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A B-spline empirical mode decomposition (BEMD) method is proposed to improve the celebrated empirical mode decomposition
(EMD) method. The improvement of BEMD on EMD mainly concentrates on the sifting process. First, instead of the curve that
resulted from computing the average of upper and lower envelopes, the curve interpolated by the midpoints of local maximal and
minimal points is used as the mean curve, which can reduce the cost of computation. Second, the cubic spline interpolation is
replaced with cubic B-spline interpolation on account of the advantages of B-spline over polynomial spline. The effectiveness of
BEMD compared with EMD is validated by numerical simulations and an application to find the basis functions of EMI signals.

1. Introduction

The rapid progress of electronic equipment leads tomore and
more serious electromagnetic interference (EMI) problems,
which will reduce the efficiency of devices. Thus great
attentions have been paid to the design of electromagnetic
compatibility (EMC) in order to eliminate EMI [1–3]. EMI
usually results from many sources but only the mixed signal
is known. In order to obtain the useful signal, the EMI noises
should be subtracted from the mixed signal. However, the
component signals from different sources cannot be distin-
guished directly and easily. Fortunately, the EMI noises and
the useful signals often fall in different range of frequencies.
Based on this, the EMI noise can be determined and reduced
after the mixed signal is decomposed into basis functions of
different frequencies.

Traditional signal decomposition methods like Fourier
transform (FT) and wavelet transform (WT) are frequently
used to process signals, but they cannot be used to decompose
EMI signals effectively since the majority of EMI signals are
nonlinear and nonstationary. As is well known, there are
certain crucial restrictions on the use of FT and WT. FT
is strictly limited to linear and stationary signals. Other-
wise, the resulting Fourier spectrum will have little physical
significance. WT is basically appropriate for linear signals

and is not an adaptive method since the elementary wavelet
function has to be selected beforehand, which cannot match
the varying nature of the original signals [4, 5].

To overcome the disadvantages of FT and WT, Huang et
al. have proposed the empirical mode decomposition (EMD)
method [6]. By now, EMD has been applied successfully to
many fields such as machinery, medicine, and oceanics [7–
9]. EMD is an adaptive method because it can decompose
the signal into some intrinsic mode functions (IMFs) that are
determined by the signal itself. One of the most important
steps of EMD is to determine the mean curve by computing
the average of upper and lower envelopes, which are the
cubic spline interpolations of maxima and minima points,
respectively. But it needs a great deal of calculations and will
cause mode mixing problems and overshoot and undershoot
problems sometimes. In [10, 11], Chen et al. investigate
alternative decomposition algorithms using moving mean
averages of the extrema as combinations of B-splines. Accord-
ing to their idea, the mean curve does not pass through the
local midpoints, which will lead to bigger local errors. In
fact, their goal is merely to establish a firmer mathematical
foundation for EMD. Recently, Wang and Li. have proposed
the extreme-point symmetric mode decomposition (ESMD)
method [12]. Rather than constructing two outer envelopes,
the sifting process of ESMD is implemented by the aid of
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some inner curves interpolated by the midpoints of the line
segments connecting the local maxima and minima points.
Thus ESMD costs less than EMD.

In order to improve these decomposition methods, we
present a B-spline empirical mode decomposition (BEMD)
method in this paper by replacing the cubic spline interpo-
lation in ESMD with the cubic B-spline interpolation.There-
fore, BEMD will not only be more adaptive but also cost less
than EMD. The rest of this paper is organized as follows. In
Section 2, we provide a brief description of the EMDmethod.
Section 3 introduces the basic theory of B-spline interpo-
lation and discusses its advantages over polynomial spline
interpolation. In Section 4, the BEMD method is proposed
and analyzed. Section 5 provides the experimental results to
demonstrate the validity of BEMD compared with EMD and
ESMD. Finally, some conclusions are drawn in Section 6.

2. The EMD Method

Theessence of EMD is to identify the IMFs through a series of
sifting processes empirically. IMFs are supposed to satisfy two
conditions: the difference between the number of the extreme
points and that of zero crossing points must less than one;
the local mean value of the upper and lower envelope at any
point should be zero. For a given discrete signal 𝑠(𝑡), themain
procedures of EMD are as the following [6]:

(i) Connect all the local maxima and minima points of
the signal by cubic spline interpolation to construct the upper
envelope and lower envelope, respectively.

(ii) Calculate themean curve𝑚
11
(𝑡) of two envelopes and

extract the difference between 𝑠(𝑡) and𝑚
11
(𝑡) as

ℎ
11
(𝑡) = 𝑠 (𝑡) − 𝑚

11
(𝑡) . (1)

Ideally, ℎ
11
(𝑡)will be the first IMF. Otherwise, take it as a new

signal and repeat the above steps:

ℎ
12
(𝑡) = ℎ

11
(𝑡) − 𝑚

12
(𝑡) ,

ℎ
13
(𝑡) = ℎ

12
(𝑡) − 𝑚

13
(𝑡) ,

.

.

.

(2)

until it satisfies the two conditions, which are commonly
represented by controlling the standard deviation (SD) to lie
in [0.2, 0.3]:

SD =

𝑇

∑

𝑡=0

(





ℎ
1(𝑘−1)

(𝑡) − ℎ
1𝑘
(𝑡)






2

(ℎ
1(𝑘−1)

(𝑡))
2

) . (3)

Then the first IMF is obtained as 𝑐
1
(𝑡) = ℎ

1𝑘
(𝑡).

(iii) Let the residual 𝑟
1
(𝑡) = 𝑠(𝑡) − 𝑐

1
(𝑡) be a new signal.

Repeat the above process to obtain the other IMFs 𝑐
𝑖
(𝑡) and

the residuals

𝑟
2
(𝑡) = 𝑟

1
(𝑡) − 𝑐

2
(𝑡) ,

𝑟
3
(𝑡) = 𝑟

2
(𝑡) − 𝑐

3
(𝑡) ,

.

.

.

(4)

until the residual 𝑟
𝑛
(𝑡) turns into a monotonic function.

Finally, the original signal 𝑠(𝑡) can be expressed as

𝑠 (𝑡) =

𝑁

∑

𝑖=1

𝑐
𝑖
(𝑡) + 𝑟

𝑛
(𝑡) . (5)

Using EMD, the original signal can be decomposed into a
set of data-driven basis functions, which is actually themono-
component signals. ESMD is similar to EMD, but the mean
curve in its sifting process is constructed by connecting the
midpoints of local extrema using cubic spline interpolation.
So ESMD is more adaptive and economic than EMD.

3. The B-Spline Interpolation

For given increasing sequences {𝜏
𝑗
, 𝑗 ∈ 𝑍}, the 𝑗th B-spline

of order 𝑘 is defined by the 𝑘th order divided difference:

𝐵
𝑗,𝑘,𝜏

(𝑡)fl (𝜏
𝑗+𝑘

− 𝜏
𝑗
) [𝜏
𝑗
, . . . , 𝜏

𝑗+𝑘
] (⋅ − 𝑡)

𝑘−1

+
, 𝑡 ∈ 𝑅. (6)

These B-splines form a basis for the space of splines of order
𝑘 with knots {𝜏

𝑗
, 𝑗 ∈ 𝑍}. Given a set of 𝑛 + 1 data points

𝐷
0
, 𝐷
1
, . . . , 𝐷

𝑛
, the B-spline interpolation results in the

following approximate curve [13]:

𝑦 (𝑥) =

𝑛

∑

𝑗=0

𝑀
𝑗,𝑘,𝜏

𝐵
𝑗,𝑘,𝜏

(𝑥) , (7)

where𝑀
𝑗,𝑘,𝜏

, 𝑗 = 0, 1, . . . , 𝑛 are 𝑛+1 unknown control points.
When the order of the B-spline is 𝑘 = 3, they can be obtained
quickly similar to those of the cubic spline interpolation by
solving a symmetric tridiagonal Toeplitz linear equations
using the chasing method:

𝑇𝑥 = 𝑏, (8)
where

𝑇 = (

4 1

1 4 d

d d 1

1 4

) (9)

and the right-hand vector 𝑏 can be computed directly by the
given data points according to different kinds of boundary
conditions.

It is well known that B-spline, or basis spline, is a
spline function that has minimal support with respect to a
given degree, smoothness, and domain partition [13]. As it
possesses better local properties than the polynomial spline,
we replace the cubic spline interpolation with cubic B-spline
interpolation for establishing the BEMDmethod.

As for the simulation signal
𝑠 (𝑡) = 𝑠

1
(𝑡) + 𝑠

2
(𝑡) + 𝑠

3
(𝑡) , 𝑡 ∈ [−𝜋, 𝜋] , (10)

where

𝑠
1
(𝑡) = 3 cos(5𝜋𝑡 + 𝜋

2

) ;

𝑠
2
(𝑡) = 2 cos (4𝜋𝑡) ;

𝑠
3
(𝑡) = sin (2𝜋𝑡) ,

(11)
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Figure 1: Comparisons between the mean curves of EMD, ESMD,
and BEMD.

different methods are used to construct its mean curves
and the result is exhibited in Figure 1. It can be seen that
differing from those of ESMD and BEMD, the mean curve of
EMD constructed by computing the average of the upper and
lower envelopes does not pass through the midpoints of local
extrema, which will produce bigger local errors. The mean
curve of BEMD almost overlaps that of ESMD. However, it is
more adaptive because of the better local property of B-spline.

4. The BEMD Method

On purpose of improving EMD and ESMD, we present a B-
spline empirical mode decomposition (BEMD) method in
this section by using the cubic B-spline interpolation instead
of the cubic spline interpolation to construct the mean curve.
For a given discrete signal 𝑠(𝑡), themain procedures of BEMD
are as follows:

(i) Find all the local extreme points of 𝑠(𝑡); then compute
the midpoints of all the adjacent maximal and mini-
mal points.

(ii) Construct the mean curve 𝑚
11
(𝑡) by the cubic B-

spline interpolation of theses midpoints.

(iii) Extract the difference between 𝑠(𝑡) and 𝑚
11
(𝑡) as (1)

and calculate the standard deviation (SD) as (3). If it
lies in [0.2, 0.3], ℎ

11
(𝑡) is the first IMF. Otherwise, take

ℎ
11
(𝑡) as a new signal and repeat the above steps as

in (2) until SD falls in [0.2, 0.3]. Then the first IMF is
obtained as 𝑐

1
(𝑡) = ℎ

1𝑘
(𝑡).
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Figure 2: The simulation signal𝑚(𝑡) and its component signals.

(iv) Let the residual 𝑟
1
(𝑡) = 𝑠(𝑡) − 𝑐

1
(𝑡) be a new signal.

Repeat the above process to obtain the other IMFs and
residuals as in (4) until the residual 𝑟

𝑛
(𝑡) turns into a

monotonic function. Finally, the original signal 𝑠(𝑡)
can be expressed as (5).

As is seen from the above, only one interpolation is
needed in every sifting process of ESMD and BEMD. More-
over, the cost of the cubic B-spline interpolation in BEMD is
the same as that of the cubic spline interpolation in EMD and
ESMDbecause they all can be implementedmainly by solving
the same kind of linear equations in (8). Thus the computa-
tional complexities of generating the mean curves in BEMD
and ESMD are both the half of that of EMD. Although ESMD
and BEMD require almost the same cost of computation,
BEMD is more adaptive than ESMD since the cubic B-spline
interpolation rather than the cubic spline interpolation is
used in BEMD.

5. Simulation Evaluations and Applications

5.1. Applications to Simulation Signals. In order to demon-
strate the validity of BEMD, we compare it with EMD and
ESMD by decomposing the simulation signal 𝑚(𝑡), which is
formed by adding a white Gaussian noise to a useful signal
with a signal-to-noise ratio (SNR) of 10 db:𝑚(𝑡) = 𝑠(𝑡) + 𝑛(𝑡),
where 𝑠(𝑡) is given in (10) with a sample rate of 25Hz and
𝑛(𝑡) is a white Gaussian noise. The mixed signal 𝑚(𝑡) and
its components are shown in Figure 2. As is well known,
the white Gaussian noise is nonlinear and nonstationary, so
𝑚(𝑡) is also nonlinear and nonstationary. As for 𝑚(𝑡), the
IMFs that resulted from EMD, ESMD, and BEMD are shown
in Figures 3(a)–3(c), respectively. Moreover, the component
signals of the original signal 𝑠(𝑡) and the white Gaussian
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Figure 3: (a) Decomposition results of 𝑚(𝑡) by EMD. (b) Decomposition results of 𝑚(𝑡) by ESMD. (c) Decomposition results of 𝑚(𝑡) by
BEMD.

noise are exhibited along with their corresponding IMFs for
comparison.

In Figure 3(a), the IMF1 that resulted from EMD is close
to the white Gaussian noise and IMF2 is close to 𝑠

1
(𝑡)

even though there exist some big local errors due to some
mode mixing problems, but the IMF3 and IMF4 are awfully
different from 𝑠

2
(𝑡) and 𝑠

3
(𝑡) on account of some overshoot

and undershoot problems. As is seen from Figure 3(b), the
local errors between the component signals of 𝑠(𝑡) and IMFs
resulted from ESMD decrease obviously. But there still exist
somemodemixing problems in its IMF2 and some overshoot
and undershoot problems in its IMF3 and IMF4. As for
BEMD, Figure 3(c) shows the mode mixing problem and
overshoot and undershoot problems almost disappear. Its
first four IMFs overlap with the waveforms of the white
Gaussian noise and the component signals of 𝑠(𝑡) more
closely than those of EMD and ESMD, which indicates
BEMD is more adaptive than EMD and ESMD.

More precisely, we compute the error norms Err
𝑖
(𝑖 =

1, 2, 3, 4) between IMFs and their corresponding component
signals as

Err
𝑖
=




IMF
𝑖
− 𝑠
𝑖




2

. (12)

Table 1: The error norms and residual norms of different methods
for𝑚(𝑡).

Methods Err
1

Err
2

Err
3

Err
4

Residual
norms

EMD 16.4533 26.8690 29.2602 14.5817 2.4377
ESMD 4.6565 22.1711 28.3135 16.2516 8.0051
BEMD 4.7741 7.5115 8.3750 7.6419 5.1614

The smaller the error norm is, the closer the IMF is to the
component signal. The error norms and the norms of the
residuals are listed in Table 1, where Err

1
, Err
2
, Err
3
, and Err

4

denote the error norms between the white Gaussian noise
𝑛(𝑡) and IMF1, 𝑠

1
(𝑡) and IMF2, 𝑠

2
(𝑡) and IMF3, and 𝑠

3
(𝑡) and

IMF4, respectively.
As is shown in Table 1, the error norms of BEMD are

all smaller than those of EMD and ESMD, which is in
accordance with the results provided in Figure 3. Besides, the
residual norm of BEMD is bigger than that of EMD and is
less than that of ESMD. According to Huang’s theory in [11],
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Figure 4: The EMI signal 𝑦(𝑡) and its component signals.

the residual can be either the mean trend or a constant. In
fact, the evaluation of a EMD-like method depends on not
the value of its residual norm but whether the signal can
be decomposed into physically meaningful representations.
Therefore, the results in Figure 3 and Table 1 both show that
BEMD outperforms EMD and ESMD for decomposing the
nonlinear and nonstationary simulation signal𝑚(𝑡).

5.2. Applications to EMI Signals. As is well known, there are
a large scale of amplitude modulation (AM) and frequency
modulation (FM) signals in our surrounding environment
such as radio signals, radar signals, and sonar signals [14, 15],
which can influence the normal status of equipment. In order
to reduce electromagnetic interference by subtracting the
noise components from the mixed signal, the basis functions
corresponding to the EMI noises should be found first using
certain decomposition methods. According to the theory of
EMD-like methods, the intrinsic mode functions (IMFs) can
be regarded as the basis functions because they are some
physically meaningful representations of the signal [11].

As for a harmonic wave 𝑦
1
(𝑡) = cos(2𝜋𝑡) with a sample

rate of 100Hz, when it is interfered by two FM signals 𝑦
2
(𝑡) =

cos(20𝜋𝑡 + 2 sin(2𝑡)) and 𝑦
3
(𝑡) = cos(500𝜋𝑡 + 2 sin(2𝑡)) and

a white Gaussian noise𝑤(𝑡) with a SNR of 20 db, it forms the
following nonlinear and nonstationary EMI signal:

𝑦 (𝑡) = 𝑦
1
(𝑡) + 𝑦

2
(𝑡) + 𝑦

3
(𝑡) + 𝑤 (𝑡) , 𝑡 ∈ [0, 2𝜋] , (13)

which is shown in Figure 4. We decompose 𝑦(𝑡) by EMD,
ESMD, and BEMD and show the results in Figure 5.

As is shown in Figure 5(a), the IMF1 and IMF2 overlap
with the component signal 𝑦

3
(𝑡) and 𝑦

2
(𝑡) well. But there

exists an obvious mode mixing problem of IMF3 even
though it behaves like the harmonic wave 𝑦

1
(𝑡). Besides, the

decomposition results do not include a corresponding IMF to

Table 2: The error norms of different methods for 𝑦(𝑡).

Methods Err
1

Err
2

Err
3

Err
4

EMD — 9.2599 3.8289 3.8118
ESMD — 3.9242 — 2.6267
BEMD 3.4426 7.3495 2.0984 1.5690

thewhite Gaussian noise𝑤(𝑡). In Figure 5(b), IMF1 and IMF8
behave as the waveform of 𝑦

3
(𝑡) and 𝑦

1
(𝑡) well. However,

there is no IMF that corresponds to 𝑦
2
(𝑡) or the white

Gaussian noise 𝑤(𝑡). In addition, the IMF2, IMF3, and IMF4
have severemodemixing problems. As for the decomposition
results of 𝑦(𝑡) by BEMD in Figure 5(c), its IMF1, IMF2,
IMF3, and IMF7 exactly show the waveforms of 𝑦

3
(𝑡), the

white Gaussian noise 𝑤(𝑡), 𝑦
2
(𝑡), and 𝑦

1
(𝑡), respectively. In

a word, BEMD produces more meaningful IMFs than EMD
and ESMD and it can alleviate the mode mixing problem.

More accurately, the error norms Err
𝑖
(𝑖 = 1, 2, 3, 4) as in

(12) are computed and listed in Table 2, where Err
1
, Err
2
, Err
3
,

and Err
4
denote the error norms between 𝑤(𝑡), 𝑦

1
(𝑡), 𝑦
2
(𝑡),

𝑦
3
(𝑡), and their corresponding IMFs, respectively. When

the decomposition results cannot give the corresponding
meaningful IMF of a component signal of 𝑦(𝑡), the error
norm will be denoted as “—” in Table 2.

As is shown in Table 2, the decomposition results of
BEMD include more meaningful IMFs than those of EMD
and the error norms of BEMD are all less than the existing
ones of EMD. As for ESMD, its Err

4
is bigger than that of

BEMD and its Err
2
is less than that of BEMD. However, the

decomposition results of BEMD include two more meaning-
ful basis functions than those of ESMD.

As for an AM signal 𝑧
1
(𝑡) = (1 + cos(𝜋𝑡)) cos(2𝜋𝑡) with

a sample rate of 100Hz, when it is interfered by an FM signal
𝑧
2
(𝑡) = cos(500𝜋𝑡 + 2 sin(2𝑡)) and a white Gaussian noise

V(𝑡)with a SNR of 20 db, it forms the following nonlinear and
nonstationary EMI signal:

𝑧 (𝑡) = 𝑧
1
(𝑡) + 𝑧

2
(𝑡) + V (𝑡) , 𝑡 ∈ [0, 2𝜋] , (14)

which is shown in Figure 6. We decompose the AM-FM
signal 𝑧(𝑡) by EMD, ESMD, andBEMDand exhibit the results
in Figure 7.

As is shown in Figure 7, all the IMF1 and IMF2 behave as
the waveforms of 𝑧

2
(𝑡) and V(𝑡) well. The difference of three

decomposition results mainly lies in the IMFs corresponding
to 𝑧
1
(𝑡). Although the IMF4 in Figure 7(a) and the residual in

Figure 7(b) are close to 𝑧
1
(𝑡), there exist some obvious local

errors. As to the residual in Figure 7(c), it overlaps with 𝑧
1
(𝑡)

more closely, which indicates that the residual of BEMD rep-
resents the trend of 𝑧(𝑡) better than those of EMD and ESMD.

More clearly, the error norms Err
𝑖
(𝑖 = 1, 2, 3, 4) as in (12)

are computed and listed in Table 3, where Err
1
, Err
2
, and Err

3

denote the error norms between V(𝑡), 𝑧
1
(𝑡), 𝑧
2
(𝑡), and their

corresponding IMFs, respectively. As is seen from Table 3,
all the error norms of BEMD are less than those of EMD



6 Mathematical Problems in Engineering

−1

0

1

Re
sid

ua
l

2 4 60

−1

0

1

IM
F8

2 4 60

−1

0

1

IM
F7

2 4 60

−1

0

1

IM
F6

2 4 60

−1

0

1

IM
F5

2 4 60

−1

0

1

IM
F4

2 4 60

−1

0

1

IM
F3

2 4 60

−1

0

1

IM
F2

2 4 60

−1

0

1

IM
F1

2 4 60

(a)
2 4 60

2 4 60

2 4 60

2 4 60

2 4 60

2 4 60

2 4 60

2 4 60

2 4 60

−1

0

1

Re
sid

ua
l

−1

0

1

IM
F8

−1

0

1

IM
F7

−1

0

1

IM
F6

−1

0

1

IM
F5

−1

0

1

IM
F4

−1

0

1

IM
F3

−1

0

1

IM
F2

−1

0

1

IM
F1

(b)
2 4 60

2 4 60

2 4 60

2 4 60

2 4 60

2 4 60

2 4 60

2 4 60

2 4 60
−1

0

1

IM
F1

−1

0

1

IM
F2

−1

0

1

IM
F3

−1

0

1

IM
F4

−1

0

1

IM
F5

−1

0

1

IM
F6

−1

0

1

IM
F7

−1

0

1
IM

F8

−1

0

1

Re
sid

ua
l

(c)

Figure 5: (a) Decomposition results of 𝑦(𝑡) by EMD. (b) Decomposition results of 𝑦(𝑡) by ESMD. (c) Decomposition results of 𝑦(𝑡) by BEMD.

Table 3: The error norms of different methods for 𝑧(𝑡).

Methods Err
1

Err
2

Err
3

EMD 2.9022 15.3004 2.5125
ESMD 3.3348 4.3362 3.1363
BEMD 1.9422 0.9949 1.6007

and ESMD.Therefore, BEMDperforms better than EMDand
ESMD for finding the basis functions of the nonlinear and
nonstationary EMI signals.

6. Conclusions

Based on ESMD and the cubic B-spline interpolation, we
have presented a new improved form of EMD, which is called
BEMD. The mean curve in the sifting process of BEMD is

constructed by the cubic B-spline interpolation of the local
midpoints, which can not only increase the adaptivity but
also decrease the computation cost of EMD.The comparison
results of the simulation signal show that BEMD performs
better than EMD and ESMD. Moreover, BEMD is verified to
be more effective than EMD and ESMD for finding the basis
functions of EMI signals.
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Figure 6: The EMI signal 𝑧(𝑡) and its component signals.
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Figure 7: (a) Decomposition results of 𝑧(𝑡) by EMD. (b) Decomposition results of 𝑧(𝑡) by ESMD. (c) Decomposition results of 𝑧(𝑡) by BEMD.
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