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Traditional visual pedestrian tracking methods perform poorly when faced with problems such as occlusion, illumination changes,
and complex backgrounds. In principle, collecting more sensing information should resolve these issues. However, it is extremely
challenging to properly fuse different sensing information to achieve accurate tracking results. In this study, we develop a pedestrian
trackingmethod for fusingmultisource heterogeneous sensing information, including video, RGB-D sequences, and inertial sensor
data. In our method, a RGB-D sequence is used to position the target locally by fusing the texture and depth features. The local
position is then used to eliminate the cumulative error resulting from the inertial sensor positioning. A camera calibration process
is used to map the inertial sensor position onto the video image plane, where the visual tracking position and the mapped position
are fused using a similarity feature to obtain accurate tracking results. Experiments using real scenarios show that the developed
method outperforms the existing tracking method, which uses only a single sensing dataset, and is robust to target occlusion,
illumination changes, and interference from similar textures or complex backgrounds.

1. Introduction

Visual pedestrian tracking is an important research sub-
ject in computer vision. Many object tracking methods for
visual pedestrian tracking have been developed recently.
In typical methods, time series information, such as the
Kalman filter [1] and the particle filter [2], is used for
tracking. Recently, sparse representation and compressed
sensing theories have also been introduced to represent
target features in visual tracking [3, 4]. However, traditional
visual tracking methods perform poorly in the presence
of challenges such as target occlusion, objects with similar
appearances, background changes, and illumination changes.
To solve these problems, researchers are increasingly fusing
various sensors for target tracking [5, 6]. These methods
can be generally divided into two types. The first type is
the passive method in which the target does not participate
in the tracking process. For example, Ros and Mekhnacha
developed a Bayesian occupancy filter for human tracking
by fusing different types of sensing information [7]. Kang
et al. developed a robust body tracking method by fusing

visual and thermal images [8]. The second type is the active
tracking method in which the target participates in the
tracking process via wearable or carry-on sensors, such as
MEMS inertial sensors, which can be used to locate the target
from acceleration and gyroscope sensing information. The
passive and active pedestrian tracking methods have their
respective advantages for different application scenarios. The
passive method is often used in public field surveillance
where the target is unaware of being tracked. The active
method can be used for self-navigation. However, some
applications demand robust tracking performance, such as
elder care, child protection, and criminal surveillance, for
which neither the passive nor the active tracking methods
produce satisfactory performance. For these cases, using
wearable sensors combined with passive visual sensors is
an ideal tracking solution. In this study, we developed a
pedestrian tracking method that integrates the passive and
active tracking methods. We used heterogeneous sensors,
including Android smartphones, Kinect cameras, and video
cameras, to implement pedestrian tracking and positioning
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Figure 1: Multisensor pedestrian tracking scenario.

over a large range (see Figure 1). Different sensing data were
fused in the tracking procedure to obtainmore robust results.

In principle, using different sensors for tracking should
improve tracking efficiency and accuracy. However, many
challenges must be met to realize these improvements, such
as the spatial and temporal alignment of different sensing
data, developing data and feature representations of different
types of data, and the use of a proper fusion method for
heterogeneous data. In this study, these issues were explored
using video, depth, and inertial sensing data for pedestrian
tracking. Figure 2 shows how multisource heterogeneous
sensing data were aligned, processed, represented, and fused
at different levels using different methods. The two primary
contributions of this study are as follows: (1) RGB-D data that
were captured by the depth sensor were used to eliminate
the cumulative error from the inertial sensor positioning,
which is a critical issue in using inertial sensors for long-term
tracking; and (2) the resulting inertial sensor positions were
fused with visual tracking results to solve target occlusion,
illumination changes, and other difficult problems in tradi-
tional visual tracking. The developed method was tested by
constructing amultisource sensing platform that was verified
using data captured from real scenarios. The experimental
results showed that the developed method exhibited good
position and tracking performance.

The rest of the paper is structured as follows. In Section 2,
the inertial sensor positioning with depth correction is
presented. The fusion of inertial sensor positioning and
visual tracking is described in Section 3. The experimental
results are presented in Section 4. The paper is concluded in
Section 5.

2. Inertial Sensor Positioning with
Depth Correction

2.1. Target Positioning with Inertial Sensor. The inertial sensor
consisted of an acceleration sensor and a gyroscopic sensor.
The acceleration sensor was used to obtain a sequence of
changes in the three acceleration components. We deter-
mined the relationship between the step length and its dura-
tion from a set of sequence samples. We used the gyroscopic
sensor to obtain the angular rotation speed around three
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Figure 2: Multisource heterogeneous data fusion for pedestrian
tracking.

axes: roll, pitch, and yaw. The inertial sensor positioning
process in this study consisted of the following primary
steps: gait detection from the acceleration data, calculating
the step length according to the time, obtaining steering
information from the gyroscope data, and calculating the
location coordinates.

2.1.1. Gait Detection fromAcceleration Data. First, we defined
a coordinate system for thewalkingmotion of the test subject.
The positive 𝑥-axis was taken to be the direction of the
forwardmotion of the test subject, and the 𝑦-axis was defined
as the line that was perpendicular to and in the same plane
as the 𝑥-axis. The 𝑧-axis was defined as being perpendicular
to the 𝑥-𝑦 plane. The values of all three coordinates changed
with motion of the test subject. The 𝑍-component of the
accelerationwas found to be periodic and themost significant
one of the three components.The variation in the acceleration
is shown in Figure 3.

The plot of the three components of the acceleration
shows that the 𝑍-component of the acceleration was clearly
more periodic than the other 𝑋- and 𝑌-components. Thus,
a gait could be detected from the variation in the vertical
acceleration during the walking motion of the test subject,
which was in turn used to determine the number of steps
taken by the test subject. The gait detection results are shown
in Figure 4.

2.1.2. Calculation of Step Length. Walking speed varies among
individuals; thus, different test subjects were trained over
different time periods to calculate the step length.

The following training procedure was used. Many ses-
sions were conducted in which the test subject was instructed
to walk with different step lengths, where the step length and
timeweremeasured for each step.Weused the results ofmany
training sessions to construct a graph of the time-dependent
step length, which is shown in Figure 5. Longer steps took
more time, and shorter steps took less time. A program was
used to fit the data points with a straight line. The equation
of this straight line was the time-length formula for the test
subject.

When the acceleration sensor was used to locate the tar-
get, we used the duration of each step and the time-step length
formula to calculate the step length. Although significantly
more accurate methods are available for calculating the step
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Figure 3:𝑋-, 𝑌-, and 𝑍-components of acceleration.
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length, our method was fast, highly efficient, and sufficiently
precise for most cases, thereby satisfying our experimental
needs.
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Figure 5: Step length as a function of time.

2.1.3. Obtaining Steering Information from Gyroscope Data.
The steering angle of the human body has three components
that correspond to rotation around three axes, namely, hori-
zontal roll, vertical pitch, and perpendicular yaw, as shown in
Figure 6.

We primarily used the yaw angle to determine steering
information for the test subject. We used the gyroscope to
directly obtain the angular velocity in all three directions,
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from which we calculated the steering angle. However, the
sensor was not placed very accurately in most cases, and
we could not ensure that the three axes of the sensor were
coincident with those of the test subject. Thus, we had to
correct the yaw value to increase the accuracy of the results.
The steering angle of the target was calculated as follows:

Ψ𝑘+1 = Ψ𝑘 + Ε𝑏2𝑛,𝑘 ⋅ (𝜔̃𝑏,𝑘 − 𝜔̂
bias
𝑏,𝑘
) ⋅ Δ𝑡,

Ε𝑏2𝑛,𝑘 = (

1 sin 𝜃 tan𝜙 cos 𝜃 tan𝜙
0 cos 𝜃 − sin 𝜃

0

sin 𝜃
cos𝜙

cos 𝜃 cos𝜙
) ,

(1)

where 𝑘 denotes the timestamp of the current measurement,
Ψ denotes the Euler angle matrix (consisting of the three
angles of the roll, pitch, and yaw), Ε𝑏2𝑛 denotes the rotation
rate correction matrix between the body and navigation
frame, 𝜔̃𝑏 denotes the vector of the measured angular rate,
𝜔̂
bias
𝑏

denotes the intrinsic error estimation of the angular rate,
Δ𝑡 denotes the time interval between twomeasurements, and
𝜃 and 𝜙 denote the roll and pitch, respectively.

2.1.4. Calculation of Location Coordinates. We calculated the
location coordinates using

𝑥𝑡 = 𝑥𝑡−1 + 𝐿 𝑡 ⋅ cos 𝜃𝑡,

𝑦𝑡 = 𝑦𝑡−1 + 𝐿 𝑡 ⋅ sin 𝜃𝑡,
(2)

and the known values of the length and steering angle of each
step: 𝑡 > 0 denotes the current step number, 𝐿 𝑡 denotes the
length of the 𝑡th step, and 𝜃𝑡 denotes the direction at the 𝑡th
step, which represents the accumulated angle from step 1 to 𝑡.

We calculated the subsequent position of the target
from its current coordinates using the step distance and
the steering angle of each step. However, a very large error
accumulated as the tracking time increased, representing a
critical problem with the inertial sensor positioning method.
There were many potential sources of error. The primary
source of errormayhave been the inaccurate estimation of the
intrinsic error in the gyroscopic sensor’s angular speed 𝜔̂bias

𝑏
.

Other sources of this cumulative error were the installation

of the sensors and the individual walking postures. Although
various methods are available to correct the cumulative
positioning error produced by inertial sensors, thesemethods
perform poorly for long-term tracking. We overcame this
problem by correcting the cumulative error using the RGB-D
data captured by the depth camera.

2.2. Positioning Using the RGB-D Sequence. A depth camera,
such as a Kinect, can simultaneously capture visual and
depth information, namely, the RGB-D sequence, making
the three-dimensional position of the target easy to obtain.
The primary task of RGB-D sequence-based tracking is to
construct a dynamic tracking model. Here, we implemented
dynamic tracking using a particle filter tracking framework.
In the visual particle filter model, RGB-D data are used to
represent the target features. We described the features of the
test subject in both the visual and depth domains and then
defined the fusion features of the RGB-D data.

The HSV color model is considered to be consistent with
human color perception and robust to light changes. Thus,
we used HSV color to represent the visual images of the
RGB-D sequence. For a target with a rectangular image area,
the histogram in HSV space was computed as the target
visual feature, which is usually represented in vector form;
that is, 𝐻 = [ℎ1, . . . , ℎ𝑖, . . . , ℎ𝑛]

𝑇, where 𝑛 is the number
of bins and ℎ𝑖 is the frequency of the 𝑖th grade. Compare
with visual sequences, fewer features can be represented by
depth data. The depth data that were captured by the current
RGB-D camera exhibited poor precision; thus, we used a
simple shape-based feature to represent the depth feature of
the RGB-D sequence. Specifically, we transformed the depth
area of the target into a binary image, where entry values of
unity represented the human body and entry values equal to
zero represented the background or other objects.The binary
depth feature was computed using the following function:

𝐵 (𝑥, 𝑦) =

{

{

{

1, if 󵄩󵄩󵄩󵄩
󵄩
Dp (𝑥, 𝑦) − Dp󵄩󵄩󵄩󵄩

󵄩
≤ 𝜀,

0, else,
(3)

where Dp(𝑥, 𝑦) denotes the depth at (𝑥, 𝑦) in the target
area, Dp denotes the average depth of the target area,
and 𝜀 is a threshold value that was assigned based on
experience. Figure 7 shows the procedure for generating
the binary depth image. Once the depth binary image was
created, the depth feature of the target was represented as
𝐷 = [𝑑1, . . . , 𝑑𝑖, . . . , 𝑑𝑚]

𝑇 by concatenating the entries of the
binary image.

First, we defined the similarity feature for the visual and
depth features to integrate the visual and depth features into
a uniform representation for tracking. Here, we adopted the
Bhattacharyya distance as the visual similarity. The depth
similarity is defined as the ratio of the shared area between
the observation particle and the template to the template
foreground.Thus, the similarity of the fused visual and depth
features is defined as the product of the visual and depth
similarities. The similarity of the RGB-D feature was used
to implement the dynamic tracking in the RGB-D sequence
using particle matching.
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Figure 7: Binary image representation of depth feature.

2.3. Inertial Sensor Position with Depth Correction. Applying
the inertial sensor positioning method over long tracking
periods results in a critical cumulative error. The depth
position and tracking were highly accurate, but the tracking
scale was limited to the local area. Thus, we developed a
depth correction for the inertial sensor position method. In
this method, the depth camera positioning result was used to
correct the cumulative error of the inertial sensor positioning
results. The correction method consisted of determining
a mapping that transformed the inertial sensor position
trajectory into a new trajectory that was consistent with the
local positioning result in the depth camera frame (Figure 8).
Here, we used a thin plate spline (TPS) to construct the
transformation.

The TPS is a nonrigid spline mapping function that offers
advantages such as considerable flexibility, global smoothing,
and ease of computation [9]. Here, the TPS was as a mapping
𝑓 : 𝑅
2
→ 𝑅
2 that was obtained by aligning two sets of points

on the reference and the target. The TPS transformation
for the inertial sensor positioning reference trajectory 𝐻1

and the corrected target trajectory𝐻2 was determined using
the following corresponding control point sets that were
simultaneously positioned by the inertial sensor and depth
camera:

𝑀𝑘 = {𝐻𝑘𝑗 | 𝐻𝑘𝑗 = (𝑥𝑘𝑗, 𝑦𝑘𝑗) , 𝑗 = 1, . . . ,𝑀, 𝑘 = 1, 2} ,

(4)

where 𝑀1 denotes the inertial sensor positioning location
and its aligned depth positioning result,𝑀2, when the depth
camera was woken up for tracking. 𝑀 denotes the number
of points. The definition of TPS results implies the following
interpolation condition for 𝑓:

𝑓 (𝑀1𝑗) = 𝑀2𝑗, 𝑗 = 1, 2, . . . ,𝑀. (5)

At the same time, the constraint on smooth bending for
the TPS required the minimization of the following bending
energy function:

𝐸 (𝑓) = ∬

𝑅2
(

𝜕
2
𝑓

𝜕𝑥
2
)

2

+ 2(

𝜕
2
𝑓

𝜕𝑥𝜕𝑦

)

2

+ (

𝜕
2
𝑓

𝜕𝑦
2
)

2

𝑑𝑥 𝑑𝑦.

(6)

The TPS was decomposed into affine and nonaffine com-
ponents as follows:

𝑓 (𝑃) = 𝑃𝑑 + 𝐾𝑤, (7)

where𝑃 is a point on the inertial sensor positioning reference
trajectory, 𝐻1, with the homogeneous coordinate (1, 𝑥, 𝑦),
and 𝑑 denotes a 3 × 3 affine transformation matrix. The TPS
kernel is denoted by 𝐾, which is a 1 × 𝑀 vector of the form
𝐾 = (𝐾1(𝑃), . . . , 𝐾𝑀(𝑃)), such that 𝐾𝑗(𝑃) = ‖𝑃 − 𝑀1𝑗‖, 𝑗 =
1, . . . ,𝑀, and 𝑤 is 𝑀 × 3 warping coefficient matrix for the
nonaffine deformation.

The 𝑑 and 𝑤 matrixes were determined to obtain the
TPS transformation. The following energy function was
minimized using the least squares method to determine the
optimal solution:

𝐸 (𝑑, 𝑤, 𝜆) =

1

𝑀

𝑀

∑

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑀2𝑗 − 𝑓 (𝑀1𝑗)

󵄩
󵄩
󵄩
󵄩
󵄩
+ 𝜆𝐸 (𝑓) , (8)

where 𝜆 is the weight that controls the smoothness of the
component. Given a fixed 𝜆, there is a unique minimum for
the energy function.

After the TPS transformation was obtained, the reference
walking trajectory, 𝐻1, was corrected to 𝐻2. In the entire
tracking procedure, the correction was performed after the
target is detected and tracked by the depth cameras.

3. Fusing Visual Tracking with Inertial
Sensor Positioning

The traditional visual tracking method usually becomes
unstable when target occlusion and illumination changes
are encountered. Thus, we developed a method to fuse the
former inertial positioning results with visual tracking to
obtain robust tracking.TheKinect positions the target locally
(3-4 meters) by fusing the texture and depth features. The
local position is then used to eliminate the cumulative error
resulting from the inertial sensor positioning. A camera
calibration process is used to map the inertial sensor position
onto the video image plane,where the visual tracking position
and the mapped position are fused using a similarity feature
to obtain accurate tracking results.

The inertial sensor positioning generally retrieves the real
spatial location of the target, but visual tracking is imple-
mented in the image plane.Thus, the inertial sensor position-
ing results were mapped onto the image plane. This mapping
was obtained using the following projective translation:

x = 𝑃X, (9)

where X denotes the inertial sensor positioning coordinates,
x = (𝑥, 𝑦) denotes the projected coordinates in the image
plane, and 𝑃 denotes the projective matrix. Here, we used
an automatic training method to determine the projective
matrix𝑃. In the training procedure, a test subject was tracked
using both the visual and inertial sensing data sequences.
Then, the tracking positions from the two sequences were
aligned to obtain the training set of x and X. Finally,
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Figure 8: Sensor positioning with depth correction: blue line represents inertial sensor positioning trajectory, pink line represents trajectory
of depth camera, and black line represents actual trajectory.

the projective matrix 𝑃 was calculated using the least squares
method with the training samples of x and X.

For the visual sequence, we used a compressive tracking
algorithm [10] to track the target in the image plane. The
underlying principle of compressive tracking is to construct a
dynamic template to match the target with the observations.
Thematching level was estimated using a Bayesian scheme to
select an observation V𝑖 from the foreground (𝑦 = 1) or the
background (𝑦 = 0):

𝐻(V) = log(
∏
𝑛

𝑖=1
𝑝 (V𝑖 | 𝑦 = 1) 𝑝 (𝑦 = 1)

∏
𝑛

𝑖=1
𝑝 (V𝑖 | 𝑦 = 0) 𝑝 (𝑦 = 0)

)

=

𝑛

∑

𝑖=1

log(
𝑝 (V𝑖 | 𝑦 = 1)
𝑝 (V𝑖 | 𝑦 = 0)

) ,

(10)

where 𝑝(V𝑖 | 𝑦 = 1) ∼ 𝑁(𝜇
1

𝑖
, 𝜎
1

𝑖
); 𝑝(V𝑖 | 𝑦 = 0) ∼ 𝑁(𝜇

0

𝑖
, 𝜎
0

𝑖
);

𝜇
1 and 𝜎

1 denote the mean and standard deviation of the
target sample; and 𝜇0 and 𝜎0

𝑖
denote the mean and standard

deviation, respectively, of the background sample.We usually
selected the target sample close to the target area and the
background sample far from the target area. The candidate
region that maximized𝐻(V) was the final target position. At
the same time, we used the tracked target position to update
the target parameter and the background parameters:

𝜇
1

𝑖
←󳨀 𝜆𝜇

1

𝑖
+ (1 − 𝜆) 𝜇

1
,

𝜎
1

𝑖
←󳨀 √𝜆 (𝜎

1

𝑖
)
2
+ (1 − 𝜆) (𝜎

1
)
2
+ 𝜆 (1 − 𝜆) (𝜇

1

𝑖
− 𝜇
1
)
2
,

(11)

where 𝜆 was a parameter used to maintain the consistency
between the two positioning results.

We fused the visual tracking position x with the inertial
sensor positioning result x󸀠 by defining a consistency mea-
surement for the two positioning results using the following
function:

sim (x, x󸀠) = exp (−1
2

(x − x󸀠)
𝑇

Σ
−1
(x − x󸀠)) , (12)

where Σ is the covariance of the inertial sensor positioning
samples. Generally, when visual tracking fails because of
occlusion or illumination changes, the consistency measure-
ment decreases dramatically. This consistency measurement
was used to detect visual tracking errors using the threshold
method.However, to ensure continuous trackingwhen errors
were incurred, we developed an error recovery solution. We
developed a multitemplate compressive tracking method for
error recovery tracking.

In the original compressive tracking method, the tracked
target sample is always used to update the foreground sample
parameters 𝜇1 and 𝜎1 and the background sample parameters
𝜇
0 and 𝜎

0 even when errors are incurred in the tracking
procedure. In our revised compressive tracking method,
we employed a mechanism to terminate the updating of
the parameters when an error occurred and constructed a
template buffer to save the optimal template in the tracking
history. For convenience, the compressive tracking parame-
ters are denoted by Ψ = {𝜇

1
, 𝜎
1
, 𝜇
0
, 𝜎
0
}. The history template

parameter sets are denoted by Ψ1, Ψ2, . . . , Ψ𝑁, where 𝑁 is
the number of history templates. Different parameters yield
different current consistency measurements. Thus, the con-
sistencymeasurement of the originalmethodwas also revised
using 𝐻(V, Ψ). When no errors in the tracking procedure
were incurred, in addition to updating the parameter Ψ as
in the aforementioned operation, we updated the history
parameter sets if the current parameter Ψ was a better
match to the target, that is, if there was a Ψ𝑖 such that
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Figure 9: (a) Original inertial sensor positioning result and (b) result obtained using inertial sensor positioning with depth correction.

𝐻(V, Ψ) > 𝐻(V, Ψ𝑖). Thus, the following template parameter
was replaced by Ψ:

Ψ
𝑟
= arg min

1≤𝑖≤𝑁
𝐻(V, Ψ𝑖) . (13)

When the consistency measure of the current sample was
below the given threshold, a tracking error was considered to
have occurred. In this case, we used the projected coordinate
of the inertial sensor positioning result to reset the position
of the visual tracking position. At the same time, we stopped
updating the parameterΨ and selected the following optimal
template in the history parameter sets to restore the tracking
procedure:

Ψ
∗
= arg max

1≤𝑖≤𝑁

𝐻(V, Ψ𝑖) . (14)

4. Experiments and Results

We verified the developed multisource heterogeneous data
fusion method by conducting several experiments using
data captured from real scenarios. We used an Android
smartphone to collect inertial sensor data, including three-
dimensional accelerometer and gyroscope data. The collec-
tion frequency was 50Hz. The smartphone was installed in
the test subject’s pocket and fixed on the subject’s body with a
belt. Before the experimental tracking began, the test subject
stood steadily in the same position for over 10 seconds, and
the inherent noise in the sensormeasurements was estimated.
At the same time, the RGB-D sequence data were captured by
several Kinect sensors. A visual video was also captured by a
high-resolution camera. Three experiments were performed
in this study.

In the first experiment, the performance of the inertial
sensor positioning with the depth correction was tested. This
experiment was performed in a corridor that was shaped
like a figure eight in a teaching building with dimensions
of 70m × 30m. The test subject walked along the corridor.
Figure 9(a) shows the original inertial sensor positioning
results. The first half of the positioning results were more
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Figure 10: Layout of experimental scenario.

accurate than the second half for which a growing error was
observed.We used correction data from the Kinect camera to
improve the positioning result. Then, we used the TPS-based
method to correct the positioning result. Figure 9(b) shows
that the correctionmethod produced an accurate positioning
result. During the experiment, we used the difference in the
durations to calculate the average deviation before and after
the correction. A 20-second gap was used in this study, and
the average deviation among the different time gaps is shown
in Table 1. Before correction, the average deviation in the
results increased sharply in time, and, after correction, the
average deviation declined considerably. Thus, the method
lowered the average deviation from 17.120 meters to 2.119
meters, which was a sufficiently accurate result. The average
errors of the twomethodswere also computed.Thedeveloped
method decreased the average error from 17.120m to 2.119m.
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(a) (b)

(c) (d)

Figure 11: Comparison of visual trackingmethod and inertial sensor positioning fusionmethod for a simple scenario: green dots show inertial
sensor positioning results projected onto image plane; blue and red boxes show tracking boxes for different targets; dashed boxes show results
from visual tracking only; and solid boxes show results from fusion of inertial sensor positioning and visual tracking.

Table 1: Average error at different times.

Time duration (s)
Average deviation
before correction

(m)

Average deviation
after correction

(m)
20 0.591 0.538
40 1.332 0.849
60 2.206 1.361
80 2.443 1.842
100 2.713 1.777
120 4.329 1.639
140 5.935 1.573
160 8.706 1.650
180 13.622 2.034
200 17.120 2.119

In the second experiment, the visual tracking perfor-
mance was tested by fusing the inertial sensor positioning
when occlusions were encountered. This experiment was
performed in the lobby of a building with dimensions of 15m
× 12m. The layout of the experimental scenario is shown in
Figure 10. Four high-definition cameras and six Kinect cam-
eras were located around the center and their corresponding
location values are provided in parentheses. This experiment
was first performed for a simple scenario in which two
persons walked facing each other, met, and then returned to
their original positions (Figure 11). Using the visual tracking
method alone could have shifted the tracking box to the same
target. However, we obtained an accurate tracking result by
fusing the inertial sensor positioning with visual tracking.

The experiment was then performed for a complex scenario.
In this scenario, four persons stood at different locations
and then walked along specified routes. Many occlusions
occurred during the walking periods (see Figure 12). The tar-
get is often lost using visual tracking when occlusions occur.
However, the inertial sensor positioning and visual tracking
fusion method yielded stable tracking results because of
the error detection and correction scheme of the developed
tracking method. Figure 13 shows that the developedmethod
detected the occurrence of tracking errors and quickly cor-
rected the positions of the target tracking boxes.

In the third experiment, the visual tracking performance
was tested by fusing the inertial sensor positioning when the
illumination changed.This experiment was performed for an
indoor scene in a room with dimensions of 10m × 8m. The
illumination was changed by either switching the lights in the
room on or off. Illumination changes often cause the visual
tracking method to lose the tracked target. The developed
inertial sensor positioning and visual tracking fusionmethod
detected and corrected the position of the target tracking box
even for severe illumination changes (Figure 14).

5. Conclusion

In this study, we developed a multisource heterogeneous data
fusion method for pedestrian tracking. In this method, the
sensing data of a depth camera were used to eliminate the
cumulative positioning error of the inertial sensor, thereby
making the application of this active tracking technique
capable of long-term target tracking. We introduced this
improved tracking method into traditional visual tracking to
overcome the challenges of object occlusion and illumination
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(a) (b)

(c) (d)

Figure 12: Comparison of visual tracking method and inertial sensor positioning fusion method for multiperson occlusion: white dots show
positions of inertial sensor positioning results projected onto image plane; boxes outlined in different colors show different target tracking
boxes; dashed boxes are results obtained using only visual trackingmethod; and solid boxes are results obtained from fusion of inertial sensor
positioning and visual tracking.

(a) (b)

Figure 13: Error detection and correction using inertial sensor positioning and visual tracking methods: (a) error incurred in visual tracking
and (b) error detection and correction using fusion tracking method.

(a) (b) (c)

Figure 14: Inertial sensor positioning fusion tracking under illumination changes.
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changes. Experiments were performed for different sce-
narios and showing that the developed method exhibited
good tracking performance under critical conditions. The
developed tracking method has many potential applications,
such as surveillance of the elderly, children, and other
specialized groups. In future studies, we will further improve
various aspects of the developed method by optimizing the
assignment of different sensors, increasing the accuracy of
the calibration method for the sensors, and developing a
fast training algorithm for large heterogeneous data. The
application of the developed method to more practical fields
is also a future research subject.
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