evaluate and compare the
proposed ccDE algorithm with the canonical DE [1], SDE
[16], jDE [17], SaDE [18], and DECLS [12], experiments
are conducted on a set of 14 problems with different char-
acteristics [18], including unimodal problems 𝑓1–𝑓3 and
multimodal problems 𝑓4–𝑓14. Thereinto, 𝑓1–𝑓4, 𝑓6, 𝑓8, 𝑓10,
and 𝑓11 are shifted for solving the problem that global
optimum lies at the center of the search range. The problems
𝑓5, 𝑓7, 𝑓9, and 𝑓12 are rotated to avoid local optimum lying
along the coordinate axes or suffering from global optimum
lying at the center of the search range. The problems 𝑓13 and
𝑓14 are built by utilizing some basic problems to obtain one
more challenging problem. Table 1 lines the search range and
global optimum of 14 problems.

4.2. Parameter Setting for Comparison. In this paper, experi-
ments are conducted for 25 times independently of the above
14 problems. The control parameters 𝐹, CR, and 𝑁𝑃 of the
canonical DE and four DE variants are set as in [17]. For the
sake of fairness, the maximum number of FEs is configured
on to be 100 000 for all problems. For the fixed dimension, the
orthogonal crossovers of the 10D problems employ the tailor-
made array 𝐿12(2

10
) and the first 10 columns of 𝐿12(2

11
),

which is shown in Table 2.
In Table 2, 0 or 1 represents that one-dimension parame-

ter of a trial individual is selected from the target individual
or its matching individual of DE. The total number of
experiments is 12. The orthogonal crossover of the 30D
problemmay be composed of three arrays of 𝐿12(2

10
) side by

side.
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Table 1: Search range and global optimum of 14 problems.

𝑓 Problem name Dimension Search
range

Global
optimum

1 sphere func 10/30 [−100, 100] 0
2 schwefel 102 10/30 [−100, 100] 0
3 rosenbrock 10/30 [−100, 100] 0
4 ackley 10/30 [−32, 32] 0
5 ackley rot 10/30 [−32, 32] 0
6 griewank 10/30 [−600, 600] 0
7 griewank rot 10/30 [−600, 600] 0
8 rastrigin 10/30 [−5, 5] 0
9 rastrigin rot 10/30 [−5, 5] 0
10 rastrigin noncon 10/30 [−5, 5] 0
11 schwefel 10/30 [−500, 500] 0
12 schwefel rot 10/30 [−500, 500] 0
13 com func1 10/30 [−5, 5] 0
14 hybrid func2 10/30 [−5, 5] 0

Table 2: The array of the first 10 columns of 𝐿
12
(2
11
).

Combinations Level of each factor
1 2 3 4 5 6 7 8 9 10

1st 1 1 1 1 1 1 1 1 1 1
2nd 1 1 1 1 1 0 0 0 0 0
3rd 1 1 0 0 0 1 1 1 0 0
4th 1 0 1 0 0 1 0 0 1 1
5th 1 0 0 1 0 0 1 0 1 0
6th 1 0 0 0 1 0 0 1 0 1
7th 0 1 0 0 1 1 0 0 1 0
8th 0 1 0 1 0 0 0 1 1 1
9th 0 1 1 0 0 0 1 0 0 1
10th 0 0 0 1 1 1 1 0 0 1
11th 0 0 1 0 1 0 1 1 1 0
12th 0 0 1 1 0 1 0 1 0 0

The cellular evolution rule of the ccDE algorithm is 𝑆1 =
1, 2, 3, 4 and 𝑆2 = 4, 5, 6, 7 [9]. Its neighbor structure will use
the optimum C9 neighborhood model [10].

4.3. Comparison of the Final Solutions Accuracy. In order
to illustrate the outstanding accuracy of ccDE comparing
with the canonical DE algorithm and four DE variants, the
mean values and standard deviations of the best values are
calculated by utilizing the results of the conducted 25 times
independently of the 14 problems. Tables 3 and 4 show,
respectively, the result of the mean values and standard
deviations for the 10D and 30D problems, respectively, where
the best value for each problem has been typed in bold.

From Tables 3 and 4, it can be seen that the ccDE
algorithm outperforms the canonical DE and four DE vari-
ants. For low-dimension problems (10D), the ccDE algorithm
obtains the smallest mean values, even theoretical optimum

of all 14 problems. For the high-dimension problems (30D),
the ccDE algorithm obtains smaller mean values of 13
problems, while the magnitude of each solution obtained by
ccDE is equal to the optimal solution obtained by SDE over
the𝑓14 problem.Therefore the mean solution quality of ccDE
is better and its solution quality is more stable than other DE
variants.

4.4.TheWilcoxonMatched-Pairs Signed-Ranks Test. In order
to illustrate the above statement, theWilcoxonmatched-pairs
signed-ranks test is employed to compare ccDE with the
canonical DE and fourDE variants, respectively. Table 5 is the
Wilcoxon 𝑝 values of the mean data in Tables 3 and 4.

As can be seen from Table 5, the ccDE is more outstand-
ing than canonical DE and four DE variants with the signifi-
cance level 𝛼 = 0.05 considering independent matched-pairs
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Table 3: The mean and standard deviations of optimum (10D).

Problems DE SaDE SDE jDE DECLS ccDE

𝑓
1

Mean 2.80E − 17 8.77E − 16 4.02E − 19 1.69E − 13 1.30E − 20 0.00E + 00
Std 9.27E − 18 7.48E − 16 2.82E − 19 8.60E − 14 3.49E − 21 0.00E + 00

𝑓
2

Mean 1.96E + 00 2.16E − 13 2.29E − 02 5.11E − 04 4.75E − 01 0.00E + 00
Std 5.39E − 01 1.13E − 13 1.38E − 02 3.45E − 04 1.37E − 01 0.00E + 00

𝑓
3

Mean 5.01E + 00 2.30E + 00 4.02E + 00 5.42E + 00 5.24E + 00 1.41E + 00
Std 1.51E + 00 4.15E − 01 2.25E + 00 6.30E − 01 1.12E + 00 6.64E − 01

𝑓
4

Mean 3.56E − 09 1.30E − 08 2.59E − 10 1.72E − 07 6.21E − 11 0.00E + 00
Std 1.14E − 09 1.50E − 09 7.68E − 11 2.76E − 08 8.33E − 12 0.00E + 00

𝑓
5

Mean 1.14E − 08 1.42E − 08 3.68E − 10 4.41E − 07 2.59E − 10 3.55E − 15
Std 4.40E − 09 4.71E − 09 3.66E − 11 1.03E − 07 5.28E − 11 0.00E + 00

𝑓
6

Mean 1.01E − 01 5.08E − 02 1.04E − 15 5.35E − 03 5.69E − 02 0.00E + 00
Std 3.52E − 02 1.83E − 02 6.16E − 16 2.35E − 03 1.77E − 02 0.00E + 00

𝑓
7

Mean 3.49E − 01 9.00E − 02 2.86E − 02 1.72E − 01 3.91E − 01 4.92E − 02
Std 8.42E − 02 3.80E − 02 5.58E − 02 3.45E − 02 3.15E − 02 2.59E − 02

𝑓
8

Mean 1.34E − 01 4.28E − 01 0.00E + 00 5.83E − 05 2.42E − 05 0.00E + 00
Std 1.45E − 01 3.09E − 01 0.00E + 00 6.26E − 05 1.84E − 05 0.00E + 00

𝑓
9

Mean 2.47E + 01 1.48E + 01 1.75E + 01 1.80E + 01 1.32E + 01 6.07E + 00
Std 3.79E + 00 2.38E + 00 2.74E + 00 2.34E + 00 7.33E + 00 1.86E + 00

𝑓
10

Mean 4.01E + 00 1.39E + 00 0.00E + 00 8.70E − 02 1.97E + 00 0.00E + 00
Std 4.03E − 01 5.69E − 01 0.00E + 00 7.80E − 02 4.46E − 01 0.00E + 00

𝑓
11

Mean 2.67E − 10 1.71E − 06 0.00E + 00 9.17E − 06 1.82E − 13 0.00E + 00
Std 3.91E − 10 9.74E − 07 0.00E + 00 7.15E − 06 4.07E − 13 0.00E + 00

𝑓
12

Mean 7.40E + 02 4.44E + 02 9.45E − 09 2.74E − 08 8.97E + 02 0.00E + 00
Std 3.18E + 02 3.08E + 02 1.31E − 08 2.13E − 08 2.68E + 02 0.00E + 00

𝑓
13

Mean 2.17E − 13 3.39E − 16 2.75E − 10 1.58E − 12 2.71E − 11 0.00E + 00
Std 4.84E − 13 1.85E − 16 6.15E − 10 2.13E − 12 6.06E − 11 0.00E + 00

𝑓
14

Mean 2.24E + 00 1.95E − 07 2.21E − 10 3.15E − 01 2.16E + 00 0.00E + 00
Std 8.77E − 01 2.37E − 07 4.70E − 10 6.87E − 01 1.26E + 00 0.00E + 00

comparisons. The 𝑝 values of multiple comparisons are as
follows for 10D and 30D, respectively:
𝑝1 = 1 − (1 − 1.0𝐸 − 3) (1 − 1.0𝐸 − 3) (1 − 2.6𝐸 − 2)

⋅ (1 − 1.0𝐸 − 3) (1 − 1.0𝐸 − 3) = 3.98𝐸 − 2,

𝑝2 = 1 − (1 − 1.0𝐸 − 3) (1 − 1.0𝐸 − 3) (1 − 8.0𝐸 − 3)

⋅ (1 − 1.09𝐸 − 1) (1 − 1.0𝐸 − 3) = 1.19𝐸 − 2.

(14)

As can be seen from the results of (14), the ccDE is
superior to the canonical DE and four DE variants with 𝑝

value of 𝑝1 = 3.98𝐸 − 2 for 10D and 𝑝2 = 1.19𝐸 − 2 for
30D. Furthermore, the results of theWilcoxonmatched-pairs
signed-ranks test affirm that the ccDE ismore outstanding for
high-dimensional problems.

4.5. The Analysis of Convergence Characteristics. The con-
vergence property of an evolutionary algorithm is a very
important indicator of performance comparison. Figures
2 and 3 illustrate the convergence performance in terms
of the median run of the best fitness value of the ccDE,
the canonical DE, and four DE variants on 10D and 30D
problems, respectively.

Initially, as can be observed in Figures 2 and 3 the
ccDE obtains better adaptation values than the canonical DE
and four DE variants on the initial stage. Furthermore, the
convergencemap between ccDE and otherDE variants shows
that the ccDE always converges faster and approaches the
global optimum more easily than others on all 14 problems
with 10D in Figure 2. It can be observed that the SDE
converges fastest on 𝑓14, followed by ccDE. What is more, for
the 30D problems, all algorithms have great difficulty to find
the global optimum on about half of the 14 problems, while
the ccDE performs better onmost of all problems in Figure 3.

In order to analyze the impact of cellular automata on the
convergence performance, the DECLS algorithm is selected
for the comparison.The difference betweenDECLS and ccDE
is that the interaction among individuals in ccDE is limited
in cellular neighbors while the individual state will evolve
by the rule of the cellular evolution. Figure 4 illustrates the
convergence properties in terms of the best fitness value
between ccDE and DECLS on 10D and 30D problems𝑓1–𝑓14.
From Figure 4, it can be observed that ccDE converges
faster than DECLS on most of the 14 problems. Accordingly,
the ccDE algorithm requires fewer FEs than the DECLS
algorithm and therefore it has a lower time complexity.
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Figure 2: Continued.
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Figure 2: The median convergence characteristics of canonical DE, SaDE, SDE, jDE, DECLS, and ccDE on 10D problems.

Table 4: The mean and standard deviations of optimum (30D).

Algorithms DE SaDE SDE jDE DECLS ccDE

𝑓
1

Mean 6.81E − 04 6.37E − 09 9.15E − 11 2.51E − 05 2.27E − 03 0.00E + 00
Std 1.30E − 04 2.04E − 09 4.80E − 11 6.56E − 06 6.58E − 04 0.00E + 00

𝑓
2

Mean 1.84E + 04 3.57E + 00 1.52E + 04 1.81E + 03 1.15E + 04 3.55E − 03
Std 3.51E + 03 2.44E + 00 3.34E + 03 1.40E + 03 1.43E + 03 3.03E − 03

𝑓
3

Mean 1.62E + 02 2.47E + 01 6.13E + 01 6.73E + 01 2.88E + 02 2.10E + 01
Std 8.47E + 01 3.37E − 01 3.39E + 01 3.09E + 01 1.24E + 02 3.27E + 00

𝑓
4

Mean 7.23E − 03 1.14E − 05 1.74E − 06 1.46E − 03 1.36E − 02 3.55E − 15
Std 9.88E − 04 3.19E − 06 4.36E − 07 2.98E − 04 2.95E − 03 0.00E + 00

𝑓
5

Mean 3.69E − 02 7.29E − 06 4.30E − 06 3.71E − 03 6.02E − 02 3.55E − 15
Std 1.37E − 02 1.65E − 06 5.37E − 07 4.80E − 04 1.23E − 02 0.00E + 00

𝑓
6

Mean 8.54E − 02 8.93E − 08 1.05E − 09 2.35E − 04 5.88E − 02 0.00E + 00
Std 8.65E − 02 7.58E − 08 1.91E − 10 5.71E − 05 4.76E − 02 0.00E + 00

𝑓
7

Mean 1.03E + 00 1.48E − 02 1.55E − 02 5.34E − 01 1.06E + 00 1.15E − 02
Std 8.64E − 03 1.37E − 02 7.12E − 03 5.27E − 02 2.00E − 02 5.12E − 03

𝑓
8

Mean 1.14E + 02 4.38E + 01 1.22E − 11 1.99E + 01 1.11E + 02 0.00E + 00
Std 7.59E + 00 4.60E + 00 6.93E − 12 3.56E + 00 3.93E + 00 0.00E + 00

𝑓
9

Mean 2.43E + 02 1.32E + 02 1.79E + 02 1.83E + 02 8.50E + 01 4.11E + 01
Std 7.30E + 00 7.33E + 00 1.14E + 01 1.74E + 01 1.41E + 01 2.15E + 01

𝑓
10

Mean 7.52E + 01 2.81E + 01 6.00E − 01 1.98E + 01 7.33E + 01 0.00E + 00
Std 8.89E + 00 2.61E + 00 5.48E − 01 1.18E + 00 6.40E + 00 0.00E + 00

𝑓
11

Mean 4.63E + 03 1.37E + 03 1.08E − 10 1.65E + 03 4.47E + 03 0.00E + 00
Std 2.47E + 02 1.21E + 02 3.63E − 11 2.36E + 02 9.80E + 01 0.00E + 00

𝑓
12

Mean 8.53E + 03 7.07E + 03 6.56E + 03 5.40E + 03 7.83E + 03 4.16E + 03
Std 2.04E + 02 1.30E + 02 9.66E + 02 1.42E + 03 7.33E + 02 3.59E + 02

𝑓
13

Mean 7.77E − 05 9.51E − 10 5.14E − 11 6.63E − 06 2.64E − 04 0.00E + 00
Std 2.45E − 05 5.01E − 10 2.05E − 11 1.96E − 06 7.18E − 05 0.00E + 00

𝑓
14

Mean 4.20E + 01 1.12E + 01 1.72E + 00 1.24E + 01 2.61E + 01 6.23E + 00
Std 4.43E + 01 2.39E − 01 8.31E − 01 9.51E − 01 1.38E + 01 1.05E + 00
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Figure 3: Continued.
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Figure 3: The median convergence characteristics of canonical DE, SaDE, SDE, jDE, DECLS, and ccDE on 30D problems.

Table 5: 𝑝 values of the Wilcoxon matched-pairs signed-ranks test.

ccDE versus 𝐷 = 10 𝐷 = 30

DE 1.0E − 3 1.0E − 3
SaDE 1.0E − 3 1.0E − 3
SDE 3.0E − 3 8.0E − 3
jDE 1.0E − 3 1.0E − 3
DECLS 1.0E − 3 1.0E − 3

To illustrate the characteristics of the CLS operator,
the cDE algorithm has been designed. The only difference
between the cDE algorithm and ccDE algorithm is that cDE
algorithm does not apply the CLS operator in Step 3 of the
ccDE algorithm. Tables 6 and 7 illustrate the comparison
of the mean, the standard deviation of the fitness value,
and success rate between ccDE and cDE on 10D and 30D
problems 𝑓1–𝑓14, respectively. From Tables 6 and 7, it can be
seen that the ccDE obtains a smaller mean value and a higher
success rate than cDE for all problems.Accordingly, it is easier
for the ccDE algorithm to avoid the immature convergence
than the cDE algorithm, so it is easier to locate the global
optima.

To illustrate the characteristics of orthogonal crossover
operator, the bcDE algorithm has been designed. The only
difference between the bcDE algorithm and ccDE algorithm
is that bcDE algorithm applies the binomial crossover which
is the same crossover strategy as canonic DE, while ccDE
algorithm applies the orthogonal crossover. Figure 5 illus-
trates the convergence characteristics comparison in terms of
the best fitness value between ccDE and bcDE on 10D and
30D problems 𝑓1–𝑓14. From Figure 5, it can be seen that the
convergence speed of ccDE is faster than bcDE for most of
the 14 problems. Accordingly, the ccDE algorithm requires
fewer FEs than the bcDE algorithm and therefore it has lower
time complexity. In order to study the contribution of three
mechanisms (chaotic local search, orthogonal crossover, and
cellular automata) to the success of the algorithm, a unimodal

function 𝑓3 and multimodal function 𝑓9 have been selected
for the comparison of the global optimum distribution. The
cDE, bcDE, and DECLS are short of chaotic local search,
orthogonal crossover, and cellular automata mechanism,
respectively.

Figure 6 shows the box plots of optimal solution distri-
bution after 25 independent runs on 𝑓3 and 𝑓9 with 10D
and 30D, respectively. From Figure 6, it can be seen that
the optimal solution distribution of the canonical DE is the
most scattered and ccDE algorithm is the most centralized,
which indicates that three mechanisms contribute to the
convergence in different extent. The abnormal values also
appearwhen unimodal problem andmultimodal problem are
used to evaluate and compare those optimization algorithms
including the cDE, bcDE, and DECLS algorithm. It can be
found that those three mechanisms have the capability of
getting away from local optimum to a certain extent. The
biggest median of multimodal function is the cDE algorithm
while the smallest is the ccDE algorithm, which indicates
the chaotic local search mechanism is the most important to
avoid local optimum.

5. Conclusions

This paper proposes the ccDE algorithm, which combines
the DE algorithm with cellular automata to balance explo-
ration and exploitation tradeoff of DE. In addition, the
chaotic local search is employed as a tool to construct
a search operator for optimization problems. At last, the
binomial crossover operator in the canonical DE is replaced
by the orthogonal crossover without crossover rate. Those
mechanisms make the ccDE algorithm maintain population
diversity while achieving faster convergence speed. Through
comparing the performance of ccDE with the canonical DE
and four DE variants on a set of 14 problems, the simulation
results show that the ccDE algorithm has faster convergence
speed and better capability of maintaining the population
diversity, which can effectively avoid being trapped into
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Figure 4: Continued.
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Figure 4: The convergence characteristics between ccDE and DECLS on 10D and 30D problems.

Table 6: Results for 10D problems.

Problems
Algorithms

cDE ccDE
Mean Std Success rate Mean Std Success rate

𝑓
1

1.70E − 28 4.67E − 29 100% 0.00E + 00 0.00E + 00 100%
𝑓
2

3.78E − 11 7.90E − 12 100% 0.00E + 00 0.00E + 00 100%
𝑓
3

2.12E + 01 1.09E + 01 63% 1.41E + 00 6.64E − 01 80%
𝑓
4

1.46E − 13 1.36E − 14 87% 0.00E + 00 0.00E + 00 100%
𝑓
5

9.95E − 14 9.60E − 15 100% 3.55E − 15 0.00E + 00 100%
𝑓
6

6.28E − 03 2.81E − 03 100% 0.00E + 00 0.00E + 00 100%
𝑓
7

8.07E − 01 5.90E − 02 40% 4.92E − 02 2.59E − 02 63%
𝑓
8

0.00E + 00 0.00E + 00 100% 0.00E + 00 0.00E + 00 100%
𝑓
9

1.40E + 02 4.07E + 01 50% 6.07E + 00 1.86E + 00 87%
𝑓
10

0.00E + 00 0.00E + 00 100% 0.00E + 00 0.00E + 00 100%
𝑓
11

0.00E + 00 0.00E + 00 100% 0.00E + 00 0.00E + 00 100%
𝑓
12

3.53E + 03 2.37E + 02 27% 0.00E + 00 0.00E + 00 100%
𝑓
13

2.82E − 03 1.26E − 03 83% 0.00E + 00 0.00E + 00 100%
𝑓
14

2.08E + 01 3.05E + 00 67% 0.00E + 00 0.00E + 00 100%

Table 7: Results for 30D problems.

Problems
Algorithms

cDE ccDE
Mean Std Success rate Mean Std Success rate

𝑓
1

2.31E − 08 6.97E − 09 100% 0.00E + 00 0.00E + 00 100%
𝑓
2

2.82E + 02 7.16E + 01 47% 3.55E − 03 3.03E − 03 98%
𝑓
3

2.27E + 02 2.86E + 01 0% 2.10E + 01 3.27E + 00 53%
𝑓
4

2.09E − 04 1.34E − 05 50% 3.55E − 15 0.00E + 00 100%
𝑓
5

9.40E − 01 4.19E − 01 27% 3.55E − 15 0.00E + 00 100%
𝑓
6

5.95E − 06 8.16E − 07 100% 0.00E + 00 0.00E + 00 100%
𝑓
7

4.57E + 00 1.14E − 01 23% 1.15E − 02 5.12E − 03 63%
𝑓
8

2.87E + 01 3.69E + 00 67% 0.00E + 00 0.00E + 00 100%
𝑓
9

8.48E + 02 2.14E + 01 0% 4.11E + 01 2.15E + 01 50%
𝑓
10

5.87E + 01 5.13E + 00 97% 0.00E + 00 0.00E + 00 100%
𝑓
11

2.22E + 02 9.25E + 01 80% 0.00E + 00 0.00E + 00 100%
𝑓
12

4.22E + 04 4.28E + 02 0% 4.16E + 03 3.59E + 02 0%
𝑓
13

6.59E − 05 1.80E − 05 67% 0.00E + 00 0.00E + 00 100%
𝑓
14

7.92E + 01 2.13E + 00 53% 6.23E + 00 1.05E + 00 80%
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Figure 5: The convergence characteristics between bcDE and ccDE on 10D and 30D problems.
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Figure 6: Box plots of optimal distribution for cDE, bcDE, DECLS, and ccDE.

the local optima. In the future, we will further study the
ccDE algorithm formultiobjective optimization and dynamic
optimization evolutionary mechanism.
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slave parallelization of differential evolution for multi-objective
optimization,” Evolutionary Computation, vol. 21, no. 2, pp. 261–
291, 2013.

[5] E. den Heijer and A. E. Eiben, “Maintaining population
diversity in evolutionary art using structured populations,” in
Proceedings of the IEEE Congress on Evolutionary Computation
(CEC ’13), pp. 529–536, June 2013.

[6] B. Dorronsoro and P. Bouvry, “Cellular genetic algorithms
without additional parameters,” Journal of Supercomputing, vol.
63, no. 3, pp. 816–835, 2013.

[7] C.-H. Cao, L.-M.Wang, andD.-Z. Zhao, “The research based on
the discrete cellular ant algorithm in the geometric constraint
solving,” Acta Electronica Sinica, vol. 39, no. 5, pp. 1127–1130,
2011.

[8] Y.-M. Lu, M. Li, and L. Li, “The cellular genetic algorithm with
evolutionary rule,” Acta Electronica Sinica, vol. 38, no. 7, pp.
1603–1607, 2010.

[9] B. Lorenzo and S. Glisic, “Optimal routing and traffic schedul-
ing for multihop cellular networks using genetic algorithm,”
IEEE Transactions on Mobile Computing, vol. 12, no. 11, pp.
2274–2288, 2013.

[10] N. Noman and H. Iba, “Cellular differential evolution algo-
rithm,” in AI 2010: Advances in Artificial Intelligence, vol. 6464
of Lecture Notes in Computer Science, pp. 293–302, Springer,
Berlin, Germany, 2010.

[11] V. Noroozi, A. B. Hashemi, and M. R. Meybodi, “CellularDE: a
cellular based differential evolution for dynamic optimization
problems,” in Adaptive and Natural Computing Algorithms,
vol. 6593 of Lecture Notes in Computer Science, pp. 340–349,
Springer, Berlin, Germany, 2011.

[12] D. Jia, G. Zheng, and M. K. Khan, “An effective memetic
differential evolution algorithm based on chaotic local search,”
Information Sciences, vol. 181, no. 15, pp. 3175–3187, 2011.

[13] J. V.Neumann,Theory of Self-ReproducingAutomata, University
of Illinois Press, Urbana, Ill, USA, 1996.

[14] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-
evolution with differential grouping for large scale optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 18,
no. 3, pp. 378–393, 2014.

[15] Y. Wang, Z. Cai, and Q. Zhang, “Enhancing the search ability of
differential evolution through orthogonal crossover,” Informa-
tion Sciences, vol. 185, pp. 153–177, 2012.



Mathematical Problems in Engineering 15

[16] M. G. H. Omran, A. Salman, and A. P. Engelbrecht, “Self-adap-
tive differential evolution,” in Computational Intelligence and
Security, Lecture Notes in Artificial Intelligence, pp. 192–199,
Springer, 2005.

[17] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer,
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