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We study the flows of curves in the pseudo-Galilean 3-space and its equiform geometry without any constraints. We find that the
Frenet equations and intrinsic quantities of the inelastic flows of curves are independent of time. We show that the motions of
curves in the pseudo-Galilean 3-space and its equiform geometry are described by the inviscid and viscous Burgers’ equations.

1. Introduction

In mathematical modeling of many nonlinear events of the
natural and the applied sciences such as dynamics of vortex
filaments, motions of interfaces, shape control of robot arms,
propagation of flame fronts, image processing, supercoiled
DNAs, magnetic fluxes, deformation of membranes, and
dynamics of proteins, the motions of space curves are being
used. The evolutions of these nonlinear phenomena are
described by the differential equations which characterize the
motions of curves as a family.

The motions of curves have been widely investigated by
many authors in different geometries. In 1992 Nakayama and
others explained that the close relation between the integrable
evolution equations and the motions of curves is based on
the equivalence of Frenet equations and the inverse scattering
problem at zero eigenvalue [1], so that they identified the
evolution equations that govern the 2D and 3D motions of
the curves. They also studied the motions of the plane curves
in which the curvature obeys the mKDV equation and its
hierarchy [2]. Langer and Perline [3] gave the generalization
of the motions of curves to 𝑛-dimensional Euclidean space.
Many well-known integrable equations or their hierarchies
related to the motions of space curves can be found in
subsequent studies [4–11].

The subject of the curve flows in the pseudo-Galilean
space, which is a real Cayley-Klein space with projective sig-
nature, is a virgin area to be searched. Inelastic flows of curves
in the Galilean and the pseudo-Galilean spaces are studied at

[12, 13]. Yoon [14] examined the inextensible flows of curves
in the equiform geometry of the Galilean 3-space. Şahin
[15] derived the intrinsic equations for a generalized relaxed
elastic line on an oriented surface in the Galilean space.

In this study we investigate the motions of curves in the
pseudo-Galilean 3-space and in its equiform geometry with-
out any constraints. The first section gives the main defini-
tions and theorems of the pseudo-Galilean 3-space. Next we
define the evolution of a one-parameter family of smooth
admissible curves in the pseudo-Galilean 3-space andfind the
flow equations of the curve evolution with use of the Frenet
equations.Then we consider some particular cases where the
flow of the intrinsic quantities 𝜅 and 𝜏 induces the inviscid
Burgers’ equation. Finally we study the curve evolution in the
equiform geometry of the pseudo-Galilean 3-space regarding
the relations between the Frenet vectors of these spaces.

2. The Pseudo-Galilean Space G1
3

The pseudo-Galilean space G1
3
is one of the real Cayley-

Klein spaces of projective signature (0, 0, +, −) as explained
in [16]. The absolute figure of the pseudo-Galilean space G1

3

consists of an ordered triple {𝑤, 𝑓, 𝐼} where 𝑤 is the ideal
(absolute) plane, 𝑓 is the (absolute) line in 𝑤, and 𝐼 is the
fixed hyperbolic involution of points of 𝑓. The curves in G1

3

are described in [16, 17].
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In the nonhomogeneous affine coordinates for points and
vectors (point pairs) the similarity group 𝐻

8
of G1
3
has the

following form:

𝑥 = 𝑎
11

+ 𝑎
12

𝑥

𝑦 = 𝑎
21

+ 𝑎
22

𝑥 + 𝑎
23

𝑦 cosh𝜑 + 𝑎
23

𝑧 sinh𝜑

𝑧 = 𝑎
31

+ 𝑎
32

𝑥 + 𝑎
23

𝑦 sinh𝜑 + 𝑎
23

𝑧 cosh𝜑,

(1)

where 𝑎
𝑖𝑗
and𝜑 are real numbers. In particular, for 𝑎

12
= 𝑎
23

=

1, the group (1) becomes the group 𝐵
6

⊂ 𝐻
8
of isometries of

the pseudo-Galilean space G1
3
as follows:

𝑥 = 𝑎
11

+ 𝑥

𝑦 = 𝑎
21

+ 𝑎
22

𝑥 + 𝑦 cosh𝜑 + 𝑧 sinh𝜑

𝑧 = 𝑎
31

+ 𝑎
32

𝑥 + 𝑦 sinh𝜑 + 𝑧 cosh𝜑.

(2)

According to themotion group in the pseudo-Galilean space,
there are nonisotropic vectors x = (𝑥, 𝑦, 𝑧) (for which holds
𝑥 ̸= 0) and four types of isotropic vectors: space-like (𝑥 =

0, 𝑦
2
−𝑧
2
> 0), time-like (𝑥 = 0, 𝑦

2
−𝑧
2
< 0), and two types of

light-like vectors (𝑥 = 0, 𝑦 = ±𝑧). A non-light-like isotropic
vector is a unit vector if 𝑦2 − 𝑧

2
= ±1.

The scalar product of two vectors u = (𝑢
1
, 𝑢
2
, 𝑢
3
) and k =

(V
1
, V
2
, V
3
) can be written as

⟨u, k⟩ =

{

{

{

𝑢
1
V
1
, if 𝑢

1
̸= 0 ∨ V
1

̸= 0

𝑢
2
V
2
− 𝑢
3
V
3
, if 𝑢

1
= 0 ∧ V

1
= 0.

(3)

This scalar product leaves invariant the pseudo-Galilean
norm of the vector u = (𝑢

1
, 𝑢
2
, 𝑢
3
) defined by

‖u‖ =

{

{

{

𝑢
1
, if 𝑢

1
̸= 0

√
󵄨󵄨󵄨󵄨𝑢
2

2
− 𝑢
2

3

󵄨󵄨󵄨󵄨, if 𝑢
1
= 0.

(4)

Let 𝛼 be a spatial curve given first by

𝛼 : 𝐼 ⊆ R 󳨀→ G
1

3

𝑡 󳨀→ 𝛼 (𝑡) = (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)) ,

(5)

where 𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡) ∈ 𝐶
3. Then the curve 𝛼(𝑡) is said to be

admissible if 𝑥̇(𝑡) ̸= 0 [16]. For an admissible curve 𝛼 in G1
3

parameterized by the arc length 𝑠 = 𝑥 with differential form
𝑑𝑠 = 𝑑𝑥, given as

𝛼 (𝑥) = (𝑥, 𝑦 (𝑥) , 𝑧 (𝑥)) , (6)

where 𝑦(𝑥), 𝑧(𝑥) ∈ 𝐶
3, the curvature 𝜅(𝑥) and the torsion

𝜏(𝑥) are defined by

𝜅 (𝑥) = √
󵄨󵄨󵄨󵄨󵄨
(𝑦
󸀠󸀠

(𝑥))
2

− (𝑧
󸀠󸀠

(𝑥))
2󵄨󵄨󵄨󵄨󵄨

(7)

𝜏 (𝑥) =
𝑦
󸀠󸀠

(𝑥) 𝑧
󸀠󸀠󸀠

(𝑥) − 𝑦
󸀠󸀠󸀠

(𝑥) 𝑧
󸀠󸀠

(𝑥)

𝜅
2
(𝑥)

, (8)

respectively.The pseudo-Galilean Frenet frame of the admis-
sible curve 𝛼(𝑥) parameterized by the arc length has the form

t (𝑥) = 𝛼
󸀠
(𝑥) = (1, 𝑦

󸀠
(𝑥) , 𝑧

󸀠
(𝑥)) ,

n (𝑥) =
1

𝜅 (𝑥)
𝛼
󸀠󸀠

(𝑥) =
1

𝜅 (𝑥)
(0, 𝑦
󸀠󸀠

(𝑥) , 𝑧
󸀠󸀠

(𝑥)) ,

b (𝑥) =
1

𝜅 (𝑥)
(0, 𝜀𝑧
󸀠󸀠

(𝑥) , 𝜀𝑦
󸀠󸀠

(𝑥)) ,

(9)

where t,n, and b are called the tangent vector, principal
normal vector, and binormal vector fields of the curve 𝛼,
respectively. Here 𝜀 = +1 or −1 is chosen by the criterion
det(t,n, b) = 1. Ifn is a space-like or time-like vector, then the
curve 𝛼(𝑥) given by (6) is time-like or space-like, respectively.
Then the Frenet equations of the curve 𝛼(𝑥) are given by

[
[

[

t(𝑥)

n(𝑥)

b(𝑥)

]
]

]
𝑥

=
[
[

[

0 𝜅 (𝑥) 0

0 0 𝜏 (𝑥)

0 𝜏 (𝑥) 0

]
]

]

[
[

[

t (𝑥)

n (𝑥)

b (𝑥)

]
]

]

, (10)

where t,n, and b are mutually orthogonal vectors [17, 18].

3. Motions of Curves in
the Pseudo-Galilean Space G1

3

In this section we study the curve evolution in the pseudo-
Galilean 3-space by using the Frenet frame structure to obtain
some related integrable equations.

Let us consider a one-parameter family of smooth admis-
sible curves r(𝑢, 𝑡) in the pseudo-Galilean space G1

3
where

𝑡 denotes the time or the scale and 𝑢 parameterizes each
curve of the family. We assume that this family r(𝑢, 𝑡) evolves
according to the flow equation

̇r :=
𝑑r
𝑑𝑡

= 𝑎 (𝑢, 𝑡) t + 𝑏 (𝑢, 𝑡)n + 𝑐 (𝑢, 𝑡) b, (11)

r (𝑢, 0) = r (𝑢) , (12)

where 𝑎, 𝑏, 𝑐 are arbitrary functions.
Let

𝑔 (𝑢, 𝑡) :=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕r
𝜕𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= √

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝜕r
𝜕𝑢

,
𝜕r
𝜕𝑢

⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(13)

denote the length along the curve. The arc length parameter
𝑠 is given by

𝑠 (𝑢, 𝑡) := ∫

𝑢

0

𝑔 (𝑢
󸀠
, 𝑡) 𝑑𝑢

󸀠
. (14)
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From (10) we can express the Frenet vectors and the intrinsic
quantities as

t :=
𝜕r
𝜕𝑠

=
1

𝑔

𝜕r
𝜕𝑢

,

n :=
1

𝜅

𝜕t
𝜕𝑠

=
1

𝜅𝑔

𝜕t
𝜕𝑢

,

b :=
1

𝜏

𝜕n
𝜕𝑠

=
1

𝜏𝑔

𝜕n
𝜕𝑢

,

(15)

𝜅 :=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕t
𝜕𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

𝑔

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕t
𝜕𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

,

𝜏 := ⟨n,
𝜕b
𝜕𝑠

⟩ ,

(16)

respectively.
Now we will derive the flow equations for the Frenet

frame {t,n, b}, the metric 𝑔, the curvature 𝜅, and the torsion
𝜏 for the curve evolution r(𝑢, 𝑡) satisfying (12). Since 𝑔

2
=

⟨𝜕r/𝜕𝑢, 𝜕r/𝜕𝑢⟩ taking the derivatives of both sides and using
(11) and (15) we can compute the flow of the metric 𝑔 as

2𝑔
𝑑𝑔

𝑑𝑡

= 2⟨
𝜕r
𝜕𝑢

,
𝜕

𝜕𝑢
(

𝑑r
𝑑𝑡

)⟩

= 2𝑔⟨t, 𝜕𝑎

𝜕𝑢
t + 𝑎𝜅𝑔n +

𝜕𝑏

𝜕𝑢
n + 𝑏𝜏𝑔b +

𝜕𝑐

𝜕𝑢
b + 𝑐𝜏𝑔n⟩

= 2𝑔⟨t, 𝜕𝑎

𝜕𝑢
t + (

𝜕𝑏

𝜕𝑢
+ 𝑎𝜅𝑔 + 𝑐𝜏𝑔)n + (

𝜕𝑐

𝜕𝑢
+ 𝑏𝜏𝑔) b⟩

= 2𝑔
𝜕𝑎

𝜕𝑢
.

(17)

So the flow of the metric equals
𝑑𝑔

𝑑𝑡
=

𝜕𝑎

𝜕𝑢
. (18)

It is important to notice that the variables 𝑢 and 𝑡 are
independent but 𝑠 and 𝑡 are not. As a consequence, we have

𝑑

𝑑𝑡

𝜕

𝜕𝑠
=

𝑑

𝑑𝑡
(

1

𝑔

𝜕

𝜕𝑢
) = −

𝜕𝑎

𝜕𝑠

𝜕

𝜕𝑠
+

𝜕

𝜕𝑠

𝑑

𝑑𝑡
. (19)

We can evaluate the flow equation of the unit tangent vector
t as

𝑑t
𝑑𝑡

=
𝑑

𝑑𝑡

𝜕r
𝜕𝑠

= −
𝜕𝑎

𝜕𝑠

𝜕r
𝜕𝑠

+
𝜕

𝜕𝑠

𝑑r
𝑑𝑡

= −
𝜕𝑎

𝜕𝑠
t +

𝜕𝑎

𝜕𝑠
t + 𝑎𝜅n +

𝜕𝑏

𝜕𝑠
n + 𝑏𝜏b +

𝜕𝑐

𝜕𝑠
b + 𝑐𝜏n

= (
𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏)n + (

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏) b.

(20)

Similarly for the flow of the unit normal vector n we have

𝑑n
𝑑𝑡

= (
1

𝜅

𝜕

𝜕𝑠
(

𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏)

−
1

𝜅

𝑑𝜅

𝑑𝑡
−

𝜕𝑎

𝜕𝑠
+

𝜏

𝜅
(

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏))n

+ (
𝜏

𝜅
(

𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏) +

1

𝜅

𝜕

𝜕𝑠
(

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏)) b.

(21)

Since ⟨𝑑n/𝑑𝑡,n⟩ = 0 we obtain

𝑑n
𝑑𝑡

= (
𝜏

𝜅
(

𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏) +

1

𝜅

𝜕

𝜕𝑠
(

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏)) b, (22)

𝑑𝜅

𝑑𝑡
=

𝜕

𝜕𝑠
(

𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏) − 𝜅

𝜕𝑎

𝜕𝑠
+ 𝜏(

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏) . (23)

Also the flow of the binormal vector b becomes
𝑑b
𝑑𝑡

= (
𝜏

𝜅
(

𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏) +

1

𝜅

𝜕

𝜕𝑠
(

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏))n

+ (
1

𝜏

𝜕

𝜕𝑠
(

𝜏

𝜅
(

𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏) +

1

𝜅

𝜕

𝜕𝑠
(

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏))

−
1

𝜏

𝑑𝜏

𝑑𝑡
−

𝜕𝑎

𝜕𝑠
) b.

(24)

From the equation ⟨𝑑b/𝑑𝑡, b⟩ = 0 we obtain

𝑑b
𝑑𝑡

= (
𝜏

𝜅
(

𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏) +

1

𝜅

𝜕

𝜕𝑠
(

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏))n, (25)

𝑑𝜏

𝑑𝑡
=

𝜕

𝜕𝑠
(

𝜏

𝜅
(

𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏) +

1

𝜅

𝜕

𝜕𝑠
(

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏)) − 𝜏

𝜕𝑎

𝜕𝑠
.

(26)

Since ⟨t,n⟩ = 0 and ⟨t, b⟩ = 0 we have

⟨
𝑑t
𝑑𝑡

,n⟩ + ⟨t, 𝑑n
𝑑𝑡

⟩ = 0,

⟨
𝑑t
𝑑𝑡

, b⟩ + ⟨t, 𝑑b
𝑑𝑡

⟩ = 0.

(27)

Then by (20), (22), and (25) we can write

𝜕𝑏

𝜕𝑠
+ 𝑎𝜅 + 𝑐𝜏 = 0,

𝜕𝑐

𝜕𝑠
+ 𝑏𝜏 = 0.

(28)

Hence the flow equations of the Frenet frame take the form

𝑑t
𝑑𝑡

= 0,

𝑑n
𝑑𝑡

= 0,

𝑑b
𝑑𝑡

= 0,

(29)
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and for the intrinsic quantities the flow equations become

𝑑𝜅

𝑑𝑡
= −𝜅

𝜕𝑎

𝜕𝑠
,

𝑑𝜏

𝑑𝑡
= −𝜏

𝜕𝑎

𝜕𝑠
.

(30)

Therefore, we have the following theorem.

Theorem 1. Let r = r(𝑢, 𝑡) be a one-parameter family of
smooth admissible curves in the pseudo-Galilean space G1

3
. If

r evolves according to (11), then, the Frenet frame {t,n, b} of r
is not time dependent and the intrinsic quantities 𝜅 and 𝜏 of r
satisfy the equations

𝑑𝜅

𝑑𝑡
= −𝜅

𝜕𝑎

𝜕𝑠
,

𝑑𝜏

𝑑𝑡
= −𝜏

𝜕𝑎

𝜕𝑠
,

(31)

where 𝑠 is the arc length parameter of r.

Remark 2. Burgers’ equations describe various kinds of phe-
nomena such as a mathematical model of turbulence and the
approximate theory of flow through a shock wave traveling in
viscous fluid.The inviscid Burgers’ equation is amodel for the
nonlinear wave propagation, especially in fluid mechanics. It
takes the form

𝜕𝜓

𝜕𝑡
+ 𝜓

𝜕𝜓

𝜕𝑠
= 0, (32)

where 𝜓(𝑠, 𝑡) is a solution of the equation.

From Remark 2, if we choose the curvature 𝜅 = 𝑎 or the
torsion 𝜏 = 𝑎 in (30), thenwe have that the intrinsic quantities
𝜅 and 𝜏 evolve according to the inviscid Burgers’ equation. So,
we obtain the following corollary.

Corollary 3. Let r = r(𝑢, 𝑡) be a curve evolution in the pseudo-
Galilean spaceG1

3
with the intrinsic quantities 𝜅 and 𝜏 given by

(11). If one sets 𝜅 = 𝑎 or 𝜏 = 𝑎, then the intrinsic quantities 𝜅

and 𝜏 satisfy the inviscid Burgers’ equation.

3.1. Inextensible Curve Flows in the Pseudo-Galilean Space. In
this section, we investigate some properties of the inextensi-
ble flows in the pseudo-Galilean space G1

3
.

Definition 4. A curve evolution r(𝑢, 𝑡) and its flow 𝑑r/𝑑𝑡 in
the pseudo-Galilean space G1

3
are said to be inextensible if

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕r
𝜕𝑢

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0. (33)

According to Definition 4 and (11), in case the family of
curves r(𝑢, 𝑡) is inextensible, from (18) we get

𝜕𝑎

𝜕𝑢
= 0, 𝑔 (𝑢, 𝑡) = 𝜉 (𝑢) (34)

for some single variable function 𝜉. Therefore, we have the
following corollary.

Corollary 5. The curve evolution r(𝑢, 𝑡) which is given by (11)
is inextensible if and only if 𝜕𝑎/𝜕𝑢 = 0.

If we now restrict ourselves to the arc length parame-
terized admissible curves that undergo purely inextensible
deformations, that is, 𝑔(𝑢, 𝑡) = 𝜉(𝑢) = 1 and 𝜕𝑎/𝜕𝑠 = 0,
then the local coordinate 𝑢 corresponds to the arc length
parameter 𝑠. Thus the flow of the curve is expressed as

̇r :=
𝑑r
𝑑𝑡

= 𝑎 (𝑠, 𝑡) t + 𝑏 (𝑠, 𝑡)n + 𝑐 (𝑠, 𝑡) b (35)

and the flow of the Frenet frame {t,n, b} with the intrinsic
quantities 𝜅 and 𝜏 is given by

𝑑t
𝑑𝑡

= 0,

𝑑n
𝑑𝑡

= 0,

𝑑b
𝑑𝑡

= 0,

𝑑𝜅

𝑑𝑡
= 0,

𝑑𝜏

𝑑𝑡
= 0.

(36)

So, we get the following corollary.

Corollary 6. Let r = r(𝑢, 𝑡) be a curve evolution in the pseudo-
Galilean space G1

3
with its flow 𝑑r/𝑑𝑡 given by (11). If the curve

flow r(𝑢, 𝑡) is inextensible, then the Frenet vectors {t,n, b}, the
curvature 𝜅, and the torsion 𝜏 are not time dependent.

4. Motions of Curves in
the Equiform Geometry of G1

3

Similarity group (1) matches an ordinary (formal) line ele-
ment (𝑑𝑥 = 0, 𝑑𝑦, 𝑑𝑧) in a pseudo-Euclidean plane (i.e., 𝑥 =

const.) into a segment of length proportional to the original
one with the coefficient of proportionality 𝑎

23
. Other line

elements (𝑑𝑥, 𝑑𝑦, 𝑑𝑧), which lie on an isotropic plane (𝑑𝑥 =

0), are matched into proportional ones with the coefficient
𝑎
12
. So, all line segments are matched into proportional ones

with the same coefficient of proportionality if and only if
𝑎
12

= 𝑎
23
. Then we obtain a subgroup 𝐻

7
⊂ 𝐻
8
which

preserves length ratio of segments and angles between planes
and lines, respectively. This group is called the group of
equiform transformations of the pseudo-Galilean space.

Definition 7. Geometry of the pseudo-Galilean space G1
3

induced by the 7-parameter equiform group 𝐻
7
is called the

equiform geometry of the space G1
3
.

Let𝛼 : 𝐼 → G
3
be an admissible curvewith the arc length

parameter 𝑠. We define the equiform invariant parameter of
𝛼 by

𝜎 = ∫
1

𝑝
𝑑𝑠, (37)
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where 𝑝 = 1/𝜅 is the radius of the curvature of the curve 𝛼. It
follows that

𝑑𝜎

𝑑𝑠
=

1

𝑝
. (38)

We then have the new equiform invariant Frenet equations as

[
[

[

T (𝜎)

N (𝜎)

B (𝜎)

]
]

]
𝜎

=
[
[

[

𝜅 1 0

0 𝜅 𝜏

0 𝜏 𝜅

]
]

]

[
[

[

T (𝜎)

N (𝜎)

B (𝜎)

]
]

]

, (39)

where 𝜅 is called the equiform curvature and 𝜏 is called the
equiform torsion of the curve 𝛼 [12]. These are related to the
curvature 𝜅 and torsion 𝜏 by the equations

𝜅 = −
𝜅
𝑠

𝜅
2
, 𝜏 =

𝜏

𝜅
. (40)

Also the equiformly invariant Frenet vectors T,N, and B are
related to the pseudo-Galilean Frenet vectors t,n, and b as

T =
t
𝜅

= 𝑝t,

N =
n
𝜅

= 𝑝n,

B =
b
𝜅

= 𝑝b.

(41)

The equiformly invariant arc length parameter of the curve
evolution r(𝑢, 𝑡) can be defined as a function of 𝑢 by

𝜎 (𝑢) = ∫

𝑢

0

1

𝑝
𝑔 (𝑢
󸀠
, 𝑡) 𝑑𝑢

󸀠
. (42)

So the operator 𝜕/𝜕𝜎 is equal to𝑝(𝜕/𝜕𝑢).Theflowof the curve
evolution r(𝑢, 𝑡) can be expressed in the form

𝑑r
𝑑𝑡

= 𝑊T + 𝑈N + 𝑉B, (43)

where 𝑊,𝑈, and 𝑉 are arbitrary functions. The preceding
flow of r(𝑢, 𝑡) is related to flow (11) in the pseudo-Galilean
space G1

3
as

𝑑r
𝑑𝑡

= 𝑎t + 𝑏n + 𝑐b, (44)

with 𝑎 = 𝑝𝑊, 𝑏 = 𝑝𝑈, and 𝑐 = 𝑝𝑉. Then using the formulas
in Section 3 we obtain the flow of the metric

𝑑𝑔

𝑑𝑡
=

𝜕𝑎

𝜕𝑢
=

𝜕

𝜕𝑢
(𝑝𝑊) = 𝑝

𝜕𝑊

𝜕𝑢
+ 𝑔𝜅𝑊 (45)

or
𝑑𝑔

𝑑𝑡
=

𝜕𝑎

𝜕𝑢
= 𝑔(

𝜕𝑊

𝜕𝜎
+ 𝜅𝑊) . (46)

The partial derivatives 𝜕/𝜕𝜎 and 𝑑/𝑑𝑡 do not commute in
general while the partials 𝜕/𝜕𝑢 and 𝑑/𝑑𝑡 commute:

𝑑

𝑑𝑡

𝜕

𝜕𝜎
= −(

𝜕𝑊

𝜕𝜎
+ 𝜅𝑊 −

1

𝑝

𝑑𝑝

𝑑𝑡
)

𝜕

𝜕𝜎
+

𝜕

𝜕𝜎

𝑑

𝑑𝑡
. (47)

Using (41) and (29) the flow equation of the equiformly
invariant tangent vector field T is calculated as

𝑑T
𝑑𝑡

=
𝑑

𝑑𝑡
(𝑝t)

= −
1

𝑔

𝜕𝑎

𝜕𝑢
T

= −(
𝜕𝑊

𝜕𝜎
+ 𝜅𝑊)T.

(48)

Similarly, we can write the flows of the equiformly invariant
principal normal and binormal vector fields, the equiform
curvature, and the equiform torsion, respectively, as follows:

𝑑N
𝑑𝑡

=
𝑑

𝑑𝑡
(𝑝n) = −(

𝜕𝑊

𝜕𝜎
+ 𝜅𝑊)N, (49)

𝑑B
𝑑𝑡

=
𝑑

𝑑𝑡
(𝑝n) = −(

𝜕𝑊

𝜕𝜎
+ 𝜅𝑊)B, (50)

𝑑𝜅

𝑑𝑡
= −2(

𝜕𝑊

𝜕𝜎
+ 𝜅𝑊)𝜅 −

𝜕

𝜕𝜎
(

𝜕𝑊

𝜕𝜎
+ 𝜅𝑊) , (51)

𝑑𝜏

𝑑𝑡
= 0. (52)

Therefore, we obtain the following theorem.

Theorem 8. Let r = r(𝑢, 𝑡) be an admissible curve in the
equiform geometry of G1

3
with the equiform invariant Frenet

frame (39). If r evolves according to (43), then the flows of
(i) the equiform invariant Frenet vectors T,N, and B of r

are, respectively, given as

𝑑T
𝑑𝑡

= −(
𝜕𝑊

𝜕𝜎
+ 𝜅𝑊)T,

𝑑N
𝑑𝑡

= −(
𝜕𝑊

𝜕𝜎
+ 𝜅𝑊)N,

𝑑B
𝑑𝑡

= −(
𝜕𝑊

𝜕𝜎
+ 𝜅𝑊)B,

(53)

(ii) the equiform curvature 𝜅 and the equiform torsion 𝜏 of r
are, respectively, given as

𝑑𝜅

𝑑𝑡
= −2(

𝜕𝑊

𝜕𝜎
+ 𝜅𝑊)𝜅 −

𝜕

𝜕𝜎
(

𝜕𝑊

𝜕𝜎
+ 𝜅𝑊) ,

𝑑𝜏

𝑑𝑡
= 0,

(54)

where 𝜎 is the equiform invariant parameter and 𝑊 is an
arbitrary function.

Remark 9. Viscous Burgers’ equation can be regarded as
a one-dimensional analog of the Navier-Stokes equations
which model the behavior of viscous fluids. It is given by the
equation

𝜕𝜓

𝜕𝑡
+ 𝜓

𝜕𝜓

𝜕𝑠
= V

𝜕
2
𝜓

𝜕𝑠
2
, (55)

where 𝜓(𝑠, 𝑡) is a solution of the equation.
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From Remark 9, if we choose (𝜕𝑊/𝜕𝜎) + 𝜅𝑊 = (1/

2)(𝜕𝜅/𝜕𝜎) in (51), then we see that the intrinsic quantity 𝜅

evolves according to the viscous Burgers’ equation. So, we
have the following corollary.

Corollary 10. Let r = r(𝑢, 𝑡) be an equiform invariant curve
evolution in the equiform geometry of G1

3
with the intrinsic

quantity 𝜅 given by (39). If the equality 𝜕𝑊/𝜕𝜎 + 𝜅𝑊 =

(1/2)(𝜕𝜅/𝜕𝜎) holds, then the intrinsic quantity 𝜅 satisfies the
viscous Burgers’ equation.

4.1. Inextensible Curve Flows in the Equiform Geometry of G1
3
.

In this section, we investigate some properties of the inex-
tensible flows in the equiform geometry of G1

3
.

Let r(𝑢, 𝑡) be an inextensible curve evolution in the equi-
form geometry of G1

3
given by (43). Then, from Definition 4,

we have
𝜕𝑊

𝜕𝜎
+ 𝜅𝑊 = 0 (56)

and from this equation we get

𝑊 =
𝐶

𝜅
, (57)

where 𝐶 is an integration constant. So, we get the following
corollary.

Corollary 11. The curve evolution r(𝑢, 𝑡), which is given by
(43), is inextensible if and only if 𝑊 = 𝐶/𝜅 for some integra-
tion constant 𝐶.

FromTheorem 8 and Corollary 11, we have the following
corollary.

Corollary 12. If the curve evolution r(𝑢, 𝑡), which is given
by (43), is inextensible, then the Frenet vectors {T,N,B}, the
curvature 𝜅, and the torsion 𝜏 of r are not time dependent.
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