
Research Article
A PETSc-Based Parallel Implementation of Finite Element
Method for Elasticity Problems

Jianfei Zhang

College of Mechanics and Materials, Hohai University, 1 Xikang Road, Nanjing 210098, China

Correspondence should be addressed to Jianfei Zhang; zhjf77@gmail.com

Received 18 September 2014; Accepted 1 December 2014

Academic Editor: Chenfeng Li

Copyright © 2015 Jianfei Zhang.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Starting a parallel code from scratch is not a good choice for parallel programming finite element analysis of elasticity problems
because we cannot make full use of our existing serial code and the programming work is painful for developers. PETSc provides
libraries for various numerical methods that can give us more flexibility in migrating our serial application code to a parallel
implementation.We present the approach to parallelize the existing finite element codewithin the PETSc framework. Our approach
permits users to easily implement the formation and solution of linear system arising from finite element discretization of elasticity
problem.The main PETSc subroutines are given for the main parallelization step and the corresponding code fragments are listed.
Cantilever examples are used to validate the code and test the performance.

1. Introduction

Elasticity is a general problem in solid mechanics and it is
fundamental for civil, structural, mechanical, and aeronau-
tical engineering and also other fields of engineering and
applied science. In the numerical techniques to solve elasticity
problems, finite element method (FEM) [1] is one of the
important methods. Throughout the whole finite element
analysis procedure, the equations formation and solution are
the main time-consuming parts. In the case of large-scale
finite element analysis, most of the computation time is spent
on the equations solution. The performance of the equations
solver determines the overall performance of finite element
code. So the finite element equations solver is attractingmuch
more interest than other components in parallelization of
finite element computation. Various types of parallel solvers
for sparse matrices arising from finite element analysis have
been developed. They are classified into two categories: the
direct and the iterative solvers. Direct solvers havemanyweak
points in the parallel processing of the finite element anal-
ysis for very large-scale problems. Generally, direct solvers
require much larger storage and more operation counts than
iterative solvers. Furthermore, direct solvers needmuchmore
communications among processors and are generally more

difficult to parallelize than iterative solvers. Because of these
difficulties and the disadvantages of direct solvers, most of
researches onparallel finite element analysis focus on iterative
methods and iterative solvers have been installed into more
and more large-scale parallel finite element code [2–4].

In this paper, parallel finite element computation for
elasticity problems is implemented based on the Portable,
Extensible Toolkit for Scientific Computation (PETSc) [5]
and the parallel code is developed and tested. The remainder
of this paper is organized as follows. Section 2 reviews
the aspects related to PETSc, FEM, and iterative solution.
Sections 3 and 4 present the detailed parallel implementation
of finite element method for elasticity problems with PETSc,
including finite element equations formation and solution. In
Section 5 the performance of the code is comprehensively
measured with different test examples. Finally, Section 6
summarizes the main conclusions.

2. Backgrounds

2.1. PETSc. PETSc is a suite of data structures and routines
that provide frames to develop large-scale application codes
on parallel (and serial) computers. It consists of parallel linear

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 147286, 7 pages
http://dx.doi.org/10.1155/2015/147286

2 Mathematical Problems in Engineering

Level of
abstraction

Applications

SNES
(nonlinear equations solvers)

TS
(time stepping)

PC
(preconditioners)

KSP
(Krylov subspace methods)

Matrices Vectors Index
sets

BLAS MPI

Figure 1: Organization of the PETSc libraries.

and nonlinear equation solvers and time integrators that can
be used in application codes written in many languages,
such as Fortran, C, and C++. PETSc provides a variety of
libraries each of which manipulates a particular family of
objects. These libraries are organized hierarchically as in
Figure 1, enabling users to employ the most appropriate level
of abstraction for a particular problem. The operation per-
formed on the objects has abstract interface which is simply
a set of calling sequences, which makes the use of PETSc easy
during the development of large-scale scientific application
codes. Thus, PETSc provides a powerful set of tools for
efficient modeling scientific applications and building large-
scale applications on high-performance computers.

2.2. Finite Element Method for Elasticity. The displacement-
based finite elementmethod introduces an approximation for
the displacement field in terms of shape functions and uses
a weak formulation of the equations of equilibrium, strain-
displacement relations, and constitutive relation to arrive at
the linear system

Ku = F, (1)

where u is the vector of unknown nodal displacements, F
is the vector of nodal forces, and K, the structure stiffness
matrix, is given by

K = ∑

𝑒

C𝑇
𝑒
k𝑒C
𝑒
, (2)

F = ∑

𝑒

C𝑇
𝑒
f𝑒, (3)

where selective matrix C
𝑒
plays a transforming role between

the local number and the global number of degrees of
freedom (DOF). k

𝑒
is the element stiffness matrix and f

𝑒

is the element nodal forces, which are both computed with
integration over each element.

The structure stiffness matrix in (2) is a sparse and
symmetric positive definite (SPD) of dimension 𝑛 × 𝑛, where
𝑛 is the total number of degrees of freedom (DOF).

2.3. Krylov Subspace Methods. Krylov subspace methods [6]
are currently the most important iterative techniques for
solving large linear systems. These techniques are based
on projection processes onto Krylov subspaces. For solving
the linear system Ax = b, a general projection method
extracts an approximate solution x

𝑚
from an affine subspace

x
0
+ 𝐾
𝑚
of dimension 𝑚 by imposing the Petrov-Galerkin

condition b − Ax
𝑚

⊥ 𝐿
𝑚
, where 𝐿

𝑚
is another subspace

of dimension 𝑚. A Krylov subspace method is a method for
which the subspace 𝐾

𝑚
is the Krylov subspace 𝐾

𝑚
(A, r
0
) =

span(r
0
,Ar
0
,A2r
0
, . . . ,A𝑚−1r

0
), where r

0
= b − Ax

0
. The

different versions of Krylov subspace methods arise from
different choices of the subspace 𝐿

𝑚
. The conjugate gradient

(CG) algorithm is one of the best known iterative techniques
for solving sparse symmetric positive definite linear systems.
It is a realization of an orthogonal projection technique onto
the Krylov subspace 𝐾

𝑚
.

Although the methods are well founded in theory, they
are likely to suffer from slow convergence for problems
from practical applications such as solid mechanics and
fluid dynamics. Preconditioning is an important means for
improving Krylov subspace methods in these applications. It
transforms the original linear system into one with the same
solution, but which is easier to solve.

A mathematically equal preconditioned linear system is
expressed as follows:

M−1Ax = M−1b, (4)

where M is a preconditioner. One simple way to construct
preconditioners is to split A into A = M − N. In theory, any
splittingwith nonsingularMwhich is close toA in some sense
can be used.

The Jacobi preconditioner [7] is a commonly used pre-
conditioner with the form of M = diag(A). The SOR or SGS
preconditioning matrix [6] is of the form M = LU, where L
and U are the lower triangular part and the upper triangular
part of A, respectively. Another simple way of defining a
preconditioner is incomplete factorization of the matrix A
[8].These incomplete LU factorization (ILU) preconditioners
perform decomposition of the formA = LU−R, where L and
U are the lower and upper parts of A with the same nonzero
structure and R is the residual of the factorization. Because
classical preconditioners, such as ILU and SSOR, have limited
amount of parallelism, a number of alternative techniques
have been developed that are specifically targeted at parallel
environments, for example, additive Schwarz preconditioners
[9] and multigrid preconditioners [10].

3. Finite Element Equations Assembly

According to the theory of finite elementmethod, the calcula-
tion of element stiffnessmatrix and element nodal load vector
only needs the information of the local element. So they can
be easily parallelized without any communication.The global
stiffness matrix and global nodal load vector are assembled
with all element stiffness matrices and element nodal loads
according to the relationship between the local number
and the global number of DOFs. If nonoverlapping domain

Mathematical Problems in Engineering 3

decomposition is used, the computation of the entities of
the global stiffness matrix and global nodal load relating to
the interface DOFs needs data exchange between adjacent
subdomains.

To implement finite element equations assembly in paral-
lel, the first step is to partition the domain into subdomains.
Thedomain partitioning can be done by some graph partition
libraries, such as Metis, which makes loads over processes
balanced. The Metis subroutine is

METIS PartMeshDual (int 𝑛𝑒, int 𝑛𝑛, int∗ 𝑒𝑙𝑚𝑛𝑡,

int∗ 𝑒𝑡𝑦𝑝𝑒, int∗ 𝑛𝑢𝑚𝑓𝑙𝑎𝑔,

int 𝑛𝑝𝑎𝑟𝑡𝑠, int 𝑒𝑑𝑔𝑒𝑐𝑢𝑡,

int∗ 𝑒𝑝𝑎𝑟𝑡, int∗ 𝑛𝑝𝑎𝑟𝑡) ,

(5)

where 𝑛𝑒 and 𝑛𝑛 are numbers of elements and nodes, 𝑒𝑙𝑚𝑛𝑡

is the element node array, 𝑒𝑡𝑦𝑝𝑒 indicates the element type,
𝑛𝑢𝑚𝑓𝑙𝑎𝑔 indicates the numbering scheme, 𝑛𝑝𝑎𝑟𝑡𝑠 is the
number of the parts, 𝑒𝑙𝑑𝑔𝑒𝑐𝑢𝑡 stores the number of the cut
edges, 𝑒𝑝𝑎𝑟𝑡 stores the element partition vector, and 𝑛𝑝𝑎𝑟𝑡 is
the node partition vector.

After domain partition, subdomains are assigned to
processes and the element stiffness matrices and load vectors
of the subdomains are calculated concurrently.These element
stiffness matrices and load vectors are then accumulated into
the global stiffness matrix. To contain global stiffness matrix
K, we must use PETSc calls to create a matrix object. Because
the stiffness matrix is a sparse symmetric matrix, AIJ format
(CSR) is used to store it. There are several ways to create a
matrix with PETSc.We can call MatCreateMPIAIJ to create a
parallel matrix. The command is

MatCreateMPIAIJ (MPI Comm 𝑐𝑜𝑚𝑚,PetscInt 𝑚,

PetscInt 𝑛,PetscInt 𝑀,PetscInt 𝑁,

PetscInt 𝑑 𝑛𝑧, const PetscInt 𝑑 𝑛𝑛𝑧 [] ,

PetscInt 𝑜 𝑛𝑧, const PetscInt 𝑜 𝑛𝑛𝑧 [] ,

Mat ∗ 𝐴) ,

(6)

where 𝑚, 𝑀, and 𝑁 specify the number of local rows and
number of global rows and columns, 𝑛 is the number of
columns corresponding to a local parallel vector, 𝑑 𝑛𝑧 and
𝑜 𝑛𝑧 are the number of diagonal and off-diagonal nonzeros
per row, and 𝑑 𝑛𝑛𝑧 and 𝑜 𝑛𝑛𝑧 are optional arrays of nonzeros
per row in the diagonal and off-diagonal portions of local
matrix.

Because each node hasmultiple degrees of freedom in the
finite element discretization of elasticity problems, we also

can create a sparse parallel matrix in block AIJ format (block
compressed row) by the command

MatCreateMPIBAIJ (MPI Comm 𝑐𝑜𝑚𝑚,PetscInt 𝑏𝑠,

PetscInt 𝑚,PetscInt 𝑛,PetscInt 𝑀,

PetscInt 𝑁,PetscInt 𝑑 𝑛𝑧,

const PetscInt 𝑑 𝑛𝑛𝑧 [] ,PetscInt 𝑜 𝑛𝑧,

const PetscInt 𝑜 𝑛𝑛𝑧 [] ,Mat ∗ 𝐴) ,

(7)

where 𝑏𝑠 is the size of block, 𝑑 𝑛𝑧 and 𝑜 𝑛𝑧 are the numbers of
diagonal and off-diagonal nonzero blocks per block row, and
𝑑 𝑛𝑛𝑧 and 𝑜 𝑛𝑛𝑧 are optional arrays of nonzero blocks per
block row in the diagonal and off-diagonal portions of local
matrix.

Since dynamic memory allocation and copying between
old and new storage are very expensive, it is critical to
preallocate the memory needed for the sparse matrix. This
preallocation ofmemory is very important for achieving good
performance during matrix assembly of an AIJ matrix or a
BAIJ matrix, as this reduces the number of allocations and
copies required. For a given finite element mesh, we can loop
the neighboring nodes of each node to determine the nonzero
structure of each block row. So it is easy to determine the 𝑑 𝑛𝑧

and 𝑜 𝑛𝑧 in subroutine MatCreateMPIAIJ or MatCreateM-
PIBAIJ before computation. The Fortran code to preallocate
memory for MPIBAIJ stiffness matrix is listed in Algoritm 1.

After the matrix has been created, it is time to insert
values. When implemented with PETSc, each process loops
the elements in its local domain, computes the element stiff-
nessmatrices, and assembles them into global matrix without
regard to which process eventually stores them. This can be
done in two ways with PETSc, by either inserting a single
value or inserting an array of values. In order to accumulate
element stiffness matrices into global matrix, we can use
the below subroutine to insert or add a dense subblock
of dimension𝑚 × 𝑛 into the stiffness matrix:

MatSetValues (Mat 𝑚𝑎𝑡,PetscInt 𝑚,

const PetscInt 𝑖𝑑𝑥𝑚 [] ,PetscInt 𝑛,

const PetscInt 𝑖𝑑𝑥𝑛 [] ,

const PetscScalar V [] , InsertMode addv) ,
(8)

where V is a logically two-dimensional array of values, 𝑚
and 𝑖𝑑𝑥𝑚 are the number of rows and their global indices,
𝑛 and 𝑖𝑑𝑥𝑛 are the number of columns and their global
indices, and 𝑎𝑑𝑑V is the operation of either ADD VALUES
or INSERT VALUES, where ADD VALUES means adding
values to any existing entries and INSERT VALUES means
replacing existing entries by new values. For stiffness matrix
assembly, the contributions from related elements are accu-
mulated into global entities and ADD VALUES is used.

Also, there are similar procedures to create vectors and
insert values into those vectors to store global nodal load

4 Mathematical Problems in Engineering

! compute the neighbouring nodes of nodes and store them in array ndcon() and ndptr()
do j=mlow+1,mhigh
jj=j−mlow
dnn(jj)=0
ist=ndptr(j)
ied=ndptr(j+1)−1
nnd=ied-ist+1
do i=ist,ied
icon=ndcon(i)
if((icon>=mlow+1).and.(icon<=mhigh)) then

dnn(jj)=dnn(jj)+1
endif

enddo
onn(jj)=nnd-dnn(jj)

enddo

Algorithm 1

! create matrix and vectors
call MatCreateBAIJ(PETSC COMM WORLD,nodof,mmdof, &

mmdof,nndof,nndof,0,dnn,0,onn, K,ierr)
call MatSetOption(AK,MAT SYMMETRY ETERNAL,PETSC TRUE,ierr)
call VecCreateMPI(PETSC COMM WORLD, mmdof, nndof,F,ierr)
call VecDuplicate(F,x,ierr)
call VecSetOption(F,VEC IGNORE NEGATIVE INDICES,PETSC TRUE,ierr)
! Insert values into matrix and vector

elements loop: DO iel=1,nels
call MatSetValues(AK,ndof,g ele,ndof,g ele,ke,ADD VALUES,ierr)
call VecSetValues(F,ndof,g ele,fe,ADD VALUES,ierr)

END DO elements loop
! Assembling
call MatAssemblyBegin(AK,MAT FINAL ASSEMBLY,ierr)
call MatAssemblyEnd(AK,MAT FINAL ASSEMBLY,ierr)
call VecAssemblyBegin(F,ierr)
call VecAssemblyEnd(F,ierr)

Algorithm 2

F and nodal displacement. PETSc currently provides two
basic vector types: sequential vector and parallel (MPI based)
vector. The created vector is distributed over all processes.
Any process can set any components of the vector and PETSc
insures that they are automatically stored in the appropriate
locations.

The Fortran code to create parallel matrix and vec-
tor to store stiffness matrix and nodal vectors is listed
in Algorithm 2.

Note that the valuation of the element stiffness and nodal
load is ignored in the above code for simplicity.

4. Solution of Assembled System

After the final assembly of the stiffness matrix and nodal load
vector, the system is now ready to be solved. PETSc provides
easy and efficient access to all of the package’s linear system
solvers with the object KSP, that is, the heart of PETSc. We
here combine CG methods and preconditioners to solve the

linear system (1) from finite element discretization. Because
KSP provides a simplified interface to the lower-level KSP
and PC modules within the PETSc package, we can easily
implement this preconditioned CG solver.

The first step to solve a linear system with KSP is to create
a solver context with the command

KSPCreate (MPI Comm 𝑐𝑜𝑚𝑚,KSP ∗ 𝑘s𝑝) , (9)

where 𝑐𝑜𝑚𝑚 is the MPI communicator and 𝑘𝑠𝑝 is the new
solver context. Before solving a linear system with KSP,
we must call the following routine to make the matrices
associated with the linear system:

KSPSetOperators (KSP 𝑘𝑠𝑝,Mat 𝐴𝑚𝑎𝑡,

Mat 𝑃𝑚𝑎𝑡,MatStructure 𝑓𝑙𝑎𝑔) ,
(10)

where the matrix 𝐴𝑚𝑎𝑡 defines the linear system and 𝑃𝑚𝑎𝑡

represents the matrix from which the preconditioner is to
be constructed. It can be the same as the matrix that defines

Mathematical Problems in Engineering 5

call KSPCreate(PETSC COMM WORLD,ksp,ierr)
call KSPSetOperators(ksp,AK,AK,DIFFERENT NONZERO PATTERN,ierr)
call KSPSetType(Ksp,KSPCG,ierr)
call KSPCGSetType(Ksp,KSP CG SYMMETRIC,ierr)
call KSPGetPC(ksp,pc,ierr)
call PCSetType(pc,PCJACOBI,ierr)
tol = 1.0d-7
call KSPSetTolerances(ksp,tol,PETSC DEFAULT DOUBLE PRECISION, &

PETSC DEFAULT DOUBLE PRECISION,PETSC DEFAULT INTEGER,ierr)
call KSPSolve(ksp,F,x,ierr)

Algorithm 3

the linear system. The argument 𝑓𝑙𝑎𝑔 indicates information
about the structure of preconditioner matrix during succes-
sive solutions.

To solve a linear system, we set the right-hand side and
solution vectors by calling the routine

KSPSolve (KSP 𝑘𝑠𝑝,Vec 𝑏,Vec 𝑥) , (11)

where 𝑏 and 𝑥, respectively, denote the rhs and solution
vectors.

When solving by Krylov subspace methods with PETSc,
a number of options are needed to set. First of all, we need
set the Krylov subspace method to be used by calling the
command

KSPSetType (KSP 𝑘𝑠𝑝,KspType 𝑚𝑒𝑡ℎ𝑜𝑑) . (12)

Due to the slow convergence of Krylov subspacemethods
for the linear system arising from practical elasticity appli-
cations, preconditioning is usually combined to accelerate
the convergence rate of the methods. To employ a particular
preconditioning method, we can set the method with the
subroutine

PCSetType (PC 𝑝𝑐,PCType 𝑚𝑒𝑡ℎ𝑜𝑑) . (13)

Each preconditioner may have a number of options to
be set. We can set them with different routines [11]. During
solution of preconditioned Krylov method, the default con-
vergence test is based on the 𝑙

2
-norm of the residual. Conver-

gence is decided by three values: the relative decrease of the
residual norm to that of the right-hand side, 𝑟𝑡𝑜𝑙, the absolute
value of the residual norm, 𝑎𝑡𝑜𝑙, and the relative increase
of the residual, 𝑑𝑡𝑜𝑙. These parameters and the maximum
number of iterations can be set with the command

KSPSetTolerances (KSP 𝑘𝑠𝑝, double 𝑟𝑡𝑜𝑙,

double 𝑎𝑡𝑜𝑙, double 𝑑𝑡𝑜𝑙, int 𝑚𝑎𝑡𝑟𝑖𝑥) .

(14)

Since the linear system derived from finite element
discretization of elasticity problems is sparse and symmetric
positive definite (SPD), the conjugate gradient (CG) algo-
rithm is chosen here to solve it. For the conjugate gradi-
ent method with complex numbers, there are two slightly

different algorithms subject to whether the matrix is Her-
mitian symmetric or truly symmetric. The default option is
Hermitian symmetric. Because the solution of finite element
equations uses symmetric version, we need indicate that it is
symmetric with the command

KSPCGSetType (KSP 𝑘𝑠𝑝,

KSCGType KSP CG SYMMETRIC) .
(15)

The Fortran code to create the KSP context and perform
the solution is as in Algorithm 3.

In this portion of code, the KSPmethod being used is the
CG with JACOBI preconditioner. The convergence tolerance
is set to 1.0𝑒 − 7.

5. Experimental Results

5.1. Test Platform and Examples. Our numerical experiments
were conducted on a platform composed of 4 Intel Core i5-
2450M CPUs @ 2.50GHz and 4GB RAM. The operation
system is 64-bit CentOS 6. In this sectionwe use a beamprob-
lem in bending to validate the PETSc-based finite element
code andmeasure the performance of the linear system solver
with different preconditioners. It is known that the number of
iterations for convergent solutions to finite element equations
from elasticity problems often differs, especially for the cases
with different materials. This is because stiffness matrices
are very singular when materials are very different. Figure 2
shows this cantilever problem. The size of the beam is 1m ×

1m × 5m. The beam is fixed at its left end and loaded by
uniform pressure on its top surface. There are two cases with
different material composition to be tested. One is of single
uniformmaterial and the other is of bimaterial with a strip of
much lower Young’s modulus than other portions. The base
material’s Young’s modulus and Poisson ratio are of 2.0𝑒8 and
0.3.The stripmaterial’s Young’smodulus andPoisson ratio are
of 2.0𝑒3 and 0.3. Two three-dimensional hexahedral meshes
with different numbers of elements have been generated and
used in computation. The fine mesh has 10000 elements and
12221 nodes, and the coarse one has 80000 elements and
88641 nodes.

6 Mathematical Problems in Engineering

Figure 2: The sketch of the testing cantilever.

Table 1: Serial performance of the PCG (coarse mesh).

Preconditioner

Single material Bimaterial

Iterations
Solution
time

(unit: sec.)
Iterations

Solution
time

(unit: sec.)
None 563 5.932 1645 17.215
Jacobi 507 5.407 1466 15.523
SOR 330 6.357 977 18.586
AMG 182 7.542 535 21.459

Table 2: Serial performance of the PCG (fine mesh).

Preconditioner

Single material Bimaterial

Iterations
Solution
time

(unit: sec.)
Iterations

Solution
time

(unit: sec.)
None 1065 100.335 2958 276.267
Jacobi 1013 97.147 2763 261.196
SOR 649 106.462 1749 294.09
AMG 355 125.183 961 363.442

5.2. Performance Tests. First, a comparative analysis of the
serial performance of the CG method with different precon-
ditioners has been carried out. Jacobi, SOR, and algebraic
multigrid (AMG) preconditioners are tested. The options for
these preconditioners are set to the default values. Tables
1 and 2 report the different serial performance results of
preconditioned CG (PCG) solver for single material and
bimaterial cases, respectively. From these tables, we can
see that the AMG PCG converges the fastest, SOR PCG
is the second fast one, Jacobi PCG follows them, and the
convergence of the none preconditioned CG is the slowest.
But from the view of running time, AMG takes the longest
time, SOR is the second one, none preconditioner is the third
one, and Jacobi one consumes the shortest running time.This
is because the AMG and SOR need more preconditioning
operations in each CG iteration. Though the number of CG
iterations reduces, the overall running time increases.

Second, the parallel performance of the parallel finite
element code has been measured. Figures 3 and 4 show

Sp
ee

d-
up

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

Number of processors
1 2 4

Jacobi
AMG

Figure 3: Speed-up of PCG solutions on coarse grid.

Sp
ee

d-
up

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

Number of processors
1 2 4

Jacobi
AMG

Figure 4: Speed-up of PCG solutions on fine grid.

parallel performance of the finite element linear system
solution stage on coarse and fine meshes, respectively. As
shown, the solution stage scales unsatisfactorily on the
multicore computer for the communication bottleneck of the
computing platform.TheAMGpreconditioner does notwork
better than the Jacobi one. This is because there are many
options in AMG to tune for optimal performance [12].

6. Conclusions

We have integrated PETSc into the parallel finite element
method for elasticity problems and developed the parallel
code. Because PETSc includes libraries of numericalmethods
that can be applied directly to applications, the process of
porting PETSc into the existing application codes becomes
easier than developing with low-level parallel interfaces. In
this work, we implement the main steps, formation and solu-
tion, of the parallel finite element computation of elasticity
problems with PETSc subroutines. In the formation stage,

Mathematical Problems in Engineering 7

memory preallocation is conducted before computation to
enhance the performance by avoiding the memory dynamic
allocation and copying. For the solution, preconditioned CG
method is used as a solver to the linear system derived
from finite element discretization. PETSc provides various
preconditioners for this solver. Numerical tests show that the
formation stage can achieve good performance for its high
parallelism and the solution stage scales not very well on the
multicore computer for the communication problem.

In future work, this code will be migrated to distributed
memory parallel systems and applied to practical problems.
Furthermore, more preconditioners will be implemented
with PETSc in the code to provide users with more options.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (Grants nos. 51109072 and 11132003).

References

[1] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu,TheFinite Element
Method: Its Basis and Fundamentals, Butterworth-Heinemann,
Oxford, UK, 6th edition, 2005.

[2] M. A. Heroux, P. Vu, and C. Yang, “A parallel preconditioned
conjugate gradient package for solving sparse linear systems on
a Cray Y-MP,” Applied Numerical Mathematics, vol. 8, no. 2, pp.
93–115, 1991.

[3] A. R. M. Rao, “MPI-based parallel finite element approaches
for implicit nonlinear dynamic analysis employing sparse PCG
solvers,”Advances in Engineering Software, vol. 36, no. 3, pp. 181–
198, 2005.

[4] Y. Liu, W. Zhou, and Q. Yang, “A distributed memory parallel
element-by-element scheme based on Jacobi-conditioned con-
jugate gradient for 3D finite element analysis,” Finite Elements
in Analysis and Design, vol. 43, no. 6-7, pp. 494–503, 2007.

[5] S. Balay, S. Abhyankar, M. F. Adams et al., PETSc Web page,
2014, http://www.mcs.anl.gov/petsc.

[6] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM,
Philadelphia, Pa, USA, 2nd edition, 2003.

[7] F. H. Lee, K. K. Phoon, K. C. Lim, and S. H. Chan, “Performance
of Jacobi preconditioning in Krylov subspace solution of finite
element equations,” International Journal for Numerical and
Analytical Methods in Geomechanics, vol. 26, no. 4, pp. 341–372,
2002.

[8] G. Bencheva and S. Margenov, “Parallel incomplete factoriza-
tion preconditioning of rotated linear FEM system,” Journal of
Computational and Applied Mechanics, vol. 4, no. 2, pp. 105–117,
2003.

[9] S. C. Brenner, “Two-level additive Schwarz preconditioners
for nonconforming finite element methods,” Mathematics of
Computation, vol. 65, no. 215, pp. 897–921, 1996.

[10] P. T. Lin, J. N. Shadid, M. Sala, R. S. Tuminaro, G. L. Hennigan,
and R. J. Hoekstra, “Performance of a parallel algebraic multi-
level preconditioner for stabilized finite element semiconductor

devicemodeling,” Journal of Computational Physics, vol. 228, no.
17, pp. 6250–6267, 2009.

[11] S. Balay, S. Abhyankar, M. F. Adams et al., “PETSc users man-
ual,” Tech. Rep.ANL-95/11, Revision 3.5, ArgonneNational Lab-
oratory, 2014.

[12] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid
Tutorial, SIAM, 2nd edition, 2000.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

