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One of the most problems faced by the practical rock engineering is to evaluate the rock mass strength. Now the existing theoretical
evaluation of the mechanical property of jointed rock mass has no satisfactory answer yet because of the great number of variables
involved. One of them is the nonpersistent joints which inherently affect the rock mass mechanical behavior. The previous models
for rock mass can only reflect the effect of joint geometrical property on its mechanical behavior. Accordingly, this paper presents a
new theoretical model to evaluate the mechanical behavior of the rock mass with a set of nonpersistently closed joints under biaxial
conditions, which can reflect the effect of both the joint geometrical and mechanical property on the mechanical behavior of the
rock mass under biaxial conditions at the same time. A series of calculation examples validate that the proposed model is capable of
presenting the effect of joint geometrical and mechanical properties and the confining pressure on rock mass strength at the same

time.

1. Introduction

Existing in many rock mass projects, such as rock slopes,
open pits, and underground caverns, joints have significant
effects on the rock mass mechanical behaviors, such as its
strength, deformability, failure mode, and stability, which will
directly influence the design and construction of the rock
mass engineering [1-3]. The existence of the nonpersistent
joints and their interaction under the far-field stresses often
lead to high stress concentration at the tips of the joint and
become the source of weakening and failure of the rock
mass [4, 5]. Jennings [6] proposed to compute the combined
strength of joint and rock bridges from the simple linear
weighing of the strength contributed by each fraction of
material:

Tzk(cj+otan¢j)+(l—k)(cr+otan¢,), 1)

where (¢;, ¢;) and (c,, ¢,) represent the cohesion and friction
angle of the joint and of the intact rock, respectively, and k is
the joint continuity factor given by
L.
k = —]’ (2)
(L;+L,)

where L; and L, are the length of the joint and of the rock
bridge, respectively.

Equation (1) disregards the influence of the joints on the
stress distribution, and assumes simultaneous failure of the
intact material and the joints.

Different procedures have been used to study the strength
of rock mass with nonpersistent joints: field observations,
numerical studies or laboratory tests, and analytical solu-
tions. All these methods have their own advantages and
disadvantages. Among them, the analytical solution develops
quickly in recent years with the widespread application of
mechanical and mathematical tools in the study of the rock



mass mechanical behavior. Now the following three analytical
approaches are often used to study the constitutive relation
of a jointed rock mass. The first is the phenomenological
approach based on continuum damage mechanics [7, 8], in
which the effects of microscopic damage mechanisms on
property of the rock mass are reflected by scalar, vector, or
tensor damage variables. For example, Kawamoto et al. [9]
and Swoboda et al. [10] both adopted the second-order tensor
to describe the damage anisotropy in the rock mass caused by
the joints. Kawamoto et al. [9] presented a damage model for
the jointed rock mass with one set of joints:

k_ Lakq kK
QF = v S (n n ) , 3)
where OF is the damage tensor caused by the joints to the rock
mass, S is the size of the jointed area, #* is the unit normal
vector to the joint surface, [ is the average spacing of the joints,
and V is the volume of the rock mass.

For N-set of joints, the damage tensor is given as the sum
over all the related damage tensor obtained from (3):

Q= ii sk (nknk). (4)
Via

It is a common method to define the damage variable
in rock mass geometrical damage theory [9-11]. But its
deficiency is obvious, in which only the geometrical property
of the joint such as its length and dip angle is included,
while the mechanical property of the joint such as its shear
strength, namely, its cohesion and internal friction angle,
is not included. That is to say, the above damage variable
definition method thinks that the damage cannot transfer
the stress, which is nearly true for the rock mass under
tension, but not for the rock mass under compression. This
is because the joint will close and then slide along its surface
under compression, in which the joint will transfer part of
the compressive and shear stresses. And the transferring
coefficients are much related to the mechanical property of
the joint such as its internal friction angle and cohesion [10].
Therefore, many scholars began to adopt different methods to
improve the above model. When the rock mass is subjected to
compression, Kawamoto et al. [9] and Yuan et al. [12] intro-
duced the joint transferring coeflicients of the compressive
and shear stresses to revise the above model according to the
fact that the joint can transfer part of the compressive and
shear stresses. However, how to accurately obtain these two
coefficients also becomes a new problem. While Swoboda
and Yang [13] introduced the material constant H; (0 <
H,; < 1) to consider the effect of joint closure on the stress
transferring, now it is obtained mainly by experience.

The second approach is based on mesomechanical dam-
age mechanics, which leads to an improved understanding of
the underlying physical process. In this approach, the nucle-
ation, growth, and coalescence of microcracks are studied
and their influences on mechanical properties are reflected
in the constitutive relation in certain ways [14]. To study
the mechanical behaviors of a joint-weakened rock mass
by the micromechanical approach, several micromechanics-
based joint models, such as the cylindrical pore model
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[15], dislocation pile-up model [16], and the frictional slid-
ing crack model, have been proposed. Among these mod-
els, the frictional sliding crack model is widely accepted
[17-20].

The third is the phenomenological approach based
on mesomechanical mechanics, developed in recent years,
which lies between the above two approaches and combines
the advantages of them. It has a certain application in rock
mechanics study [21].

In sum, it can be seen from the existing studies that the
above three approaches all have been used in the study of
the damage constitutive model for the jointed rock mass.
And it is widely accepted that the geometrical property of
the joint such as its length, dip angle, and number and
the mechanical property such as its internal friction angle
and cohesion should be both included in the rock mass
constitutive model, only by which the effect of the joint on
rock mass mechanical behavior is objectively reflected. But
these two kinds of properties of the joint such as the geo-
metrical ones and mechanical ones are separately considered
in the existing study. Namely, the geometrical property of
the joint is firstly adopted to define the damage tensor, and
then its mechanical property such as its shear strength are
adopted to revise the above calculation result, which not
only causes inconvenience in application of this model but
also is prone to lead to much error in the calculation result
because of the arbitrariness in selecting these parameters.
Can a damage tensor which includes both geometrical and
mechanical property of the joint be proposed? This kind of
damage tensor is not only in good agreement with the failure
mechanism of the jointed rock mass but also applicable to
use, which can avoid the error caused by the selection of
the parameters to a large extent. So some research works
have been done on this subject. For instance, Li et al. [22]
obtained the calculation method of the mesodamage tensor
of the rock mass with nonpersistently closed joints based
on the strain energy theory, which perfectly considers the
joint geometrical and mechanical property at the same time.
It provides a good idea for studying the damage mechanics
of the rock mass with nonpersistent joints. However, they
only study the jointed rock mass under uniaxial condition,
while in practical engineering, the rock mass is always in
the complicated stress conditions such as biaxial or triaxial
conditions. Arora [23] made triaxial compressive tests on
specimens of plaster of Paris containing a single joint, and
the result showed that increase in the lateral pressure leads
to a more isotropic behavior. The study done by Prudencio
and van Sint Jan [24] also illustrated that the confining stress
resulted in different failure modes and higher peak strength
of the jointed specimens. Therefore, it is very important and
necessary to study the mechanical behavior of the rock mass
under the complicated stress conditions.

Overall, the existing models provided a basis for estimat-
ing the mechanical behavior of the rock mass. Yet, since only
a part is involved in the existing models, further key factors
should be taken into account for the sophisticated mechanical
behavior of the rock mass as follows:
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(1) the major property of the joints, such as its shear
strength, can be further considered in the calculation
of the damage tensor;

(2) the effect of the complicated stress conditions such
as the biaxial stress condition on the rock mass
mechanical behavior should be studied in order to
perfectly solve the practical engineering problem.

As such, the present work aims to establish a mathemati-
cal model to consider the above-mentioned factors.

The establishment of the proposed model is presented.
Next, the calculation examples are done to check its valid-
ity and to further demonstrate the characteristics of the
proposed model. The proposed model considers the major
factors of joints to provide a mean in determining the
mechanical behavior of the rock mass with a set of nonper-
sistently closed joints under biaxial conditions.

2. Establishment of the Damage
Model for the Rock Mass with
Nonpersistently Closed Joints

According to fracture mechanics, for a planar problem under
biaxial conditions, the increment of the additional strain
energy U, because of the existence of the joints is as follows
(the third stress intensity factor Kj; = 0 in the planar
problem):

A A
U, = j GdA = i,J (Kf +K7) dA, )
0 E" Jo
where G is the energy release rate, A is the joint area, and K;
and Kj; are the first and second stress intensity factors of the
joint tip, respectively. For a planar strain problem, E' = E,
and for a planar stress problem E' = E/(1 — %), where E
and v are Young’s elastic modulus and Poisson’s ratio of the
corresponding intact rock, respectively. Because the planar
stress problem is studied in this paper, E' = E is adopted.
For a single joint, A = Ba (unilateral joint) or 2Ba (central
joint). For many joints, A = NBa (unilateral joint) or 2NBa
(central joint), where N is the joint number, B is the joint
depth, and a is the joint half length, as shown in Figure 1.
For the rock mass with nonpersistent joints (shown in
Figure 1) under the biaxial stresses o, and o3 (0, = 0 is
adopted in the biaxial conditions), its damage strain energy
Yis

Y= %’ 24 3(1—29)( Zm : 6)
gy 0] )

where 0,, = (1/3)(0, + 05) is the mean stress,

Ocq
(1/+2) \/012 + (07 — 03)? + 052 is Mises effective stress, D is
the damage variable, and o, 0,, and o3 are the first, second,
and third principle stresses, respectively.

U* is the unit volume elastic strain energy corresponding
to a certain stress, and, under the biaxial conditions, it can be
expressed as

vf=-1-DyY. (7)
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03 ;/ 03
— \\ 1% —
//
1
(<1
9
2a

FIGURE 1: Model of nonpersistently jointed rock mass: joint length
2a, joint dip angle «, growing crack length I, and joint depth B.

Substituting (6) into (7), we obtain
2 2
O, 2 o
O p—— S ey § | 3(1-2 = . (8
2E(1—D){3( +9)+3( v)<aeq>} ®)

When the rock mass does not contain any joints, D = 0,
and (8) can be changed into

O'e2 2 ’
Uf:—ﬁ{§(1+v)+3(l—2v)(2—:> } )

The increment of the unit volume elastic strain energy
caused by the joint is

AU* =U" - U}
B O_qu ) 0_qu
" \2E(1-D) 2E (10)

2
-<|2(1+v)+3(1—2v)(0—m) }
3 Ocq

Assuming the volume of the rock mass is V, the increment
of the elastic strain energy caused by the existence of the joint
is

AUE =V —aeqz - %
2E(1-D) 2E

2
-{3(1+v)+3(1—2v)("—'") }
3 Ocq

AU® in (11) and U, in (5) are both the increment of the
elastic strain energy caused by the joint, and they should be
equal to each other:

(11)

AU = U, (12)



or

I‘EVZ jA(KIuKHZ)dA
0

2 2
- Oeq Oy
_V<2E(1—D) 2E> (13)

2
-{3(1+v)+3(1—2v)(“—'”) }
3 Ocq

From (13), we obtain

2 (1-2)

Vo2 {@/3) 1+ +30-29) (0,/0,) |

-1

[ (1) aa

(14)

Then SIF K; and Kj can be obtained by analyzing the
mechanical behavior of the jointed rock mass.

2.1. SIF Calculation of a Single Nonpersistently Closed Joint
Tip in Rock Mass. Under the biaxial compression, the normal
and shear stresses will both occur on the joint surface of the
rock mass. The normal stress will make the joint close and
the shear stress will make the rock mass have the trend of
sliding along the joint surface. Because of the closure of the
joint, the direction of the friction force is opposite to that of
the sliding. When the shear stress exceeds the friction one on
the joint surface, the rock mass will slide. With the increase
in compressive load, the wing cracks will begin to propagate
from the joint tips at the direction of 70.5° [25-27]; namely,
the joints will propagate along the direction, in which the
tensile stress approaches its maximum, as shown in Figure 1.
The formation of the wing cracks is caused by the tensile stress
at the joint tips because of the friction slide along the joint
surface.

Under the biaxial compression, the normal and shear
stresses on the joint surface are as follows, respectively:

2 .2
0, (0,) = 0,cos”a + 0;sin«,

oo, 09

7, (0,a) = sin 2«,
where (0, «) and 7(0, @) are the normal and shear stresses
on the joint surface, respectively and « is the joint dip angle.
Assume the joint internal friction angle is ¢, and accord-
ingly the friction coefficient y of the joint surface is tan ¢.
Then under the biaxial compression, the shear stress will
cause the rock block to slide along the joint surface. In turn,
the normal stress on the joint surface will produce the friction
one to resist the slippage of the rock block along the joint
surface. So the slide force 7.4 along the joint surface must
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be more than or equal to zero and cannot be less than zero.
Therefore, 7.4 can be obtained from (15):

0 T, < UO,
TQE = (16)
T, — U0, T, = UO,.

It is noted that the joint cohesion is neglected in (16),
which indicates that the method proposed in this paper is
suitable for the rock mass whose cohesion is zero or little and
can be neglected.

The SIF K; and Kj; of the wing cracks at the joint tips
can be revised as follows according to Lee [28] and the
propagation direction of the wing cracks:

2at,sin0
K= ——5—— +0,,9(0,a+0) Vnl, 17
N TR ) e
2
Ky = - 2%en S0 e+ 6) Vi, (17b)

N (L +1%)

where 0,4 and 7, 4 can be obtained from (15), a is the joint
halflength, [ is the propagation length of wing cracks, and 0 is
the propagation angle of the wing cracks at the joint tips, and
it is assumed to be 70.5° [25, 26]. " = 0.27a was introduced
[29] to make K; and Kj; nonsingular when the tensile joint
length is small.

A parameter [ (= 0.27a) was added to obtain proper
behavior at the short wing crack limit. One can observe
in (17a) and (17b) that as the crack extends, that is, as [
increases, the driving force, that is, K|, diminishes drastically
indicating crack arrest. However, in reality, the crack grows,
subsequently interacting and coalescing with adjoining flaws.
These micromechanical processes result in macroscopic axial
splitting, which are the typical brittle failure mode observed
under compression in brittle solids. Hence, the present
models are not able to completely capture the physics of
the phenomenon of compressive failure in brittle solids. The
reasons for this could be attributed to several factors that
include (i) the assumption of uniform shear stress along
the joint surfaces during the crack propagation and (ii) the
neglect of local heterogeneity in obtaining stress fields.

Considering the critical condition of the wing crack to
propagate, namely, the propagation length of the wing cracks
I = 0, the K; and Kj; of the wing cracks are

2at,sin 0
Vrl*

2at,zcos0

Vrl*

It can be known from above that the condition that the
wing crack length I = 0 is the initial condition that the
nonpersistently closed joint does not propagate. If the SIF of
the joint tip at this moment is solved, the initial damage of
the rock mass caused by the original nonpersistently closed
joint can be obtained from (14). It is obviously seen that the
damage obtained from this method includes not only the

K; = , (18a)

Ky =- (18b)
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FIGURE 2: Model of nonpersistently jointed rock mass.
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joint geometrical property such as its length and dip angle
but also its mechanical property such as the internal friction
angle. So the damage constitutive model for the jointed
rock mass obtained with this method is in more agreement
with the actual condition, in which the joint transferring
coeflicients of the compressive and shear stresses are not
required to revise it.

2.2. Multijoints in One Line or Grouped in Lines. If there is
a group of joints on the same line with the same length and
interval in the analysis region, the stress intensity factor can
be written as

2 y£0)
K; = Kjpy|— tan —, 19a
I Io\jm/) an 2 (19a)
2 T
Ky = Kno\j% tan 7¢, (19b)

where Kj, is the stress intensity factor for a single joint under
tension condition, K is the stress intensity factor for the
group joints, and so on, and ¢ = 2a/b is the joint area ratio to
the area of the whole section.

If there is a group parallel line of joints as in Figure 2, then
the interactions of the joints can be expressed as follows:

K; = f(a,b,d) Ky, (20a)

Ky = f (ab,d) Ky (20b)

Under the assumption of the joints shown in Figure 2,
Cherepanov [30] proposed the interaction factor of the group

joints as in Table 1. The damage variables for the single set of
grouped joints can then be derived.

2.3. The Damage Variable of Rock Mass with One Set of
Joints. When the rock mass contains a set of one-rowed

5
TaBLE L: f(a,b,d) value.
d)2a b/2a
[e%) 5.0 2.5 1.67 1.25

(o) 1.0 1.017 1.075 1.208 1.565
5 1.016 1.020 1.075 1.208 1.565
1 1.257 1.257 1.258 1.292 1.580
0.25 2.094 2.094 2.094 2.094 2.107

nonpersistently closed joints, it can be obtained by substitut-
ing (15)~(16) and (18a) and (18b)~(19a) and (19b) into (14):

0 T, < Yo,
2
1-[1- 7.56BNa
V?
T In <cos ?)
2
2
'(O'eq {5(14’1/)
2 -1
+3(1—2v)<0—'") })
Ocq

T, > UO,.

(1)

When the rock mass contains a set of more-rowed non-
persistently closed joints, it can be obtained by substituting
(15)~(16) and (18a) and (18b) and (20a) and (20b) into (14):

0 T, < YO,
2
1—<1+Mf2(a,b,d)
1%
D= . 2 2 %(1+ )
Ter | % 13 v
2771\ 7!
+3u—2w(fﬂ)}> )
Ocq
T, > Uo,,

(22)

where N is the joint number, V is the volume of the rock mass
sample, and the other parameters are as above.

2.4. Tensor of the Damage Variable. Because of the singu-
larity of the macroscopic damage, D obtained from (21) or
(22) is only the damage along the vertical direction. It is
necessary to make it tensorial to reflect the anisotropy of
the macroscopic damage. The tensorial methods are many,
and here the method proposed by Kawamoto et al. [9] is
adopted by introducing damage tensor Q. Let QO = Dw, where
w is the second-order symmetrical tensor. The calculation
method of w is as follows. For the rock mass with one set of
nonpersistently closed joints, assume the angle between the
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F1GURE 3: The mechanical model of jointed rock mass.

normal direction of the joint and x axis is 3, shown in Figure 3
and the unit normal vector of the joint is #, w is given by:

[ cos’f  sinfcos ﬁ:|
cos Bsinf  sin’p .

Ww=nen= (23)

3. Analysis of Calculation Examples

3.1. The Mechanical Behavior of Rock Mass with One Single of
Nonpersistently Closed Joint. Figure 1is the calculation model
that is 10 cm high and 5 cm wide. The geometrical parameters
B and a are 1cm and 2 cm, respectively. The joint internal
friction angle is 30" and its cohesion is assumed to be zero.
The climax strength, Young’s elastic modulus, and Poisson’s
ratio of the corresponding intact rock are 80 MPa, 20 GPa,
and 0.25, respectively. Then its damage variable D according
to this proposed model is

0 T, < U0,
9.43Ba’
-1+ ——
\%
_ 2
D=4 T4 <oeq2 {5 1+
27\ 1\ 7!
o
+3(1—2v)<—m) })
Ocq
T, > Yo,

(24)

because the damage variable D of the jointed rock mass can
also be defined as

9j
D=1-—, (25)
Gr

where 0}, 0, are the climax strength of the jointed rock mass

and the corresponding intact rock.
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FIGURE 4: The effect of confining pressure on rock mass damage
variable and climax strength.

If we assume that o, is 30 MPa, then the change laws of
the rock mass damage variable and climax strength with the
joint dip angle under different confining pressure are shown
in Figure 4.

It can be seen from Figure 4 that the change laws of rock
mass damage variable and climax strength with the joint dip
angle are parabolas with the hatch up and down, respectively.
And the rock mass climax strength is the least and its damage
variable is the maximal when the joint dip angle is about
60°. The rock mass strength is the same as that of the intact
rock and the damage variable is zero when the joint dip angle
lies between a certain scope, which fits with that obtained by
Prudencio and van Sint Jan [24]. With increase in confining
pressure, the sample’s damage variable decreases and climax
strength increases. That is to say the confining pressure can
heighten the sample’s climax strength and reduce its damage.

Then the effect of the joint half-length on the rock mass
damage variable is discussed. Assume the confining pressure
is 4MPa and the other parameters are as stated above;
Figure 5 shows the rock mass damage variable versus the
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FIGURE 5: The rock mass damage variable versus the joint length.
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FIGURE 6: The rock mass damage variable versus the joint internal
friction angle.

joint half-length. It can be seen that the rock mass damage
variable increases with the increase in joint half-length, and
when the joint half-length is little, the increment rate of the
damage is rather less, but when the joint half-length is large,
the increment rate of the damage variable is much more.
Then the effect of joint internal friction angle on the rock
mass damage variable is discussed. Assume the joint half-
length is 4 cm, confining pressure is 4 MPa, and the other
parameters are as stated above; the rock mass damage variable
versus the joint internal friction angle is shown in Figure 6.
It can be seen that the rock mass damage variable rapidly
decreases with the increase in joint internal friction angle.
This is because the joint shear strength increases with the
joint internal friction angle. Correspondingly the sample’s
climax strength increases and its damage variable decreases.
Meanwhile, with the increase in joint internal friction angle,
the joint dip angle correspondent to the maximum damage
variable of the sample increases correspondingly. When the
joint dip angles are 0°, 20°, and 40°, respectively, the corre-
sponding joint dip angles are 45°, 55°, and 65°, respectively.

20
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FIGURE 7: Models of rock mass with joints of same length but
different number (unit: mm).
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FIGURE 8: The rock mass damage variable versus the joint number.

3.2. The Mechanical Property of Rock Mass with One Row of
Nonpersistently Closed Joints in One Set. Take the rock mass
with the joint whose total length is the same but the number is
different as an example, and the calculation models are shown
in Figure 7. The joint total length in Figures 7(a)~7(d) is all
30 mm, but the joint number is 1, 2, 3, and 4, respectively.
The intervals between the two neighboring joints are all
6 mm. Assume o0, and o5 are 30 MPa and 4 MPa, respectively.
The joint internal friction angle is 30°. The Young’s elastic
modulus and Poisson’s ratio of the corresponding intact rock
are 20 GPa and 0.25, respectively. The rock mass damage
variable versus the joint number is shown in Figure 8.



It can be seen from Figure 8 that (1) when the joint total
length is the same, the rock mass damage variable gradually
decreases with the increase in the joint number, and the rock
mass strength gradually increases. This can be explained with
fracture mechanics. With the increase in the joint number,
the number of joint tips increases; namely, when there is
one joint, there are only two joint tips, and when there
are four joints, there are eight joint tips. It is known from
fracture mechanics that the energy for the joint initiation is
far more than that for the joint propagation. So, the number
of the joint initiation point increases with the increase in
the joint number, and correspondingly the energy for the
joint initiation greatly increases, which will cause the rock
mass damage to decrease and its climax strength to increase.
(2) From the decrement rate of the damage variable, the
decrease in rock mass damage is not linear with the increase
in the joint number. For this calculation example, the rock
mass damage increases when the joint number increases from
one to two are much less than that when the joint number
increases from two to three, which indicates that there exists
the complicated interaction among the joints. And it may
have some relationships with the geometrical and mechanical
property of the joints. (3) The results show that the long
joint should not be formed in rock mass slope reinforcement
engineering or it should be interrupted with anchoring or
grouting, while in rock fragmentation engineering such as
blasting and cutting, one or more main joints should be
formed as soon as possible in order to make the rock mass
fail.

3.3. The Mechanical Property of Rock Mass with Multirows of
Nonpersistently Closed Joints in One Set. Here the effect of
the row interval of joints on rock mass mechanical behavior
is studied, and the calculation model is shown in Figure 9.
This model has four joints in two rows and one set. Here
the parameters of a and b are 2cm and 5cm, respectively.
The joint row interval d is 1c¢m, 4 cm, and 20 cm, and d/2a
are 0.25, 1, and 5, respectively. Assume o, and o5 are 30 MPa
and 4 MPa, respectively. The joint internal friction angle is
30°. The Young’s elastic modulus and Poisson’s ratio of the
corresponding intact rock are 20 GPa and 0.25, respectively.
The rock mass damage variable versus the row interval of
joints is shown in Figure 10.

It can be seen from Figure 10 that (1) the rock mass
damage variable gradually decreases with the increase in
row interval of joints, and the rock mass strength gradually
increases. It can be known from fracture mechanics that the
stress concentration will occur at the joint tips when the
sample is loaded. But the region of the stress concentration is
limited, which is mainly located near the joint tips. Therefore,
when the joints are near enough, the overlap of the stress
fields at the joint tips will cause the rock mass to be seriously
damaged and the strength to decrease, while with the increase
in the row interval of joints, the interaction among the stress
fields of the joint tips will decrease and eventually completely
disappear, and the rock mass damage will gradually increase
and tend to be a certain value. (2) For the decrement rate of
the damage variable, the rock mass damage firstly decreases
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FIGURE 10: The rock mass damage variable versus the row interval of
joints.

rapidly and then tends to be a constant with the increase
in row interval of joints. Take this calculation example for
instance, the maximal damage variable of the rock mass
rapidly decreases from 0.033 to 0.019 with the increase in
row interval of joints from 1cm to 4 cm, and its decrement
extent reaches 42.4%. However, the maximal damage variable
of the rock mass rapidly decreases from 0.019 to 0.0187 with
the increase in row interval of joints from 4cm to 20 cm,
and its decrement extent is only 1.58%. It indicates that the
interaction among the joints can be neglected when the row
interval of joints becomes large enough.

4. Conclusions

After discussing the damage and fracture evolution mecha-
nism of the rock mass with the nonpersistently closed joints
under biaxial condition, the following main conclusions are
drawn.

(1) Aiming at the shortcoming that only the joint geo-
metrical property is included in the most existing jointed
rock mass damage constitutive models while the joint shear
strength is not, a new definition method of the damage
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variable for the jointed rock mass by comprehensively con-
sidering the joint geometrical and mechanical properties is
proposed. It is hopeful to provide a new path for studying the
damage mechanics of the jointed rock mass.

(2) For the rock mass with a single nonpersistently closed
joint, the rock mass climax strength is the minimal and its
damage variable is the maximal when the joint dip angle is
about 60°. It agrees with the existing research conclusions,
which indicates the validity of this proposed model.

(3) The proposed model is adopted to discuss the effect of
joint length and internal friction angle on rock mass damage.
The result shows that the rock mass damage increases non-
linearly with the increase in joint length, while it decreases
nearly proportional to the increase in joint internal friction
angle.

(4) For the rock mass with a set of one-rowed nonpersis-
tently closed joints, when the joint total length is the same, the
rock mass damage gradually decreases with the increase in
the joint number, but the decrement rate is not linear with it.
It indicates that the complicated interaction among the joints
exists.

(5) For the rock mass with a set of multirowed nonpersis-
tently closed joints, the rock mass damage firstly decreases
rapidly and then tends to be constant with the increase in
row interval of joints. It indicates that the interaction among
joints mainly exists in a small region near the joint tips and it
will gradually weaken with the increase in the row interval of
joints and even disappear.
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