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Multitarget tracking is one of the most important applications of sensor networks, yet it is an extremely challenging problem since
multisensor multitarget tracking itself is nontrivial and the difficulty is further compounded by sensor management. Recently,
randomfinite set based Bayesian framework has opened doors formultitarget tracking with sensormanagement, which ismodelled
in the framework of partially observed Markov decision process (POMDP). However, sensor management posed as a POMDP is
in essence a combinatorial optimization problem which is NP-hard and computationally unacceptable. In this paper, we propose
a novel sensor selection method for multitarget tracking. We first present the sequential multi-Bernoulli filter as a centralized
multisensor fusion scheme formultitarget tracking. In order to perform sensor selection, we define the hypothesis information gain
(HIG) of a sensor to measure its information quantity when the sensor is selected alone. Then, we propose spatial nonmaximum
suppression approach to select sensors with respect to their locations and HIGs. Two distinguished implementations have been
provided using the greedy spatial nonmaximum suppression. Simulation results verify the effectiveness of proposed sensor selection
approach for multitarget tracking.

1. Introduction

With recent advances in microelectromechanical systems,
various kinds of sensors with strong communication ability
and accurate data allocation have been manufactured at
surprisingly low cost. Different applications of the sensor
network have received increasing research interest, such as
environmental monitoring, target tracking, and event detec-
tion [1, 2]. A static sensor network is a special type of sensor
networks, which is composed of densely distributed sensors
with fixed and known locations. In the static sensor network,
sensor selection is of crucial importance for applications
to fulfill a specific task in the optimal way, especially for
multitarget tracking [3]. However, very little progress has
beenmade in this area since multisensor multitarget tracking
itself is nontrivial and the difficulty is further compounded
by sensor selection [4].

In the literature, there are extensive studies on the sensor
selection (also named as sensor management) problem for
target tracking. For the single target tracking case, [5] adopted

the decentralized posterior Cramr-Rao lower bound to mea-
sure tracking accuracy and used an iterative local search
technique for sensor selection. [3] used convex relaxation
for sensor selection and then adopted the sequential Kalman
filter to track each target in a distributed manner. Recently,
random finite set (RFS) based Bayesian framework has pro-
vided an elegant solution for multitarget tracking with sensor
management using mathematical tools from the finite set
statistics (FISST) [6]. In [4, 7], sensor management has been
modelled by a partially observed Markov decision process
(POMDP) given the multitarget state, which has been shown
effective in single sensor control and single sensor selection
[8, 9]. However, multisensor management modelled as a
POMDP is in essence a combinatorial optimization problem
which is NP-hard and computationally unacceptable for a
sensor network.

This paper considers sensor selection problem for multi-
target tracking from a new perspective: which sensors should
not be selected. It is intuitive that we should only select infor-
mative sensors in use and ignore noninformative sensors in
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order to alleviate data transmission bandwidth in the sensor
network. In this paper, we show that this perspective offers
a better alternative to exploit the sensor selection problem
which is effective and easy to implement. We first present a
centralizedmultisensor fusion scheme in RFS based Bayesian
framework for multitarget tracking and then propose the
sequential multi-Bernoulli filter as a feasible approximation
of multisensor multitarget state estimation. With respect
to sensor selection, we define the hypothesis information
gain (HIG) of a sensor to measure its information quantity
when it is selected alone. Two types of HIG are presented
using the Rényi divergence between the prior and posterior
target density, respectively, for individual target state and
multitarget state. Then, we propose the spatial nonmaximum
suppression (SNMS) approach to suppress sensors with low
HIG and subsequently select sensors with high HIG. Two
sensor selection approaches via SNMS have been provided
in the sequential Monte Carlo (SMC) implementation cor-
responding to two defined HIGs. Numerical simulations
have verified the capability of the proposed sensor selection
approach for multitarget tracking.

The reminder of this paper is organized as follows.
Section 2 presents a general description of the sensor
selection problem for multitarget tracking to lay a solid
foundation. In Section 3, we illustrate the RFS based Bayesian
framework, the Cardinality-Balanced multi-Bernoulli filter
and then provide the sequential multi-Bernoulli filter as a
centralized multisensor fusion scheme. The sensor selection
approach via SNMS is discussed in Section 4. Section 5
provides numerical results, followed by the conclusions in
Section 6.

2. Problem Formulation

Sensor selection for multitarget tracking entails a scenario
where there are a large number of densely distributed sensors
with fixed and known positions. Each sensor has limited
field of view (FOV) but a relatively large communication
range. The data allocated by each sensor are transmitted to
a fusion center to perform centralized information fusion
in order to track all targets in the surveillance area. Sensor
selection is required to balance between tracking accuracy
and the network workload which is highly dependent on the
number of activated sensors. In this paper, we consider two-
dimensional coordinate tracking as a particular interest that
is demonstrated in Figure 1.

As illustrated in Figure 1, multitarget tracking in a
sensor network requires multisensor fusion for multitarget
state estimation and appropriate sensor selection approach
to guarantee tracking accuracy with minimum number of
activated sensors. Assume that target moves according to the
nearly constant velocity model given by

x𝑘 = 𝐹x𝑘−1 + 𝐺k𝑘, (1)

where x𝑘 = [𝑝𝑥,𝑘, V𝑥,𝑘, 𝑝𝑦,𝑘, V𝑦,𝑘]
𝑇 and 𝑝𝑥,𝑘, 𝑝𝑦,𝑘 are planar

position and V𝑥,𝑘, V𝑦,𝑘 are planar velocity, respectively, along
𝑥-, 𝑦-coordinate. Also 𝐹 = 𝐼2 ⊗ [

1 Δ
0 1

]; 𝐺 = 𝐼2 ⊗ [

Δ
2
/2

Δ
]. 𝐼2

is 2 × 2 identity matrix and ⊗ denotes Kronecker product. Δ
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Figure 1: Multitarget tracking in a static sensor network. Yellow
region is the FOV of a sensor. Only five of all sensors can detect
targets. Target 1 and target 2 can be detected by two sensors, while
target 3 is only detected by one sensor.The fusion center is not shown
here but exists.

is the sampling period, and k𝑘 ∼ N(0, 𝑄𝑘) is a 2 × 1 i.i.d.
Gaussian noise. Assume process noise is time invariant and
identical for both V𝑥,𝑘 and V𝑦,𝑘; then𝑄 = 𝜎

2

V𝐼2, where 𝜎V is the
standard deviation.

The observation of sensor 𝑙 originated from target with
state x𝑘 is a noisy vector z𝑙

𝑘
, and the measurement model is

given by

z𝑙
𝑘
= ℎ

𝑙
(x𝑘) + 𝑤

𝑙
, (2)

where𝑤𝑙 is zeromeanGaussian noiseN(𝑤

𝑙
; 0, 𝑅𝑙) and ℎ𝑙(⋅) is

dependent on the position of the 𝑙th sensor s𝑙 = [𝑥𝑙 𝑦𝑙]
𝑇 and

the type of sensor 𝑙.

3. Bayesian Multitarget Filtering

This section provides the basic concepts and notations of
RFS based Bayesian framework and presents the multisensor
information fusion approach thereafter. Section 3.1 gives a
general description of the RFS based multisensor multitarget
Bayesian filtering. Due to the fact that the multisensor mul-
titarget Bayesian filtering is intractable and computationally
unacceptable, we provide the sequentialmulti-Bernoulli filter
as a feasible approach. For clarity, we first introduce themulti-
Bernoulli filter in Section 3.2 and then provide the SMC
implementation of the sequential multi-Bernoulli filter in
Section 3.3.

3.1. Multisensor Multitarget Bayesian Framework. Stochastic
filtering in Bayesian framework has been developed for
decades [10]. Under the assumption of linear model and
Gaussian distribution, Kalman filter was first derived in [11]
and has been widely used for target tracking since then. With
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respect to the multisource multitarget tracking case, RFS
based Bayesian framework provides an elegant solution that
outweighs the data association approach significantly.

A random finite set is a random variable that takes
value as an unordered finite set. The randomness of an
RFS refers to two aspects: the set cardinality (the number
of elements in the set) is random; each element in the set
is also a random variable. The probabilistic description of
RFS has been studied regarding different types of probability
distributions such asmulti-Bernoulli (or Bernoulli) RFS, i.i.d.
(short for independent identically distributed) cluster RFS,
and Poisson RFS [12]. Let 𝑋𝑘 and 𝑍𝑘, respectively, denote
the multitarget state set and the observation set of multiple
sensors,

𝑋𝑘 = {x𝑘,1, . . . , x𝑘,𝑁
𝑘

} ,

𝑍𝑘 = {𝑍

1

𝑘
, . . . , 𝑍

𝑚

𝑘
} ,

(3)

where 𝑚 is the total number of sensors and 𝑍

𝑙

𝑘
=

{z𝑙
𝑘
, . . . , z𝑙

𝑘,𝑀
𝑘,𝑙

} for 𝑙 = 1, . . . , 𝑚. 𝑁𝑘 is the time-varying
cardinality of targets while 𝑀𝑘,𝑙 is the cardinality of the
measurement set generated by sensor 𝑙.

Using the RFS representation, the movement of multiob-
ject can be described using two parts: an RFS for survival
targets from previous time step 𝑆𝑘 and an RFS for sponta-
neous birth targets at current time Γ𝑘. Thus, at time 𝑘we have
the predicted RFS 𝑋𝑘 = 𝑆𝑘 ∪ Γ𝑘. The RFS for measurements
𝑍

𝑙

𝑘
of sensor 𝑙 can be represented as a union of two parts:

target-generatedmeasurementsΘ𝑙
𝑘
and clutter𝐾𝑙

𝑘
; thus,𝑍𝑙

𝑘
=

Θ

𝑙

𝑘
∪ 𝐾

𝑙

𝑘
.

Given any specific type of RFS, the Bayesian framework
for optimal estimation via RFS is in the same form as the
classical Bayesian filtering given as follows:

𝑓𝑘|𝑘−1 (𝑋 | 𝑍1:𝑘−1)

= ∫𝑓𝑘|𝑘−1 (𝑋 | 𝑋


) 𝑓𝑘−1 (𝑋


| 𝑍1:𝑘−1) 𝛿𝑋


,

(4)

𝑓𝑘 (𝑋𝑍1:𝑘) =

𝑓𝑘 (𝑍𝑘𝑋)𝑓𝑘|𝑘−1 (𝑋𝑍1:𝑘−1)

∫𝑓𝑘 (𝑍𝑘𝑋)𝑓𝑘|𝑘−1 (𝑋𝑍1:𝑘−1) 𝛿𝑋

, (5)

which represent the prediction and update process of
Bayesian recursion via set integrals, respectively. Notice that
(4) and (5) are for multisensor multitarget Bayesian filtering
and computationally intractable. Meanwhile, the single senor
multitarget filtering version given in [13] is a particular case of
it, from which the probability hypothesis density (PHD) [14],
cardinalized PHD (CPHD) [15], and multi-Bernoulli filter
[13] have been derived under different forms of RFS.

3.2. Cardinality-Balanced Multi-Bernoulli Filter. Here, we
introduce the multi-Bernoulli RFS for multitarget state mod-
elling, which offers a better alternative than the Poisson
and i.i.d. cluster RFS in applications with highly nonlinear
model and/or nonhomogeneous sensor type [13]. Assume the
dimension of the target state is 𝑛; then the target state space is

denoted byX ⊆ R𝑛. Amulti-Bernoulli RFS𝑋 onX is a union
of a fixed number of independent Bernoulli RFSs 𝑋(𝑗) with
existence probability 𝑟(𝑗) ∈ (0, 1) and probability density 𝑝(𝑗)

(defined onX), 𝑗 = 1, . . . ,𝑀; that is𝑋 = ∪

𝑀

𝑗=1
{𝑋

(𝑗)
}.

Use a Bernoulli set for modelling the state of a single
target; then the multitarget state can be modeled as multi-
Bernoulli RFS Ξ with probability density given in [13] as
follows:

𝑓 ({x1, . . . , x𝑛}) = 𝑓 (0) ⋅ ∑

(𝑟(𝑗) ,𝑝(𝑗))∈Ξ

(

𝑛

∏

𝑖=1

𝑟

(𝑗)
𝑝

(𝑗)
(x𝑖)

1 − 𝑟

(𝑗)
) , (6)

where 𝑟(𝑗) and 𝑝(𝑗), respectively, represent the existence prob-
ability and distribution of the 𝑗th target and 𝑓(0) = ∏

𝑀

𝑗=1
(1 −

𝑟

(𝑗)
). It is clear that the multitarget density can be completely

specified by multi-Bernoulli parameter set {(𝑟

(𝑗)
, 𝑝

(𝑗)
)}

𝑀

𝑗=1
.

Hence, let us denote the multitarget density at time 𝑘 as
𝜋𝑘 = {(𝑟

(𝑗)

𝑘
, 𝑝

(𝑗)

𝑘
)}

𝑀
𝑘

𝑗=1
for short in the following content. In

multi-Bernoulli filter, the probability hypothesis density (also
known as the intensity function in [13, 16]), as the first-order
moment, is propagated over time as approximations of the
full posteriors 𝑓(𝑋 | 𝑍) [6]. In the following, we refer to
“probability hypothesis density” as “density” for short. Let
us denote the multitarget posterior density at time 𝑘 using
multi-Bernoulli parameters by 𝜋𝑘 = {(𝑟

(𝑗)

𝑘
, 𝑝

(𝑗)

𝑘
)}

𝑀
𝑘

𝑗=1
for short.

The following gives the recursion of the Cardinality-Balanced
multi-Bernoulli filter.

Prediction. At time 𝑘, if the posterior multitarget density
is multi-Bernoulli given by 𝜋𝑘 = {(𝑟

(𝑗)

𝑘
, 𝑝

(𝑗)

𝑘
)}

𝑀
𝑘

𝑗=1
and the

density of new births is also multi-Bernoulli 𝜋Γ,𝑘+1 =

{(𝑟

(𝑗)

Γ,𝑘+1
, 𝑝

(𝑗)

Γ,𝑘+1
)}

𝑀
Γ,𝑘+1

𝑗=1
, then the predicted density is given by

𝜋𝑘+1|𝑘 = {(𝑟

(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
)}

𝑀
𝑘

𝑗=1
∪ {(𝑟

(𝑗)

Γ,𝑘+1
, 𝑝

(𝑗)

Γ,𝑘+1
)}

𝑀
Γ,𝑘+1

𝑗=1
, (7)

where for survival targets

𝑟

(𝑗)

𝑘+1|𝑘
= 𝑟

(𝑗)

𝑘
⋅ ⟨𝑝

(𝑗)

𝑘
, 𝑝𝑆,𝑘⟩ ,

𝑝

(𝑗)

𝑘+1|𝑘
(x) =

⟨𝑓𝑘+1|𝑘 (𝑥 | ⋅) , 𝑝

(𝑗)

𝑘
𝑝𝑆,𝑘⟩

⟨𝑝

(𝑗)

𝑘
, 𝑝𝑆,𝑘⟩

,

(8)

and, for new born targets, 𝑟(𝑗)
Γ,𝑘+1

, 𝑝

(𝑗)

Γ,𝑘+1
(x) are prior existence

probability and distribution of birth model.

Update. At time 𝑘 + 1, if the predicted multitarget density
is multi-Bernoulli 𝜋𝑘+1|𝑘 = {(𝑟

(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
)}

𝑀
𝑘+1|𝑘

𝑗=1
, the output

of corrector is composed of legacy tracks and measurement-
updated tracks,

𝜋𝑘+1 = {(𝑟

(𝑗)

𝐿,𝑘+1
, 𝑝

(𝑗)

𝐿,𝑘+1
)}

𝑀
𝑘+1|𝑘

𝑗=1

∪ {(𝑟𝑈,𝑘+1 (z) , 𝑝𝑈,𝑘+1 (⋅ | z))}z∈𝑍
𝑘

,

(9)
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Prediction:
Input: 𝜋𝑘 = {𝑟

(𝑗)

𝑘
, 𝑝

(𝑗)

𝑘
}

𝑀𝑘

𝑗=1

(1) for Survival targets: 𝑗 = 1, . . . ,𝑀𝑘 do
(2) for 𝑖 = 1, . . . , 𝐿

(𝑗)

𝑘
, sample 𝑥(𝑗)

𝑆,𝑖,𝑘+1|𝑘
, compute weight 𝜔(𝑗)

𝑆,𝑖,𝑘+1|𝑘
and normalization �̃�

(𝑗)

𝑆,𝑖,𝑘+1|𝑘

(3) compute 𝑟(𝑗)
𝑆,𝑘+1|𝑘

, 𝑝

(𝑗)

𝑆,𝑘+1|𝑘
(x)

(4) end for
(5) for newborn targets: 𝑗 = 1, . . . ,𝑀Γ,𝑘+1 do
(6) for 𝑖 = 1, . . . , 𝐿

(𝑗)

Γ,𝑘
, sample 𝑥(𝑗)

Γ,𝑖,𝑘+1
, compute weight 𝜔(𝑗)

Γ,𝑖,𝑘+1
and normalization �̃�

(𝑗)

Γ,𝑖,𝑘+1

(7) compute 𝑟(𝑗)
Γ,𝑘+1

, 𝑝(𝑗)
Γ,𝑘+1

(x)
(8) end for

Output: 𝜋𝑘+1|𝑘 = {(𝑟

(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
)}

𝑀𝑘

𝑗=1
∪ {(𝑟

(𝑗)

Γ,𝑘+1
, 𝑝

(𝑗)

Γ,𝑘+1
)}

𝑀Γ,𝑘+1

𝑗=1

Update:
Input: 𝜋𝑘+1|𝑘 = {𝑟

(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
}

𝑀𝑘+1|𝑘

𝑗=1
, candidate sensors located at s𝑙 with observation set 𝑍𝑙

𝑘+1
(𝑙 = 1, . . . , 𝑚


)

(1) for 𝑙 = 1, . . . , 𝑚

 do
(2) for Legacy targets: 𝑗 = 1, . . . ,𝑀𝑘+1|𝑘 do
(3) compute 𝜔(𝑗),𝑙

𝐿,𝑖,𝑘+1
and normalization �̃�

(𝑗),𝑙

𝐿,𝑖,𝑘+1
, compute pseudo-likelihood (𝑗),𝑙

𝐿,𝑘+1

(4) compute 𝑟(𝑗),𝑙
𝐿,𝑘+1

, 𝑝(𝑗),𝑙
𝐿,𝑘+1

(x)
(5) end for
(6) for z ∈ 𝑍

𝑙

𝑘+1
do

(7) for Measurement-updated targets: 𝑗 = 1, . . . ,𝑀𝑘+1|𝑘 do
(8) compute 𝜔(𝑗),𝑙

𝑈,𝑖,𝑘+1
(z) and normalization �̃�

(𝑗),𝑙

𝑈,𝑖,𝑘+1
(z), compute pseudo-likelihood (𝑗),𝑙

𝑈,𝑘+1
(z)

(9) compute 𝑟(𝑗),𝑙
𝑈,𝑘+1

(z), 𝑝(𝑗),𝑙
𝑈,𝑘+1

(x; z)
(10) end for
(11) end for
(12) 𝜋

𝑘+1|𝑘
= {(𝑟

(𝑗),𝑙

𝐿,𝑘+1
, 𝑝

(𝑗),𝑙

𝐿,𝑘+1
)}

𝑀𝑘+1|𝑘

𝑗=1
∪ {(𝑟

𝑙

𝑈,𝑘+1
(z), 𝑝𝑙
𝑈,𝑘+1

(⋅|z))}z∈𝑍𝑙
𝑘+1

(13) end for
Output: 𝜋𝑘+1 = {(𝑟

(𝑗),𝑚


𝐿,𝑘+1
, 𝑝

(𝑗),𝑚


𝐿,𝑘+1
)}

𝑀𝑘+1|𝑘

𝑗=1
∪ {(𝑟

𝑚


𝑈,𝑘+1
(z), 𝑝𝑚



𝑈,𝑘+1
(⋅|z))}z∈𝑍𝑚

𝑘+1

Algorithm 1: SMC sequential multisensor multi-Bernoulli filter.

where

𝑟

(𝑗)

𝐿,𝑘+1
= 𝑟

(𝑗)

𝑘+1|𝑘

1 − ⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝑝𝐷,𝑘+1⟩

1 − 𝑟

(𝑗)

𝑘+1|𝑘
⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝑝𝐷,𝑘+1⟩

,

𝑝

(𝑗)

𝐿,𝑘+1
(x) = 𝑝

(𝑗)

𝑘+1|𝑘
(x)

1 − 𝑝𝐷,𝑘+1 (x)
1 − ⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝑝𝐷,𝑘+1⟩

,

𝑟𝑈,𝑘+1 (z)

= (

𝑀
𝑘+1|𝑘

∑

𝑗=1

𝑟

(𝑗)

𝑘+1|𝑘
(1 − 𝑟

(𝑗)

𝑘+1|𝑘
) ⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝜓𝑘+1,z⟩

(1 − 𝑟

(𝑗)

𝑘+1|𝑘
⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝑝𝐷,𝑘+1⟩)

2
)

×(𝜅𝑘+1 (z) +
𝑀
𝑘+1|𝑘

∑

𝑗=1

𝑟

(𝑗)

𝑘+1|𝑘
⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝜓𝑘+1,z⟩

1 − 𝑟

(𝑗)

𝑘+1|𝑘
⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝑝𝐷,𝑘+1⟩

)

−1

,

𝑝𝑈,𝑘+1 (z) = (

𝑀
𝑘+1|𝑘

∑

𝑗=1

𝑟

(𝑗)

𝑘+1|𝑘

1 − 𝑟

(𝑗)

𝑘+1|𝑘

𝑝

(𝑗)

𝑘+1|𝑘
(x) 𝜓𝑘+1,z (x))

× (

𝑀
𝑘+1|𝑘

∑

𝑗=1

𝑟

(𝑗)

𝑘+1|𝑘

1 − 𝑟

(𝑗)

𝑘+1|𝑘

⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝜓𝑘+1,z⟩)

−1

,

𝜓𝑘+1,z (x) = 𝑔𝑘+1 (zx) 𝑝𝐷,𝑘+1 (x) .
(10)

𝑝𝑆 and 𝑝𝐷 are probability of survival and detection for
target. The inner product ⟨⋅, ⋅⟩ is defined between two real
valued functions 𝛽 and 𝛾 by ⟨𝛽, 𝛾⟩ = ∫𝛽(𝑥)𝛾(𝑥)𝑑𝑥. Note
that without loss of generality we refer to the Cardinality-
Balanced multi-Bernoulli filter as “multi-Bernoulli” filter for
simplicity in this paper.

3.3. Sequential Multi-Bernoulli Filter. Sequential update has
been widely used and verified to be a good approximation
for information fusion of multiple sensors [3, 17]. Here, we
introduce the sequential multi-Bernoulli filter in the SMC
implementation which is proposed in [17].

Suppose that, at time 𝑘, the posterior multitarget density
is given as {𝑟(𝑗)

𝑘
, 𝑝

(𝑗)

𝑘
}

𝑀
𝑘

𝑗=1
, and the distribution of each target

is given by a set of weighted particles 𝑝(𝑗)
𝑘
(x) = ∑

𝐿
(𝑗)

𝑘

𝑖=1
𝜔

(𝑗)

𝑖,𝑘
⋅

𝛿x(𝑗)
𝑖,𝑘

(x). Then, the SMC implementation of the sequential
multisensor multi-Bernoulli filter is provided in Algorithm 1.
We refer the readers to subsection IV-A of [13] for detailed
equations.

The superscript (𝑗), 𝑙 in Algorithm 1 represents the pre-
dicted 𝑗th Bernoulli set updated with the 𝑙th sensor. To avoid
the infinite growth of multi-Bernoulli set number, those
with existence probability less than a predefined threshold
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(e.g., 0.001) are removed. Meanwhile, the particle number
is limited between 𝐿min and 𝐿max, in case that sampling is
not enough or resampling reallocates too many particles.The
number of particles for each Bernoulli set is proportional to
each target existence 𝑟(𝑗)

𝑘
during the resampling step. With a

given existence threshold 0.75, those sets with 𝑟

(𝑗)

𝑘
over 0.75

are true tracks while the others are not.

4. Sensor Selection with Spatial
Nonmaximum Suppression

In this section, we first illustrate the definition of hypothesis
information gain in Section 4.1. Then, Section 4.2 provides
the description of the spatial nonmaximum suppression.
Then, we propose a greedy implementation of sensor selec-
tion in Section 4.3 given the proposed spatial nonmaximum
suppression.

4.1. Hypothesis Information Gain. Before applying nonmax-
imum suppression, we need to define a proper measure of
each sensor to determine whether the sensor is informative
for target state estimation. Here, we first introduce the HIG
for individual target and then give the HIG for multitarget
directly.The HIG for individual target is defined with respect
to target density, which is the product of existence probability
and state distribution given in [6] as follows:

𝜋

(𝑗)

𝑘
= 𝑟

(𝑗)

𝑘
⋅ 𝑝

(𝑗)

𝑘
, (11)

for Bernoulli set {𝑟(𝑗)
𝑘
, 𝑝

(𝑗)

𝑘
}. Notice that the density is the

product of a scalar and a probability distribution. The Rényi
divergence is adopted to measure the information gain
between target prior and posterior distribution. Hence, the
HIG of sensor 𝑙 with respect to target 𝑗 is defined as

H
(𝑗),𝑙

𝑘+1
=

𝑟

(𝑗),𝑙

𝑘+1

𝑟

(𝑗)

𝑘+1|𝑘

E [R𝑙 (𝑝(𝑗),𝑙
𝑘+1

‖𝑝

(𝑗)

𝑘+1|𝑘
)] , (12)

where E[⋅] is the expectation operator and R𝑙(𝑝
(𝑗),𝑙

𝑘+1
‖𝑝

(𝑗)

𝑘+1|𝑘
)

is the Rényi divergence between the prior and posterior
distribution of target 𝑗 denoted byR(𝑗),𝑙 for short. Given the
Bayesian recursion,R(𝑗),𝑙 is given in [8] as follows:

R
(𝑗),𝑙

=

1

𝛼 − 1

log
∫ [𝑔

𝑙

𝑘+1
(z | x(𝑗)
𝑘+1

)]

𝛼

𝑝

(𝑗)

𝑘+1|𝑘
(x) 𝑑x(𝑗)

𝑘+1

[𝑝 (z | 𝑍𝑘)]
𝛼 ,

(13)

where 𝑝(z | 𝑍𝑘) = ∫ 𝑔

𝑙

𝑘+1
(z | x(𝑗)

𝑘+1
)𝑝

(𝑗)

𝑘+1|𝑘
(x)𝑑x(𝑗)
𝑘+1

and 𝛼 is a
parameter that determines how much we emphasize the tails
of two distributions in the metric, and the Rényi divergence
becomes the Kullback-Leibler discrimination and Hellinger
affinity, respectively, when 𝛼 → 1 and 𝛼 = 0.5 [18].

To compute (12), we only generate one future measure-
ment z for sensor 𝑙 based on the predicted state, assuming
no clutter or unity detection rate as illustrated in [9]. Thus,
𝑟

(𝑗),𝑙

𝑘+1
= 𝑟

(𝑗),𝑙

𝑈,𝑘+1
(z) for unity detection rate. Assume that at time 𝑘

the predicted multitarget density 𝜋𝑘+1|𝑘 = {𝑟

(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
}

𝑀
𝑘+1|𝑘

𝑗=1

is given in SMC form where 𝑝

(𝑗)

𝑘+1|𝑘
(x) = ∑

𝐿
(𝑗)

𝑘+1|𝑘

𝑖=1
𝜔

(𝑗)

𝑖,𝑘+1|𝑘
⋅

𝛿x(𝑗)
𝑖,𝑘+1|𝑘

(x); substitute SMC form of 𝑝(𝑗)
𝑘+1|𝑘

(x) into (13); then, we
obtain

H
(𝑗),𝑙

𝑘+1
=

𝑟

(𝑗),𝑙

𝑈,𝑘+1
(z)

(𝛼 − 1) 𝑟

(𝑗)

𝑘+1|𝑘

× log
∑

𝐿
(𝑗)

𝑘+1|𝑘

𝑖=1
𝜔

(𝑗)

𝑖,𝑘+1|𝑘
[𝑔

𝑙

𝑘+1
(z | x(𝑗)
𝑘+1

)]

𝛼

[∑

𝐿
(𝑗)

𝑘+1|𝑘

𝑖=1
𝜔

(𝑗)

𝑖,𝑘+1|𝑘
𝑔

𝑙

𝑘+1
(zx(𝑗)
𝑘+1

)]

𝛼 .

(14)

Notice that the HIG of sensor 𝑙 described by (14) is
defined for each individual target. Consequently, we also
define another HIG of sensor 𝑙 given by

H
𝑙

𝑘+1
=

𝑀
𝑘+1|𝑘

∑

𝑗=1

H
(𝑗),𝑙

𝑘+1

=

𝑀
𝑘+1|𝑘

∑

𝑗=1

[

[

[

[

𝑟

(𝑗),𝑙

𝑈,𝑘+1
(z)

(𝛼 − 1) 𝑟

(𝑗)

𝑘+1|𝑘

× log
∑

𝐿
(𝑗)

𝑘+1|𝑘

𝑖=1
𝜔

(𝑗)

𝑖,𝑘+1|𝑘
[𝑔

𝑙

𝑘+1
(z | x(𝑗)
𝑘+1

)]

𝛼

[∑

𝐿
(𝑗)

𝑘+1|𝑘

𝑖=1
𝜔

(𝑗)

𝑖,𝑘+1|𝑘
𝑔

𝑙

𝑘+1
(z | x(𝑗)
𝑘+1

)]

𝛼

]

]

]

]

,

(15)

to capture the information gain of sensor 𝑙 with regard
to multitarget state. In this paper, we name H

(𝑗),𝑙

𝑘+1
in (14)

as “individual HIG” and H𝑙
𝑘+1

in (15) as “sum HIG.” The
benefits of using the HIG is twofold: firstly, maximizing
the measurement-updated existence probability tends to
avoid losing targets; secondly, maximum Rényi divergence
between the predicted and updated distribution obtainsmore
information from future measurements and makes target
state estimation more accurate.

4.2. Spatial Nonmaximum Suppression. Nonmaximum sup-
pression (NMS) plays a very important role in computer
vision field especially in the object detection process, which
aims to pick real objects with local maxima and suppress
those that are outliers. Nonmaximum suppression is first
proposed in an edge detection context [19] and then widely
used in many detectors, such as points [20, 21], edges [22],
and objects [23, 24]. The original version of NMS is one-
dimensional (1D) [19] and then extended to isotropic NMS
to locate two-dimensional (2D) feature points from an image
[20]. In this paper, we use the underlying rationale of the
isotropic NMS and propose SNMS method in order to
eliminate sensors with low HIG.

Since the SNMS method here is different from that in
computer vision area, we first present a general description of
the SNMS algorithm for spatially distributed valued-points.
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Input: V𝑖
𝑘
, s𝑖 (𝑖 = 1, . . . , 𝑛), suppression gate 𝜖

(1) S𝑘 = {s1, . . . , s𝑛}
(2) for 𝑖 = 1, . . . , 𝑛 do
(3) for 𝑗 = 1, . . . , 𝑛 do
(4) if 𝑖 ̸= 𝑗 and ||s𝑖 − s𝑗|| ≤ 𝜖 andV

𝑗

𝑘
≥ V𝑖
𝑘
then

(5) remove s𝑖 from S𝑘; continue;
(6) end if
(7) end for
(8) end for

Output: S𝑘

Algorithm 2: Spatial nonmaximum suppression (straightforward).

At time 𝑘, assume that there are 𝑛 valued-points with known
positionsu𝑖 and valuesV𝑖𝑘 for 𝑖 = 1, . . . , 𝑚, given a predefined
suppression gate 𝜖; then, the 𝑖th point is suppressed if there is
any point 𝑗 that satisfies







u𝑖 − u𝑗






≤ 𝜖, V
𝑗

𝑘
≥ V
𝑖

𝑘
, (16)

where ‖ ⋅ ‖ is the Euclidean distance between point 𝑖 and
point 𝑗. It is clear that the spatial nonmaximum suppression
is trivial and easy to implement in a straightforward way.
Algorithm 2 provides the straightforward implementation of
proposed SNMS method. It is obvious that in each loop 3
comparisons aremade. Hence, the computational complexity
of the straightforward implementation is O(𝑛) for the best
case andO(𝑛2) for theworst case andO(𝑛(𝑛+1)/2) on average.
This is because the inner loop in Algorithm 2may stop at any
𝑖 for 𝑖 = 1, . . . , 𝑛 with equal probability 𝑝(𝑖) = 1/𝑛; thus, the
expected number of comparisons Ecmp is

Ecmp = 3 × 𝑛 ×

𝑛

∑

𝑖=1

𝑙 ⋅

1

𝑛

=

3𝑛 (𝑛 + 1)

2

. (17)

To reduce the computational cost when the number of
valued-points is extremely large, we introduce the greedy
implementation of SNMS by assuming suppressed points will
no longer suppress other points. The greedy implementation
has been proven to be as effective as the straightforward
implementation and much more efficient in the literature
[23, 24]. The greedy SMC implementation of SNMS is given
in Algorithm 3. It is clear that the greedy implementation
requires sorting the point first by its associated value, and this
procedure can be achieved at O(𝑛 log 𝑛) using proper sorting
algorithm.

4.3. Implementation of SNMS Sensor Selection. Given the
proposed SNMS above, the sensor selection via SNMS is
direct given the location and HIG of each sensor. Assume
the sensor network contains 𝑚 candidate sensors with fixed
and known position s𝑙 (𝑙 = 1, . . . , 𝑚), given the multitarget
prediction 𝜋𝑘+1|𝑘 = {𝑟

(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
}

𝑀
𝑘+1|𝑘

𝑗=1
at time 𝑘 + 1; we

present the SMC implementation of sensor selection via
SNMS inAlgorithms 4 and 5, respectively, for individual HIG
and sumHIG. In the following content, we refer to the sensor

Input: V𝑖
𝑘
, s𝑖 (𝑙 = 1, . . . , 𝑛), suppression gate 𝜖

(1) S𝑘 = {s1, . . . , s𝑛}, S𝑠𝑐𝑙𝑡𝑘 = 0

(2) sort S𝑘 givenV𝑖
𝑘
in descending order

(3) while S𝑘 ̸= 0 do
(4) take the first point sfirst from S𝑘
(5) for 𝑖 = 1, . . . , 𝑛 do
(6) if ||s𝑖 − sfirst|| ≤ 𝜖 then
(7) remove s𝑖 from S𝑘;
(8) S𝑠𝑐𝑙𝑡

𝑘
= S𝑠𝑐𝑙𝑡
𝑘

∪ {sfirst}
(9) end if
(10) end for
(11) end while

Output: S𝑠𝑐𝑙𝑡
𝑘

Algorithm 3: Spatial nonmaximum suppression (greedy).

Input:𝜋𝑘+1|𝑘, s𝑙 (𝑙 = 1, . . . , 𝑚)

(1) for 𝑗 = 1, . . . ,𝑀𝑘+1|𝑘 do
(2) for 𝑙 = 1, . . . , 𝑚 do

(3) predict z = ∑

𝐿
(𝑗)

𝑘+1|𝑘

𝑖=1
𝜔

(𝑗)

𝑖,𝑘+1|𝑘
ℎ

𝑙
(x(𝑗)
𝑖,𝑘+1|𝑘

)

(4) computeH(𝑗),𝑙
𝑘+1

given by (14)
(5) end for
(6) greedy SNMS to obtain S

(𝑗)

𝑘+1

(7) end for
Output: S𝑘+1 = 𝑢𝑛𝑖𝑞𝑢𝑒(∪

𝑀

𝑗=1
S
(𝑗)

𝑘+1
)

Algorithm 4: Sensor selection I (individual HIG).

Input: 𝜋𝑘+1|𝑘, s𝑙 (𝑙 = 1, . . . , 𝑚)

(1) for𝑗 = 1, . . . ,𝑀𝑘+1|𝑘 do
(2) for 𝑙 = 1, . . . , 𝑚 do

(3) predict z = ∑

𝐿
(𝑗)

𝑘+1|𝑘

𝑖=1
𝜔

(𝑗)

𝑖,𝑘+1|𝑘
ℎ

𝑙
(x(𝑗)
𝑖,𝑘+1|𝑘

)

(4) computeH(𝑗),𝑙
𝑘+1

given by (14)
(5) end for
(6) computeH𝑙

𝑘+1
given by (15)

(7) greedy SNMS to obtain S
𝑘+1

(8) end for
Output: S𝑘+1

Algorithm 5: Sensor selection II (sum HIG).

selection using individual HIG as “sensor selection I” and
using sumHIG as “sensor selection II”.The 𝑢𝑛𝑖𝑞𝑢𝑒() function
in Algorithm 4 eliminates repeatedly chosen sensor to ensure
that each sensor will only be updated once in the sequential
multi-Bernoulli filter.

In order to track targets accurately, we need to select
sensors with higherHIG and eliminate those with lowerHIG.
The underlying rationale of SNMS sensor selection is that
sensors with higher value of HIG are very likely to have some
targets near them since each sensor has only limited FOV.
Thus, sensors should be selected by seeking the local maxima
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given their spatial locations. A question may rise here: why
not use thresholding method to eliminate sensors with lower
HIG. Actually, the thresholding technique is inappropriate in
this case for two reasons: firstly, it may over select sensors
that observe the same targets; secondly, sensors that are
not so informative but actually useful may be eliminated
wrongly.

5. Simulation

In order to demonstrate the performance of proposed sensor
selection approach for multitarget tracking, we present a pla-
nar multitarget tracking scenario in a static sensor network,
in which 9 × 9 sensors were laid out uniformly over a square
of size [−1000m, 1000m] × [−1000m, 1000m] divided into
200m × 200m blocks. There are unknown and time-varying
number of targets observed in clutter while range and bearing
measurements from each sensor are available.

Targets can appear or disappear in the scene at any time,
and survival probability 𝑝𝑆 = 0.95 for each existing target.
Newborn targets appear spontaneously according to 𝛾𝑘 =

0.2N(⋅; x, 𝑄). Each target moves according to the constant
velocity model given by (1). Four targets are presented for
tracking purpose as illustrated in Figure 2.

The tracker, composed of SNMS sensor selection and
the sequential multi-Bernoulli filter, runs for 50 scans with
sampling period Δ = 1 s. The standard derivation of process
noise 𝜎V = 1m/s for both V𝑥,𝑘 and V𝑦,𝑘. The ℎ

𝑙
(x𝑘) of the

measurement model described by (2) is given as

ℎ

𝑙
(x𝑘) = [

[






p𝑘 − s𝑙





arctan
𝑦𝑙 − 𝑝𝑦,𝑘

𝑥𝑙 − 𝑝𝑥,𝑘

]

]

, (18)

in which ‖p𝑘 − s𝑙‖ = √(𝑥𝑙 − 𝑝𝑥,𝑘)
2
+ (𝑦𝑙 − 𝑝𝑦,𝑘)

2. The covari-
ance of measurement noise 𝑤𝑙

𝑘
for sensor 𝑙 at time 𝑘 is 𝑅𝑙

𝑘
=

diag([(𝜎𝑙
𝑟,𝑘
)

2
, (𝜎

𝑙

𝜙,𝑘
)

2
]), where

(𝜎

𝑙

𝑟,𝑘
)

2

= 𝜎0 + 𝛽𝑟






p𝑘 − s𝑙





2
,

(𝜎

𝑙

𝜙,𝑘
)

2

= 𝜎1 + 𝛽𝜙






p𝑘 − s𝑙





,

(19)

with 𝜎0 = 1m, 𝛽𝑟 = 5 × 10

−5m−1, 𝜎1 = 𝜋/180 rad,
𝛽𝜙 = 10

−5 rad⋅m−1.The FOV of each sensor is [−𝜋/2, +𝜋/2]×
[0, 500m] with clutter uniformly distributed over this inter-
val. The clutter rate of each sensor is 𝜆𝑐 = 5 per scan. The
probability of detection of sensor 𝑙 is modelled by

𝑝

𝑙

𝐷
(x𝑘) =

{
{

{
{

{

0.99






p𝑘 − s𝑙





≤ 𝑅1

0.99 − 𝑐






p𝑘 − s𝑙





𝑅1 <





p𝑘 − s𝑙





≤ 𝑅2

0






p𝑘 − s𝑙





> 𝑅2,

(20)

with 𝑅1 = 200m, 𝑅2 = 500m, and 𝑐 = 5 × 10

−4.
Birth parameters for the sequential multi-Bernoulli filter

are configured as x1 = [650m; −10m/s; 650m; −30m/s]𝑇,
x2 = [−300m; 15m/s; 300m; −15m/s]𝑇, x3 = [−650m;
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Figure 2: Target tracks. Start/stop positions for each track are shown
with ∙/◼. Blue dots are sensor locations.
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Figure 3: Comparison of OSPA distance.

15m/s; −450m; 0]

𝑇, x4 = [−300m; 30m/s; 500m; −2m/s]𝑇,
respectively, for each target, and 𝑄 = diag([(30m, 2m/s,
30m, 2m/s]2) is identical for all four targets. 𝐿min = 300

and 𝐿max = 1000 are the minimum and maximum particle
number of each Bernoulli set for track maintenance.

We first compare the tracking performance, respectively,
using sensor selection I and sensor selection II. The optimal
subpattern assignment (OSPA) metric composed of location
error and cardinality error is adopted for tracking perfor-
mance evaluation [25]. Figure 3 shows the OSPA distance
(𝑝 = 1, 𝑐 = 300m) comparison from 500 Monte Carlo
runs with SNMS gate 𝜖 = 500m. It can be seen that there
is only slight difference of the two selection approaches in
tracking performance and either sensor selection approach
can provide accurate target tracking. The difference occurs
near time 𝑘 = 10 and 𝑘 = 42 when there are target births and
deaths, and sensor selection using sum HIG has a relatively
large error than that using individual HIG.

To further illustrate the SNMS sensor selection and
multitarget tracking procedure, we take sensor selection II as
an example and present three consecutive frames of one trial
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Figure 4: Consecutive tracking frames. Blue dots stand for sensors that cannot detect any targets, and red ⬦ are sensors that can detect at
least one target. Blue line and ∘ are used for target track and current position, black ◻ for selected sensor, and red ∗ for target estimation.

run in Figure 4. It can be seen that all three figures contain
more than four sensors selected while there are only four real
targets even when targets are well separated. This is because
in the sequential multi-Bernoulli filter there are birth sets for
new born targets and legacy sets for temporally undetected
targets, and the SNMS sensor selection will treat all these sets
as potential targets and compute the sensor HIG with respect
to them. Thus, there are sensors selected to detect potential

targets, which guarantee that newborn targets can be recog-
nized and temporally missing target can be picked up again.
For example, the sequential multi-Bernoulli filter lost target
3 in Figure 4(b) and picked it up right away in Figure 4(c).
Trial runs of both selection approaches have been recorded in
videos attached as supplement materials (see Supplementary
Material available online at http://dx.doi.org/10.1155/2015/
148081) for demonstration.
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Figure 5: Comparison of different gates.

We also study the impact the SNMS gate 𝜖 has on the
sensor selection procedure. We set four different SNMS gates
𝜖𝑖 = 500, 1000, 1500, inf for 𝑖 = 1, 2, 3, 4 and perform 500
Monte Carlo runs on each gate for the two selectionmethods.
Figure 5 shows the simulation results of OSPA distance,
average selected sensor number, and average computation
time (algorithms are implemented in MATLAB 2012a on a
PC with 8GB RAM and Intel Core i7-4770k CPU). With
respect to sensor selection I, it is clear in Figure 5(a) that
the OSPA distance barely changes with the size of SNMS
gate while the number of allocated sensors and computation
time are big when 𝜖1 = 500, which indicates that 𝜖1 = 500

is too small to suppress less informative sensors. For sensor
selection II in Figure 5(b), we can see that with bigger gate the
OSPA distance increases and the number of selected sensors
decreases to 1 (minimum). This is because there are chances
of oversuppression when using sum HIG in SNMS sensor
selection. Taking 𝜖4 = inf as illustration, sensor selection
II actually only picks one most informative sensor among
the network and suppress all the other sensors, whereas the
most informative sensor can barely detect all targets for a
common case. Hence, bigger value of SNMS gate may cause
oversuppression in sensor selection II and consequently lose
targets. Nevertheless, the advantage of sensor selection II
over sensor selection I lies in fewer selected sensors and less
computation time given an appropriate SNMS gate.

To sum up, either of the proposed sensor selection
approachs is shown effective and efficient in the simulations.
Sensor selection with individual HIG will always provide

satisfactory tracking performance while the number of
selected sensors and computation time are relatively large. On
the other hand, sensor selection with sum HIG may suffer
from oversuppression with an inappropriately big SNMS gate
but it is much more efficient and can be as effective as sensor
selection I when using a proper SNMS gate.

6. Conclusion

In this paper, we propose a novel sensor selection method
for multitarget tracking in the static sensor network. We
provide the SMC implementation of the sequential multi-
Bernoulli filter to performmultisensor fusion for multitarget
tracking. With respect to sensor selection, we propose the
SNMS sensor selection approach by considering the locations
and HIGs of sensors and present the SMC implementation
of two SNMS sensor selection approaches, respectively, using
individual HIG and sum HIG. We thoroughly compare the
performance of two sensor selection approaches and analyze
the impact the SNMS gate has on either sensor selection
approach in simulations. It is shown by the simulation results
that either SNMS sensor selection approach is efficient and
effective for multitarget tracking in sensor network.

Our future work is to consider more challenging mea-
surement model, such as time-difference-of-arrival measure-
ment orDopplermeasurement, which is less informative than
the bearing and range sensor used in the simulation. Besides,
we will also analyze the proposed sensor selection method in
the heterogeneous sensor network.
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