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This paper is concerned with the design problem of robust dynamic output feedback model predictive controllers for a class of
discrete-time systems with time-varying network-induced delays and nonlinear perturbation. The designed controllers achieve
on-line suboptimal receding horizon guaranteed cost such that the system can be stabilized for all admissible uncertainties. A
novel delay compensation strategy is proposed to eliminate the effects of the time-varying network-induced delays. By using
multistep prediction and the receding optimization, the delay-dependent sufficient condition is derived for the existence of delay
compensation controllers. By employing the cone complementarity linearization (CCL) idea, a nonlinear minimization problem
with linear matrix inequality (LMI) constraints is formulated to design the desired output feedback controllers, and an iterative
algorithm involving convex optimization is presented to solve the nonlinear minimization problem. Finally, an example is given to
illustrate the feasibility and effectiveness of the proposed results.

1. Introduction

With the rapid development of digital systems and commu-
nication networks, more and more control engineers would
like to use a real-time communication channel interfaced to
a digital system to exchange information and to complete
the control task. Such networked control systems (NCSs)
have received increasing attention in recent years because
of their many advantages, such as lower cost and more
convenience for installation and maintenance. Industrial
applications of NCSs include automobiles, vehicle systems,
robotic systems, jacking systems for trains, and process
control systems [1–3]. However, the streams of data exchange
between NCS components are prone to delay, losses, and
missynchronization, which degrade the performance and
even cause the instability of the systems [4, 5]. Network-
induced delays typically have negative effects on the NCS’s
stability and performance. So far, different techniques have
been presented to deal with the problem of network-
induced delays, such as the stochastic system approach [6, 7],
the hybrid system approach [8, 9], and the time-delay system

approach [10, 11]. It is noted that, in the aforementioned
results, all the proposed controllers are operated in an off-
line fashion, and the controllers are designed such that the
overall closed-loop NCSs can tolerate certain amount of
network-induced delays. Another constructive scheme is to
use future control sequences to directly eliminate the negative
effects of the network-induced delays, and model predictive
control (MPC) which can provide future control sequences
and operate in an on-line fashion is such a desired algorithm.

Model predictive control is probably one of the most
successful modern control technologies during recent years.
This is due to several thousand applications in process
control because of its many advantages, including ease of
computation, good tracking performance, and I/O constraint
handling capability. Recently, MPC has received increasing
attention in NCSs for its ability to on-line compensate time
delays as well as its good tracking performance. Reference
[12] proposed a new approach of predictive compensation
for simultaneous network-induced delays and packet losses
and addressed the codesign of both network and controller.
In [13], a model-based networked predictive output tracking
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control scheme is proposed to actively compensate for the
random round-trip time delay. Reference [14] proposed a
data-driven networked predictive control schemewhich con-
sisted of the control prediction generator and network delay
compensator for MIMO NCSs with random network delays.
However, all the above designed model predictive controllers
are state feedback controllers which are quite difficult for
implementation when the system states cannot be directly
measured for availability. Therefore, it is necessary to design
a feedback controller using the measured output. To the best
of the authors’ knowledge, few results have been reported on
the dynamic output feedbackMPC forNCSs [15]. Besides, the
above approaches are not applicable to the case that there are
parameter uncertainties in the model. Since the uncertainties
are frequently the sources of instability and performance
deterioration, the stability analysis and controller synthesis
for NCSs with model uncertainty and external disturbances
have been some of the most challenging issues. Up to now, a
few robust MPC algorithms have been presented to improve
the robustness of the networked control systems [16, 17].

Taking the network-induced delay into consideration, the
NCSs can be modeled as an uncertain discrete-time system
with time-varying delays, and this motivates us to apply the
theory of time-delay systems and robust MPC strategy to
design the feedback controllers for such NCSs. The main
results of this paper will contribute to the development of the
delay-dependent dynamic output feedback robust MPC for
a class of NCSs with norm-bounded nonlinear perturbation
and time-varying communication delays. A sufficient delay-
dependent condition that guarantees the robust stability of
the closed-loop NCS is derived. An optimization problem
is also formulated to construct the dynamic output feed-
back MPC controllers subject to a set of nonlinear matrix
inequalities. Based on the linearization idea [18], an iterative
algorithm involving convex optimization is proposed to solve
the nonlinearmatrix inequality system, and the iterative opti-
mization algorithm is guaranteed to be feasible at each time
step if it is feasible at the first step. The control inputs applied
to the system from the solutions of the MPC optimization
problems guarantee an on-line suboptimal receding horizon
guaranteed cost. Finally, an example is given to illustrate the
effectiveness of the proposed results.

Notation. Throughout the paper, Rn stands for the set of all
real 𝑛-dimensional vectors and R𝑛×𝑚 is the set of all
𝑛 × 𝑚-dimensional matrices. I denotes identity matrix of
appropriate dimensions; diag{⋅} denotes the block diagonal
matrix. G > 0 (G ≥ 0, G < 0, G ≤ 0) means
that G is a real symmetric positive-definite matrix (positive-
semidefinite, negative-definite, and negative-semidefinite). ∗
denotes the symmetric part.

2. Problem Formulation and Preliminaries

Thedetailed assumptions about theNCS studied in this paper
are described as follows.

(1) The sensor is clock-driven and has the sampling
period ℎ, and the controller and the actuator are
event-driven.

(2) The sensor-to-controller delay 𝜏𝑠𝑐
𝑘
and the controller-

to-actuator delay 𝜏𝑐𝑎
𝑘
are both uncertain but bounded

and can be obtained by best case analysis and worst
case analysis. The total time delay 𝜏𝑠𝑎

𝑘
= 𝜏
𝑠𝑐

𝑘
+ 𝜏
𝑐𝑎

𝑘

satisfies 𝜏 ≤ 𝜏𝑠𝑎
𝑘
≤ 𝜏, where 𝜏 and 𝜏 are known positive

integers corresponding to maximum and minimum
of 𝜏𝑠𝑎
𝑘
.

(3) Controller computational delay can be absorbed into
either 𝜏𝑠𝑐

𝑘
or 𝜏𝑐𝑎
𝑘
[19].

The uncertain discrete-time system with nonlinear per-
turbation is described by the following state space model:

x (𝑘 + 1) = (A + ΔA (𝑘)) x (𝑘) + (B + ΔB (𝑘)) u (𝑘)

+ f (x (𝑘), u (𝑘)) ,

y (𝑘) = Cx (𝑘) ,

(1)

where x(𝑘) ∈ Rn is the state, u(𝑘) ∈ Rl is the control
input, y(𝑘) ∈ Rv is the measured output, and A, B, and C
are known real constant matrices of appropriate dimensions.
ΔA(𝑘) and ΔB(𝑘) are unknown matrices representing time-
varying parameter uncertainties in the system model. It is
assumed that the uncertainties are norm-bounded and can be
described as [ΔA ΔB] = DF(𝑘)[E

1
E
2
], whereF(𝑘) ∈ Ri×j

is an unknown matrix satisfying FT(𝑘)F(𝑘) ≤ 𝜇I and 𝜇 is a
known positive scalar representing the upper bound of the
unknownmatrix F(𝑘), andD, E

1
, and E

2
are known constant

matrices of appropriate dimensions. The nonlinear function
f satisfies the following:

fTf ≤ 𝛼2[x (𝑘)u (𝑘)]
𝑇

[

H𝑇
1
H
1

0

0 H𝑇
2
H
2

] [

x (𝑘)
u (𝑘)] , (2)

where H
1
and H

2
are known constant matrices and 𝛼 > 0 is

the bounding parameter on the uncertain function f .
The physical system consisting of sensor and actuator

nodes is connected to the controller through a communi-
cation medium. For the convenience of system analysis and
controller design, the sensor-to-controller delay 𝜏𝑠𝑐

𝑘
and the

controller-to-actuator delay 𝜏𝑐𝑎
𝑘

are lumped up as the feed-
forward delay 𝜏(𝑘)ℎ. Considering the delay effect, the input
of the controller can be given as y(𝑘) = y(𝑘 − 𝜏(𝑘)), and
then the full-order dynamic output feedback controller to be
determined has the following form:

x̂ (𝑘 + 1) = A
𝑐
x̂ (𝑘) + B

𝑐
y (𝑘 − 𝜏 (𝑘))

u (𝑘) = C
𝑐
x̂ (𝑘) ,

(3)

where x̂(𝑘) ∈ Rn is the controller state.
Applying controller (3) to the system (1) results in the

following networked closed-loop system:

x (𝑘 + 1) = ̃Ax (𝑘) + A
𝑑
x (𝑘 − 𝜏 (𝑘)) + I𝑇f (x (𝑘) , u (𝑘)) , (4)
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where

x (𝑘) = [x (𝑘)x̂ (𝑘)] , A = [A BC
𝑐

0 A
𝑐

] ,

A
𝑑
= [

0

B
𝑐
C] , D = [

D
0
] ,

Ã = A +DF (𝑘)E,

E = [E
1
E
2
C
𝑐
] , I = [I 0] .

(5)

In this way, the NCS (1) and (3) with nonlinear perturba-
tion and communication delays is modeled as the uncertain
discrete-time system (4) with time-varying state delay, which
enables us to apply the theory of time-delay systems and the
receding optimization of the MPC to deal with the analysis
and design problem of such NCS.

Remark 1. Equation (4) is used to express the mathematical
model of the networked control systems when the transmit-
ted data is single packet. For themultiple-packet transmission
case, since the arrival time of the sensor messages at the
controller or the arrival time of the controller messages at
the actuator may be different, especially for the case when the
sampling times of the sensors are different, a buffer before the
controller and actuator is needed. By employing the buffer
technology on the network, model (4) can also be used to
express the NCS with multiple-packet transmission.

The objective of this paper is to find a stabilizing dynamic
output feedback controller of the form (3) for the uncertain
system (1) with time-varying delays by MPC strategy. To this
end, we define the followingmin-max optimization problem,
which is considered at each sampling time 𝑘:

min
u𝑘+𝑖|𝑘,𝑖=0,1,...,𝑚

max
[A(𝑘+𝑖),B(𝑘+𝑖)],𝑖≥0

𝐽 (𝑘) ,

𝐽 (𝑘) =

𝑝

∑

𝑖=0

x𝑇
𝑘+𝑖|𝑘

𝑆
1
x
𝑘+𝑖|𝑘

+

𝑚

∑

𝑖=0

u𝑇
𝑘+𝑖|𝑘

S
2
u
𝑘+𝑖|𝑘

,

(6)

where 𝑚 is the control horizon, 𝑝 is the prediction horizon,
S
1
> 0 and S

2
> 0 are givenweightingmatrices, and x

𝑘+𝑖|𝑘
and

u
𝑘+𝑖|𝑘

denote the predicted variables of the state and the input,
respectively, with x

𝑘|𝑘
= x(𝑘), x̂

𝑘|𝑘
= x̂(𝑘), and x

𝑘−𝑖|𝑘
= x(𝑘− 𝑖)

for 𝑖 ≥ 1. Besides, we have the terminal constraints u
𝑘+𝑖|𝑘

= 0

for 𝑖 > 𝑚.
Associated with the closed-loop system (4), the min-max

optimization problem (6) becomes of the following form:

min
u𝑘+𝑖|𝑘,𝑖=0,1,...,𝑚

max
[A(𝑘+𝑖),B(𝑘+𝑖)],𝑖≥0

𝐽 (𝑘) ,

𝐽 (𝑘) =

𝑝

∑

𝑖=0

x𝑇
𝑘+𝑖|𝑘

̃Sx
𝑘+𝑖|𝑘

,

(7)

where x̂
𝑘+𝑖|𝑘

= 0, 𝑖 > 𝑚, and S̃ = diag{S
1
,C𝑇
𝑐
S
2
C
𝑐
}.

The future control sequence can be obtained by solving
the above optimization problem. In order to eliminate the
delay effects, the control input should be u(𝑘) = 𝑢

𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘

but not 𝑢
𝑘+𝜏(𝑘)|𝑘

. By using the multistep prediction and

the linear interpolation method, the control sequence Π
𝑘
=

{𝑢
𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘
, 𝑢
𝑘+1+𝜏

𝑠𝑎

𝑘
/ℎ|𝑘
, . . . , 𝑢

𝑘+𝜔+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘
} can be obtained. In the

receding horizon framework, only the first control variable
𝑢
𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘

actuates the system in time.

Lemma2 (see [20]). Let̂J = ̂J𝑇 > 0 and ̂H, ̂L be givenmatrices
with appropriate dimensions. Then, it follows that

̂J + ̂HF̂L + ̂LF̂H < 0 (8)

holds for any matrix F satisfying F𝑇F ≤ 𝜇I, if and only if there
exists a scalar 𝜀 > 0 such that

𝜇ĤĤ𝑇 + 𝜀Ĵ + 𝜀2L̂𝑇L̂ < 0. (9)

3. Main Results

In this section, we first derive an upper bound on the worst
value of the cost 𝐽(𝑘).

Theorem 3. Consider the uncertain system (1) and the cost
function 𝐽(𝑘). If there exist a controller of the form (3), a scalar
𝜀 ≥ √𝜇, P > 0 ∈ R2n×2n, Q > 0 ∈ Rn×n, R > 0 ∈ Rn×n,
and matricesM

0
∈ Rn×n,M

1
∈ Rn×n, such that the following

matrix inequality holds

[

[

[

[

[

[

[

[

[

[

[

[

[

M
𝑎
∗ ∗ ∗ ∗ ∗ ∗ ∗

M
𝑏

M
𝑐
∗ ∗ ∗ ∗ ∗ ∗

0 0 𝜆I ∗ ∗ ∗ ∗ ∗

A A
𝑑

I𝑇 P−1 ∗ ∗ ∗ ∗

A
𝑓

0 I 0 𝜏
−1R−1 ∗ ∗ ∗

̃M
0
M
1
0 0 0 𝜏

−1R ∗ ∗

0 0 0 D𝑇 D𝑇 0 𝜀
−1I ∗

E 0 0 0 0 0 0 𝜀
−1I

]

]

]

]

]

]

]

]

]

]

]

]

]

> 0, (10)

where

M
𝑎
=P − S̃ −M

𝑑
− 𝜆𝛼
2H̃,

M
𝑑
= diag {M

0
+M𝑇
0
− 𝑑
𝑐
Q, 0} ,

𝑑
𝑐
= 𝜏 − 𝜏 − 1,

H̃ = diag {H𝑇
1
H
1
,C𝑇
𝑐
H𝑇
2
H
2
C
𝑐
} ,

M
𝑏
= [M𝑇
1
−M
0
0] ,

M
𝑐
=Q +M

1
+M𝑇
1
,

A
𝑓
= [A − I BC

𝑐
] ,

̃M
0
= [M
0
0]

(11)
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then the closed-loop system (4) is asymptotically stable and the
cost function 𝐽(𝑘) satisfies the following:

max
[A(𝑘+𝑖),B(𝑘+𝑖)],𝑖≥0

𝐽 (𝑘) < x𝑇
𝑘|𝑘
Px
𝑘|𝑘
+

𝑘−1

∑

𝜃=𝑘−𝜏

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘

+

−1

∑

𝑗=−𝜏

𝑘−1

∑

𝜃=𝑘+𝑗

𝜂
𝑇

𝜃|𝑘
R𝜂
𝜃|𝑘

+

−𝜏+1

∑

𝑗=−𝜏+2

𝑘−1

∑

𝜃=𝑘+𝑗−1

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘
,

(12)

where 𝜂
𝜃|𝑘
= x
𝜃+1|𝑘

− x
𝜃|𝑘
.

Proof. Choose the following candidate Lyapunov functional:

𝑉 (x
𝑘+𝑖|𝑘

) = 𝑉
1
(x
𝑘+𝑖|𝑘

) + 𝑉
2
(x
𝑘+𝑖|𝑘

) + 𝑉
3
(x
𝑘+𝑖|𝑘

) , (13)

where

𝑉
1
(x
𝑘+𝑖|𝑘

) = x𝑇
𝑘+𝑖|𝑘

Px
𝑘+𝑖|𝑘

,

𝑉
2
(x
𝑘+𝑖|𝑘

) =

𝑘+𝑖−1

∑

𝜃=𝑘+𝑖−𝜏(𝑘)

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘
,

𝑉
3
(x
𝑘+𝑖|𝑘

) =

−1

∑

𝑗=−𝜏

𝑘+𝑖−1

∑

𝜃=𝑘+𝑖+𝑗

𝜂
𝑇

𝜃|𝑘
R𝜂
𝜃|𝑘
+

−𝜏+1

∑

𝑗=−𝜏+2

𝑘+𝑖−1

∑

𝜃=𝑘+𝑖+𝑗−1

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘
,

𝑖 = 0, 1, . . . , 𝑝.

(14)

Taking the forward difference for the Lyapunov func-
tional 𝑉

1
(x
𝑘+𝑖|𝑘

), one obtains

Δ𝑉
1
(x
𝑘+𝑖|𝑘

) = 𝜓
𝑇

(𝑘) {Γ
𝑇PΓ + diag {−P, 0, 0}}𝜓 (𝑘) , (15)

where

Γ = [
̃A A

𝑑
I𝑇] ,

𝜓
𝑇

(𝑘) = [x𝑇
𝑘+𝑖|𝑘

x𝑇
𝑘+𝑖−𝜏(𝑘)|𝑘

f𝑇 (x
𝑘+𝑖|𝑘

, u
𝑘+𝑖|𝑘

)] .

(16)

Direct computation gives

Δ𝑉
2
(x
𝑘+𝑖|𝑘

) = x𝑇
𝑘+𝑖|𝑘

Qx
𝑘+𝑖|𝑘

− x𝑇
𝑘+𝑖−𝜏(𝑘)|𝑘

Qx
𝑘+𝑖−𝜏(𝑘)|𝑘

+

𝑘+𝑖−1

∑

𝜃=𝑘+𝑖+1−𝜏(𝑘+1)

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘

−

𝑘+𝑖−1

∑

𝜃=𝑘+𝑖+1−𝜏(𝑘)

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘
.

(17)

Note that
𝑘+𝑖−1

∑

𝜃=𝑘+𝑖+1−𝜏(𝑘+1)

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘

=

𝑘+𝑖−1

∑

𝜃=𝑘+𝑖+1−𝜏

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘
+

𝑘+𝑖−𝜏

∑

𝜃=𝑘+𝑖+1−𝜏(𝑘+1)

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘

≤

𝑘+𝑖−1

∑

𝜃=𝑘+𝑖+1−𝜏(𝑘)

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘
+

𝑘+𝑖−𝜏

∑

𝜃=𝑘+𝑖+1−𝜏

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘
.

(18)

Hence, we have

Δ𝑉
2
(x
𝑘+𝑖|𝑘

) ≤ x𝑇
𝑘+𝑖|𝑘

Qx
𝑘+𝑖|𝑘

− x𝑇
𝑘+𝑖−𝜏(𝑘)|𝑘

Qx
𝑘+𝑖−𝜏(𝑘)|𝑘

+

𝑘+𝑖−𝜏

∑

𝜃=𝑘+𝑖+1−𝜏

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘
.

(19)

ΔV
3
(x
𝑘+𝑖|𝑘

) is computed as follows:

ΔV
3
(x
𝑘+𝑖|𝑘

) = 𝜏𝜂
𝑇

𝑘+𝑖|𝑘
R𝜂
𝑘+𝑖|𝑘

+ (𝜏 − 𝜏) x𝑇
𝑘+𝑖|𝑘

Qx
𝑘+𝑖|𝑘

−

𝑘+𝑖−1

∑

𝜃=𝑘+𝑖−𝜏

𝜂
𝑇

𝜃|𝑘
R𝜂
𝜃|𝑘
−

𝑘+𝑖−𝜏

∑

𝜃=𝑘+𝑖+1−𝜏

x𝑇
𝜃|𝑘
Qx
𝜃|𝑘
.

(20)

By the well-known inequality −2a𝑇b ≤ a𝑇Ra + b𝑇R−1b, we
obtain

−

𝑘+𝑖−1

∑

𝜃=𝑘+𝑖−𝜏

𝜂
𝑇

𝜃|𝑘
R𝜂
𝜃|𝑘
≤ 𝜓
𝑇

(𝑘) Δ
1
𝜓 (𝑘) , (21)

whereΔ
1
= 2[Ĩ − I 0]

𝑇Ỹ+Ỹ𝑇𝜏R−1Ỹ, Ỹ = [M̃
0

M
1

0].
Combining (15)–(21) yields

Δ𝑉 (x
𝑘+𝑖|𝑘

) ≤ 𝜓
𝑇

(𝑘)Π
1
𝜓 (𝑘) − x𝑇

𝑘+𝑖|𝑘

̃Sx
𝑘+𝑖|𝑘

, (22)

where
̃A
𝑓
= A
𝑓
+DF (𝑘)E,

Π
1
= Δ
1
+ Δ
2
+ Δ
3
,

Δ
2
=
[

[

−P + S̃ +M
𝑑

M𝑇
𝑏
0

M
𝑏

−M
𝑐
0

0 0 0

]

]

,

Δ
3
= Γ

TPΓ + [Ã
𝑓

0 I]
𝑇

𝜏R [Ã
𝑓

0 I] ,

(23)

and𝜓𝑇(𝑘)Π
1
𝜓(𝑘) < 0 implies thatΔ𝑉(x

𝑘+𝑖|𝑘
) < −x𝑇

𝑘+𝑖|𝑘

̃Sx
𝑘+𝑖|𝑘

≤ 0; that is, 𝑉(x
𝑘+𝑖|𝑘

) is degenerated. Therefore, the closed-
loop system (4) is asymptotically stable. Besides, for any
integer 𝐾 > 0, we have

𝐾

∑

𝑖=0

x𝑇
𝑘+𝑖|𝑘

̃Sx
𝑘+𝑖|𝑘

≤ −

𝐾

∑

𝑖=0

Δ𝑉 (x
𝑘+𝑖|𝑘

)

= −𝑉 (x
𝑘+𝐾+1|𝑘

) + 𝑉 (x
𝑘|𝑘
)

< 𝑉 (x
𝑘|𝑘
) .

(24)
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To guarantee the existence of the upper bound on the robust
performance index 𝐽(𝑘), we must have x

𝑘+𝐾|𝑘
= 0, 𝐾 ≥ 𝑝;

hence, 𝑉(x
𝑘+𝐾+1|𝑘

) = 0, 𝐾 ≥ 𝑝. Let 𝐾 → 𝑝, and then
max
[A(𝑘+𝑖),B(𝑘+𝑖)],𝑖≥0𝐽(𝑘) ≤ 𝑉(x𝑘|𝑘); we get (12).
By Schur complement, (2) is equivalent to the following

matrix inequality:

𝜓
𝑇

(𝑘)Π
2
𝜓 (𝑘) ≥ 0, (25)

where Π
2
= diag{𝛼2̃H, 0, −I}.

By 𝑆-procedure, 𝜓𝑇(𝑘)Π
1
𝜓(𝑘) < 0 is equivalent to the

existence of matrices P > 0, Q > 0, R > 0,M
0
, andM

1
and a

scalar 𝜆 ≥ 0 such that

[

[

[

[

[

[

[

[

[

[

−M
𝑎

M𝑇
𝑏

0
̃A𝑇 ̃A𝑇

𝑓

̃M𝑇
0

M
𝑏
−M
𝑐

0 A𝑇
𝑑

0 M𝑇
1

0 0 −𝜆I I I 0

Ã A
𝑑

I𝑇 −P−1 0 0

Ã
𝑓

0 I 0 −𝜏
−1R−1 0

M̃
0

M
1

0 0 0 −𝜏
−1R

]

]

]

]

]

]

]

]

]

]

< 0. (26)

Define matrix

̂J =

[

[

[

[

[

[

[

[

[

[

−M
𝑎

M𝑇
𝑏

0 A𝑇 A𝑇
𝑓

̃M𝑇
0

M
𝑏
−M
𝑐

0 A𝑇
𝑑

0 M𝑇
1

0 0 −𝜆I I I 0

A A
𝑑

I𝑇 −P−1 0 0

A
𝑓

0 I 0 −𝜏
−1R−1 0

̃M
0

M
1

0 0 0 −𝜏
−1R

]

]

]

]

]

]

]

]

]

]

, (27)

and then inequality (26) can be rewritten as

Ĵ + [0 0 0 D𝑇 D𝑇 0]

𝑇

F [E 0 0 0 0 0]

+ [E 0 0 0 0 0]

𝑇

F𝑇 [0 0 0 D𝑇 D𝑇 0]

< 0.

(28)

By Lemma 2, inequality (28) holds for any matrix F(𝑘)
satisfying F𝑇(𝑘)F(𝑘) ≤ 𝜇I, if and only if there exists a positive
scalar 𝜀 ≥ √𝜇 such that

Ĵ + 𝜀[0 0 0 D𝑇 D𝑇 0]

𝑇

F [0 0 0 D𝑇 D𝑇 0]

+ 𝜀[E 0 0 0 0 0]

𝑇

[E 0 0 0 0 0] < 0.

(29)

By Schur complement, inequality (29) is equivalent to (10).
This completes the proof.

It is noted that in thematrix inequality (10), the controller
parameters A

𝑐
, B
𝑐
, and C

𝑐
are unknown and occur in

nonlinear fashion; therefore, (10) is not an LMI problem. In
the sequel, we will use a method of changing variables [21] to
obtain an equivalent matrix inequality representation of the
nonlinear matrix inequality (10), which enables us to use the
CCL technique to design the output feedback controllers.

Now, we present a sufficient condition for the existence
of the output feedback delay compensation controller of the
form (3) for the NCS (4).

Theorem 4. Consider the NCS (4) and the cost function 𝐽(𝑘).
Suppose that for some prescribed matrices S

1
> 0, S

2
> 0; there

exist scalars 𝛾(𝑘) > 0, 𝜀 ≥ √𝜇, n × n matrices X > 0, Y > 0,
Q > 0, and R > 0, and matrices M

0
∈ Rn×n, M

1
∈ Rn×n,

̂A ∈ Rn×n, ̂B ∈ Rn×v, and ̂C ∈ Rl×n such that the following
optimization problem is feasible at the initial time step 𝑘 = 0:

Minimize 𝛾 (𝑘) , (30)

subject to Λ
1
≤ 0, (31)

Λ
2
> 0, (32)

and then the networked predictive control derived from the
solutions to the above optimization problem robustly asymp-
totically stabilizes the system (1), and the cost function satisfies
the bound

max
[A(𝑘+𝑖),B(𝑘+𝑖)],𝑖≥0

𝐽 (𝑘) ≤ 𝛾 (𝑘) , (33)

where

Λ
1
=

[

[

[

[

[

[

−𝛾 (𝑘) I ∗ ∗ ∗ ∗

Θ
1

Ω
1
∗ ∗ ∗

Θ
2

0 Ω
2
∗ ∗

Θ
3

0 0 Ω
3
∗

Θ
4

0 0 0 Ω
4

]

]

]

]

]

]

,

Λ
2
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

M
2

M
𝑐
∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 𝜆I ∗ ∗ ∗ ∗ ∗ ∗

Ξ
2
Ξ
6
Ξ
7
Ω
5

∗ ∗ ∗ ∗ ∗

Ξ
3

0 I 0 𝜏
−1R−1 ∗ ∗ ∗ ∗

M
3
M
1
0 0 0 𝜏

−1R ∗ ∗ ∗

0 0 0 Ξ
8

D𝑇 0 𝜀
−1I ∗ ∗

Ξ
4

0 0 0 0 0 0 𝜀
−1I ∗

Ξ
5

0 0 0 0 0 0 0 Ξ
9

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Ω
1
= [

−CYC𝑇 ∗

−N𝑇C𝑇 −W] ,

Ω
2
= diag {𝑑−1

𝑐
Q
𝑐
, . . . , 𝑑

−1

𝑐
Q
𝑐
}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜏

,

Ω
3
= diag {𝑑−1

1
Q
𝑐
, . . . , 𝑑

−1

𝜏−𝜏
Q
𝑐
} ,

Ω
4
= diag {𝜏−1

1
R
𝑐
, . . . , 𝜏

−1

𝜏
R
𝑐
} ,

Ω
5
= [

X I
I Y] ,

Q
𝑐
= CQ−1C𝑇,

𝑑
𝑖
= 𝑑
𝑐
+ 𝑖, 𝑖 = 1, . . . , 𝜏 − 𝜏,
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𝜏
𝑖
= − 𝜏 − 1 + 𝑖, 𝑖 = 1, . . . , 𝜏,

R
𝑐
= CR−1C𝑇,

Y
𝑖
= y
𝑘−𝑖+1|𝑘−𝑖+1

− y
𝑘−𝑖|𝑘−𝑖

, 𝑖 = 1, . . . , 𝜏,

Θ
1
= [y𝑇
𝑘|𝑘

x̂𝑇
𝑘|𝑘
]

𝑇

,

Θ
2
= [y𝑇
𝑘−1|𝑘−1

⋅ ⋅ ⋅ y𝑇
𝑘−𝜏|𝑘−𝜏

]

𝑇

,

Θ
3
= [y𝑇
𝑘−𝜏−1|𝑘−𝜏−1

⋅ ⋅ ⋅ y𝑇
𝑘−𝜏|𝑘−𝜏

]

𝑇

,

Θ
4
= [Y𝑇
1

⋅ ⋅ ⋅ Y𝑇
𝜏
]

𝑇

,

Ξ
1
=[

X−L −Y−1 + L
−Y−1 + L Y−1 − L ] ,

Ξ
2
=[

XA XA +
̂A

A A + B̂C] ,

Ξ
3
= [A−I A − I + BĈ] ,

Ξ
4
= [E
1

E
1
+ E
2

̂C] ,

Ξ
5
=[

0 Ĉ
0 𝛼H

2
Ĉ] ,

Ξ
6
=[C𝑇B̂𝑇 0]

𝑇

,

Ξ
7
= [X I]𝑇,

Ξ
8
= [D𝑇X D𝑇] ,

Ξ
9
= diag {S−1

2
, 𝜆
−1I} ,

M
2
= [M𝑇
1
−M
0
M𝑇
1
−M
0
] ,

M
3
= [M
0
M
0
] ,

L = − 𝑑
𝑐
Q + S

1
+M
0
+M𝑇
0
+ 𝜆𝛼
2H𝑇
1
H
1
.

(34)

Proof. First, partition P and its inverse as

P = [

X M
M𝑇 Z] , P−1 = [ Y N

N𝑇 W] , (35)

where X > 0 and Y > 0 ∈ Rn×n. Note the identity P−1P = I
gives

MN𝑇 = I − XY. (36)

Define

U
1
= [

X I
M𝑇 0] , U

2
= [

I I
0 N𝑇Y−1] . (37)

Then,

P−1U
1
diag {I,Y−1} = U

2
, U𝑇

1
P−1U
1
= Ω
5
. (38)

Define the new controller variables as

Â = B̂C + XBĈ +MA
𝑐
N𝑇Y−1,

̂B = MB
𝑐
,

̂C = C
𝑐
N𝑇Y−1.

(39)

Therefore, given X > 0, Y > 0, and invertible matrices M
andN, the controller matricesA

𝑐
, B
𝑐
, andC

𝑐
can be uniquely

determined by Â, B̂, and Ĉ.
Pre- and postmultiply (10) by diag{U𝑇

2
, I,U𝑇
1
, I, I, I, I, I}

and by diag{U
2
, I,U
1
, I, I, I, I, I}, respectively, set U𝑇

2
M
𝑎
U
2
=

Ξ
1
, M𝑇
𝑏
U
2
= M
2
, U𝑇
1
AU
2
= Ξ
2
, A
𝑓
U
2
= Ξ
3
, ̃M
0
U
2
= M
3
,

EU
2
= Ξ
4
, U𝑇
1
A
𝑑
= Ξ
6
, and D𝑇U

1
= Ξ
8
, and consider the

change of controller variables (39) and Schur complement,
and then (32) can be obtained.

By Theorem 3, the original min-max problem (6) can
be redefined as the following optimization problem that
minimizes an upper bound 𝛾(𝑘) > 0 on the worst value of
the original cost function 𝐽(𝑘):

Minimize 𝛾 (𝑘)

subject to max
[A(𝑘+𝑖),B(𝑘+𝑖)],𝑖≥0

𝐽 (𝑘) ≤ 𝑉 (x
𝑘|𝑘
) ≤ 𝛾 (𝑘) .

(40)

By Schur complement, 𝑉(x
𝑘|𝑘
) ≤ 𝛾(𝑘) is equivalent to the

following matrix inequality:

[

[

[

[

[

[

−𝛾 (𝑘) I ∗ ∗ ∗ ∗

x
𝑘|𝑘

−P−1 ∗ ∗ ∗

Θ̃
2

0 Ω̃
2
∗ ∗

Θ̃
3

0 0 Ω̃
3
∗

Θ̃
4

0 0 0 Ω̃
4

]

]

]

]

]

]

≤ 0, (41)

where

Θ̃
2
= [x𝑇
𝑘−1|𝑘−1

, . . . , x𝑇
𝑘−𝜏|𝑘−𝜏

]

𝑇

,

Θ̃
3
= [x𝑇
𝑘−𝜏−1|𝑘−𝜏−1

, . . . , x𝑇
𝑘−𝜏|𝑘−𝜏

]

𝑇

,

Θ̃
4
= [𝑧
𝑇

1
, . . . , 𝑧

𝑇

𝜏
]

𝑇

,

z
𝑖
= x
𝑘+1−𝑖|𝑘+1−𝑖

− x
𝑘−𝑖|𝑘−𝑖

, 𝑖 = 1, . . . , 𝜏,

Ω̃
2
= diag {𝑑−1

𝑐
Q−1, . . . , 𝑑−1

𝑐
Q−1}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜏

,

Ω̃
3
= diag {𝑑−1

1
Q−1, . . . , 𝑑−1

𝜏−𝜏
Q−1} ,

Ω̃
4
= diag {𝜏−1

1
R−1, . . . , 𝜏−1

𝜏
R−1} .

(42)

Define K
2
= diag{I, [C I],C, . . . ,C} and pre- and postmul-

tiply (41) by K
2
and K𝑇

2
, respectively, and it follows from (35)

and y
𝑘|𝑘
= Cx
𝑘|𝑘

that inequality (41) is equivalent to inequality
(31). This completes the proof.

Remark 5. Theorem 4 presents an optimization problem
to construct the desired output feedback model predictive
controllers. Note that the conditions in Theorem 4 are no
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more LMI conditions due to the terms Y, Y−1, Q, Q−1, R,
and R−1. As a result, we cannot find a minimum guaranteed
cost by using convex optimization algorithms. However, by
using a complementarity idea [18], we can cast the original
nonconvex optimization problem to a nonlinear minimiza-
tion problem involving LMI constraints and, by applying a
related iterative algorithm, some suboptimal guaranteed costs
can be obtained.

Replace the terms Y−1, Q−1, R−1, and 𝜀−1 in Λ
1
, Λ
2

by Y, Q, R, and 𝜀, respectively, and denote the obtained
matrices by Λ

1
, Λ
2
, respectively. Let the cost bound 𝛾(𝑘) be

lower than some specific value 𝐽∗(𝑘), and then the nonlinear
minimization problem involving LMI constraints can be
formulated as follows:

minimize Trace (YY +QQ + RR) ,

subject to Λ
1
≤ 0, Λ

2
> 0, 𝛾 (𝑘) ≤ 𝐽

∗

(𝑘) ,

[

Y I
I Y] ≥ 0, [

Q I
I Q] ≥ 0, [

R I
I R] ≥ 0.

(43)

If the minimum of the above nonlinear minimization prob-
lem is 3, that is, Trace (YG + QU +

̃RR) = 3, we can
say from Theorem 4 that the closed-loop system (4) is
asymptotically stable with guaranteed cost 𝛾(𝑘). We propose
an iterative algorithm shown in the following paragraph to
solve the above nonlinear minimization problem. Since it is
numerically very difficult in practice to obtain the optimal
solution such that Trace (YG +QU + ̃RR) is exactly equal to
3, we use (31) and (32) as a stopping criterion in the iterative
algorithm, and, thus, only some suboptimal guaranteed costs
can be obtained within a specified number of iterations.

Now, we summarize the proposed robust networked
predictive control algorithm as follows (Figure 1).

(1) Delay Evaluation. Assuming that all clocks of the
nodes in the NCS are synchronized and the message is time
stamped, the delay 𝜏𝑠𝑐 can be obtained easily. In general, the
network-induced delays are time varying, but the approx-
imate probability distributions are similar. Hence, we can
evaluate 𝜏𝑠𝑎

𝑘
as follows:

𝜏
𝑠𝑎

𝑘
= 𝜏
𝑠𝑐

𝑘
+ 𝜏
𝑐𝑎

𝑘
= 𝑡
𝑐

𝑘
− 𝑡
𝑠

𝑘
+

1

𝜌

𝜌−1

∑

𝑙=0

(𝑡
𝑐

𝑘−𝑙
− 𝑡
𝑠

𝑘−𝑙
) , (44)

where 𝑡𝑐
𝑘
is the timewhen controller receives the data, 𝑡𝑠

𝑘
is the

time when the sensor samples the data, and 𝜌 is the length of
the delay window. If the delay 𝜏𝑠𝑎

𝑘
is longer than one sampling

period ℎ, then it can be divided into two parts 𝜏𝑠𝑎
𝑘
= (𝜏(𝑘) −

1)ℎ + 𝜏
𝑘
, where 𝜏(𝑘) is an integer and 0 < 𝜏

𝑘
≤ ℎ.

Remark 6. The main objective of the proposed networked
predictive control algorithm is to provide the control strategy
to compensate the time-varying delays in the case that
𝜏
𝑠𝑎

𝑘
can be estimated and the effectiveness of the proposed

control strategy depends on the exactness of the estimate

Controller
(MPC)

Networks

Future control 
sequence

Intelligent 
actuator

Nonlinear discrete- 
time uncertain plant

Intelligent 
sensor

h

𝜏cak 𝜏sck

k+𝜏𝑠a
𝑘
/h|k

y(k)

u

Figure 1: A robust networked predictive control system.

for 𝜏𝑠𝑎
𝑘
; that is, the more exact the estimate for 𝜏𝑠𝑎

𝑘
is,

the more effective the proposed MPC algorithm will be.
In this paper, a commonly used delay evaluation method
is adopted just for reference, and, fortunately, a number
of advanced delay evaluation methods have now been pre-
sented; see, for example, the master-slave clock synchro-
nization technology [22], the Markov or Poisson process
based evaluationmethod [23], and the virtual-queuing-based
evaluation method [24]. Some better results can be obtained
by applying these newly developed techniques. Using the
proposed robust networked predictive control algorithm, the
effect of the transmission lag of themanipulated variables can
still be eliminated to some extent in the case that 𝜏𝑠𝑎

𝑘
cannot

be exactly estimated.

(2) The Iterative Algorithm. At time step 𝑘, the nonlinear
minimization problem is solved by using the iterative algo-
rithm shown as follows to get a set of solutions ̂A, ̂B, ̂C, X, Y,
Q, R, and so forth and a suboptimal guaranteed cost 𝛾(𝑘):

(a) choose a sufficiently large initial value of 𝐽∗(𝑘) such
that LMIs in (43) are feasible;

(b) find feasible solutionsX,Y,Y,Q,Q,R,R, ̂A, ̂B,̂C,M
0
,

M
1
, and 𝜀 to the LMI system in (43). Set 𝑖 = 0;

(c) solve the optimization problem for the variables Y, Y,
Q,Q, R, and R;

minimize Trace (YiY + YiY + RiR + RiR +QiQ +QiQ)

subject to (43) ;

(45)

(d) if conditions (31) and (32) are both satisfied within a
specified number of iterations 𝛽, set 𝐽∗(𝑘) = 𝐽∗(𝑘) −
Δ𝐽
∗

(𝑘) and return to step (b). Otherwise, if condition
(31) or (32) is not satisfied, set 𝑖 = 𝑖 + 1, Y

𝑖+1
= Y,

Y
𝑖+1
= Y,Q

𝑖+1
= Q,Q

𝑖+1
= Q,R

𝑖+1
= R, andR

𝑖+1
= R

and go to step (c). If there is no feasible solution to (31)
or (32) when 𝑖 has increased to 𝛽, then exit.

Remark 7. The CCL procedure is executed at each iterative
step, so it will take some time to run the above algorithm.
However, If a set of solutions ̂A, ̂B, ̂C, X, Y, Q, and R are
obtained by using the iterative algorithm at the time step 𝑘,
then, at the next time step 𝑘 + 1, we can skip step (b) and
use the solutions at the time step 𝑘 to do step (c) directly.
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By adopting the above procedures, the iterative algorithm
with a faster converging rate can be obtained. Besides, the
controller computational delays are trivial as compared with
the network communication delays. Therefore, the proposed
networked predictive control algorithm can be applied in an
on-line fashion.

(3) Calculation of the Controller Matrices. Using the
solutions obtained in step (2), the controller matrices A

𝑐
, B
𝑐
,

and C
𝑐
can be uniquely determined as follows:

A
𝑐
= M−1 (Â − XA − B̂C − XBĈ)YN−𝑇,

B
𝑐
= M−1B̂, C

𝑐
= ĈYN−𝑇,

Y = Y−1, M = (I − XY)N−𝑇.

(46)

(4) Multistep Prediction and Delay Compensation. The
timing diagram of the NCS with network-induced delays
is shown in Figure 3; it can be seen from Figure 3 that
when the manipulated variable u(𝑘) arrives at the actuator,
the plant output has in fact changed from y(𝑘) to y(𝑘 +
𝜏
𝑠𝑎

𝑘
/ℎ) during data transmission in network. This situation

can be viewed as the logging of the manipulated variable,
which degrades the system performance and even causes the
instability of the feedback control loop. The transmission lag
of manipulated variable can be compensated through the
method of multistep prediction. Firstly, since the old data
𝑦(𝑘 + 𝑖 − 𝜏(𝑘)), 𝑖 = 0, . . . , 𝜏(𝑘) can be obtained at the instant
𝑘 + 𝑖, the predicted value of the state of the output feedback
controller x̂

𝑘+𝑖+1|𝑘
= A
𝑐
x̂
𝑘+𝑖|𝑘

+B
𝑐
y
𝑘+𝑖−𝜏(𝑘)

, 𝑖 = 0, . . . , 𝜏(𝑘), and
the predicted control inputs u

𝑘+𝑖|𝑘
= C
𝑐
𝑥
𝑘+𝑖|𝑘

, 𝑖 = 0, . . . , 1 +
𝜏(𝑘), can be calculated based on theMPC strategies.Then, we
use the linear interpolation to calculate the predicted control
inputs u

𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘

, which is shown in Figure 2. Thus, u
𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘

can be obtained as follows:

u
𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘

= u
𝑘+𝜏(𝑘)−1|𝑘

+ (u
𝑘+𝜏(𝑘)|𝑘

− u
𝑘+𝜏(𝑘)−1|𝑘

) ∗ (1 +

𝜏
𝑠𝑎

𝑘

ℎ

− 𝜏 (𝑘)) .

(47)

Therefore, the actual plant input at time step 𝑘 is u(𝑘) =
u
𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘

.

Remark 8. Bymultistep prediction, we can obtain the control
input u

𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘

, and it can be seen from Figure 3 that when
the newmanipulated variable u

𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘

arrives at the actuator,
the plant output reaches y(𝑘 + 𝜏𝑠𝑎

𝑘
/ℎ) at the same time, so the

effect of the transmission lag of the manipulated variable is
eliminated and NCS can be controlled in time and effectively.

Remark 9. By using the multistep prediction and the linear
interpolation method, the future control sequence can be
obtained. It is assumed that a buffer is introduced at the
actuator to store the future control sequenceΠ

𝑘
= {𝑢
𝑘+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘

,
𝑢
𝑘+1+𝜏

𝑠𝑎

𝑘
/ℎ|𝑘
, . . . , 𝑢

𝑘+𝜔+𝜏
𝑠𝑎

𝑘
/ℎ|𝑘
}, where the buffer size 𝜔 is set

to be longer than the worst-case delay. It should be noted

k|k

(𝜏(k) − 1)h h

𝜏sak
k+𝜏𝑠𝑎

𝑘
/h|k

k+𝜏(k)|k k+1+𝜏(k)|k

u

u u u

Figure 2: The timing diagram for multistep prediction.
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(k + 1 + 𝜏sak+1/h | k + 1)

(k + 1 + 𝜏sak+1/h)

k k + 1 k + 2 k + 3 k + 4 k + 5

𝜏sak /h

Δ (k)

(k + 𝜏sak /h | k)

(k + 𝜏sak /h)
(k + 1)

(k)

u

x

x
x

x

x

x

Figure 3:The timing diagram for sensors, controllers, and actuators
in NCS.

that, with the multistep prediction and the actuator buffering
method, we can treat the event of out-of-order data as well
as the event of vacant sampling or packet losses. This is
because, at a particular time instant, older data that arrive
at the controller are used to replace data histories for use in
prediction. On the other hand, older data that arrive at the
actuator will be discarded if newer data are available. In the
case that there is a packet loss, the corresponding control
variables in the obtained future control sequence can also be
chosen and implemented to eliminate the packet-loss effects.
This is true as long as the sequential occurrences of out-of-
order data, vacant sampling, or packet losses are within the
worst-case delay.

(5) At the next time step, repeat steps (1)–(4) based on the
measured output y(𝑘) and the value x̂(𝑘 + 1) of the controller
state.

Remark 10. In the receding horizon framework, only the first
computed control move u

𝑘|𝑘
is implemented. At time step

𝑘+1, the optimization is solved againwith newmeasurements
from the plant. The purpose of taking measurements at each
time step is to compensate for the unmeasured disturbances
and model uncertainty. This is the main feature of the
receding horizon control. Following a similar line as the proof
of Lemma 6 in [25], we can conclude that the proposed
networked predictive control algorithm is solvable at all time
steps 𝑘 > 0 if (30) is solvable at time step 𝑘 = 0.
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4. Illustrative Examples

In this section, an example is given to illustrate the effec-
tiveness of the proposed robust networked model predictive
controllers.

Example 11. Consider the uncertain nonlinear system (1)with
the following system matrices:

A = [ −0.3 0.53

−0.28 0.4
] , B = [0.25

1.4
] ,

C = [1 −1

0 0.5
] , D = [

0.2

0.12
] ,

H
1
= diag {1, 1} , E

1
= [0.3 −0.1] ,

E
2
= 0.7, F (𝑘) = sin (𝑘) ,

f = x (𝑘) sin u (𝑘) , 𝜇 = 1,

𝛼 = 0.5, H
2
= 1.

(48)

And the initial condition x̂(−𝑖) = [2 1]
𝑇, y(−𝑖) = [1 0.5]

𝑇,
for 𝑖 = 0, 1, . . . , 𝜏. The sampling time setup is chosen as
ℎ = 20ms. We choose S

1
= diag{0.5, 0.5}, S

2
= 1 in the cost

function 𝐽(𝑘) defined in (4). Simulations are performed for
the various values of 𝜏(𝑘) from 2 to 4.

We apply the proposed robust output feedback MPC
algorithm to stabilize the NCS, and the simulation results are
shown in Figures 4–7; Figure 4 shows the output trajectories
of the NCS. Figure 5 shows the control signals. The time-
varying delays are shown in Figure 6. The values of 𝛾(𝑘) at
each time step are shown in Figure 7. The figures illustrate
that the designed control inputs lead to the stability of the
NCS and guarantee an on-line suboptimal receding horizon
guaranteed cost at each time step. Therefore, our method is
effective.
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Figure 5: Control signals.
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5. Conclusion

In this paper, we present a robust output feedback MPC
method for the uncertain nonlinear discrete-time systems
with time-varying network communication delays. The side-
effect of the transmission lag of the manipulated variables is
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eliminated by using the method of delay evaluation and mul-
tistep prediction. By using the MPC strategies and the LMI
techniques, a delay-dependent sufficient condition is derived
for the existence of the dynamic output feedback controllers,
and an on-line optimization algorithm is also presented to
construct the desired controllers with a suboptimal guaran-
teed cost at each time step. Besides, it is not necessary to tune
any parameter in the optimization algorithm. Therefore, it is
quite suitable for practical applications.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is partially supported by the Environmental Pro-
jects of Zhejiang Province under Grant 2013A032, the Public
Projects of Zhejiang Province under Grants 2014C33044 and
2012C32021, the Project of EducationDepartment of Zhejiang
Province under Grant Y201327680, and Research Center for
Smart Agriculture and Forestry under Grant 2013ZHNL02.

References

[1] A. Bemporad, M. Heemels, and M. Johansson, Networked
Control Systems, vol. 406 of Lecture Notes in Control and
Information Sciences, Springer, London, UK, 2010.

[2] Y. Sun and N. H. El-Farra, “Quasi-decentralized model-based
networked control of process systems,”Computers andChemical
Engineering, vol. 32, no. 9, pp. 2016–2029, 2008.

[3] R. A. Gupta and M. Y. Chow, “Networked control system:
overview and research trends,” IEEE Transactions on Industrial
Electronics, vol. 57, no. 7, pp. 2527–2535, 2010.

[4] D. Zhang,Q.-G.Wang, L. Yu, andH. Song, “Fuzzy-model-based
fault detection for a class of nonlinear systems with networked
measurements,” IEEE Transactions on Instrumentation and
Measurement, vol. 62, no. 12, pp. 3148–3159, 2013.

[5] D. Zhang, Q.-G. Wang, L. Yu, and Q.-K. Shao, “𝐻
∞
filtering for

networked systems with multiple time-varying transmissions
and random packet dropouts,” IEEE Transactions on Industrial
Informatics, vol. 9, no. 3, pp. 1705–1716, 2013.

[6] Y. Zhang and H. Fang, “Stabilization of nonlinear networked
systems with sensor random packet dropout and time-varying
delay,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2253–
2264, 2011.

[7] M. C. F. Donkers, W. P. M. Heemels, D. Bernardini, A. Bempo-
rad, and V. Shneer, “Stability analysis of stochastic networked
control systems,” Automatica, vol. 48, no. 5, pp. 917–925, 2012.

[8] N.W. Bauer, P. J. H.Maas, andW. P.M.Heemels, “Stability anal-
ysis of networked control systems: a sum of squares approach,”
Automatica, vol. 48, no. 8, pp. 1514–1524, 2012.

[9] W. J. Xu, Z. Zhou, andQ. Liu, “Hybrid one-way delay estimation
for networked control system,” Advances in Engineering Soft-
ware, vol. 41, no. 5, pp. 705–711, 2010.

[10] H. Li, H. Yang, F. Sun, andY. Xia, “A network-bound-dependent
stabilization method of networked control systems,” Automat-
ica, vol. 49, no. 8, pp. 2561–2566, 2013.

[11] W. A. Zhang and L. Yu, “A robust control approach to stabi-
lization of networked control systems with short time-varying
delays,” Acta Automatica Sinica, vol. 36, no. 1, pp. 87–91, 2010.

[12] G.-S. Tian, F. Xia, and Y.-C. Tian, “Predictive compensation for
variable network delays and packet losses in networked control
systems,” Computers and Chemical Engineering, vol. 39, pp. 152–
162, 2012.

[13] Z. H. Pang, G. P. Liu, D. H. Zhou, and M. Y. Chen, “Output
tracking control for networked systems: a model-based predic-
tion approach,” IEEE Transactions on Industrial Electronics, vol.
61, no. 9, pp. 4867–4877, 2014.

[14] Y. Xia, W. Xie, B. Liu, and X. Wang, “Data-driven predictive
control for networked control systems,” Information Sciences,
vol. 235, pp. 45–54, 2013.

[15] C. Tan and G. Liu, “Consensus of discrete-time linear net-
workedmulti-agent systems with communication delays,” IEEE
Transactions on Automatic Control, vol. 58, no. 11, pp. 2962–
2968, 2013.

[16] G. Pin and T. Parisini, “Networked predictive control of
uncertain constrained nonlinear systems: recursive feasibility
and input-to-state stability analysis,” IEEE Transactions on
Automatic Control, vol. 56, no. 1, pp. 72–87, 2011.
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