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For heavy haul trains, it is difficult to get global information due to the limited range of communication. This paper proposed a
novel distributed optimal control based on game strategy, in which the global optimization is achieved by equilibrizing subsystems’
performance just utilizing local information. To online solve the game control, an efficient multivariable extremum seeking
algorithm was adapted to approximate the partial differential equation deduced by optimal condition. The convergence of the
proposed approximate algorithm is proved by constructing a fictitious Lie bracket system using Lyapunov function. Finally, the
proposed distributed optimal control is valuated rigorously by case study according to the configuration of Daqin railway in China.

1. Introduction

Heavy haul trains are used broadly in many countries with
high demand for transporting mineral, petroleum, coals, and
so on. Essentially, heavy haul trains are distributed powered
networked system constituted with many locomotives and
wagons. The basic control problem for heavy haul trains is
tracking to the target speed profile while considering some
performance index, including the traveling time, energy con-
sumption, and in-train forces. Then, the optimal controller
should be designed to achieve the performance.

The optimal problem has received many attentions
recently in the field of train’s operating control [1-5]. Energy
consumption and traveling time focused optimal control was
studied in these works for either passenger trains or ordinary
freight trains. But much larger dynamic in-train forces were
imposed in heavy haul trains due to unreasonable control
of the distributed power, undulating grades, and also the
lager train lengths. The couplings used in heavy haul trains
wear out due to large in-train forces [1]. So the optimization
techniques used for passenger trains or ordinary freight trains
may not be directly applicable to heavy haul trains.

Researches on optimal control of heavy haul trains
were done about travelling time, in-train forces, and energy
consumption. An optimal open-loop offline controller is

designed for cruise control of heavy haul trains [6]. It is
derived that distributed controller can be more useful to
minimize the in-train forces. But static error always exists for
the reason of open loop. Based on this, the authors did further
research on closed-loop optimal controller of heavy haul
trains with consideration of in-train forces, speed tracking
error, and energy consumption. It concluded that the 2-2
mode (full distributed) controller’s performance about in-
train forces is much better than 1-1 mode (centralized). A
similar conclusion was derived in [7]. In these literatures,
a LQR (linear quadratic regulator) optimal method is used
to optimize the feedback gain using global information [6,
7]. The global information is gathered by communication
networks laid on the train, for example, Lonworks (used in
electronically controlled pneumatic (ECP)), GSM-R, or LTE-
R. But the global information is not always available during
the traveling due to the range of communication, disturbance,
delay, and communication failure. Therefore, design of a
distributed optimal controller for each powered locomotive
and wagon is more practical and intriguing using available
local information about the whole system.

Local performance index should be constructed first
when designing distributed optimal controllers for heavy
haul trains. The subsystems in the train work in a team
to track a desired speed profile. At the same time, each of



them tries to minimize the energy consumption and in-train
forces at the cost of increasing others, which is very complex
and difficult. Game strategy is an efficient method to solve
these types of problems with conflict benefits [8]. Distributed
optimal control problem was solved by game strategy for
multiagent system in some works [9-11].

In [9], a noncooperative game was designed to distributed
optimization with fixed local communication. The authors
design estimators to estimate other players’ states which make
the controller compute heavily. Since there is information
exchange among the players, there is no need to design so
many estimators. A most related work is done in [10], which
brings together cooperative control, reinforcement learning,
and game theory to solve multiplayer differential games on
communication graph topologies. It formulates graphical
games for dynamic systems and provides policy iteration
and learning algorithms along with proof of convergence to
the Nash equilibrium. Since there are communications, the
subsystems cooperate to track the target speed.

A differential game in the sense of cooperation is con-
structed in [12] and Pareto equilibrium is further studied
for cooperative game [13]. Analysis of convergence to Pareto
equilibrium was done and the necessary and sufficient con-
ditions were derived. It showed that if the dynamic system
is controllable then all Pareto candidates can be obtained by
solving the necessary conditions of a weighted sum optimal
control problem. However, this is done offline and global
information is required.

In this paper, we made an improvement on these works.
We propose a novel distributed optimal control based on
game strategy, in which the global optimization is achieved
by equilibrizing subsystems’ performance just utilizing local
information. To online solve the game, an efficient multivari-
able extremum seeking algorithm was adapted to approxi-
mate the partial differential equation deduced by optimality
condition. The proposed controller is applied to heavy haul
trains with second order interconnected model.

The main contribution of this paper includes four aspects.
Firstly, a distributed optimal controller using local informa-
tion with conflict performance index is proposed for heavy
haul trains with a second order interconnected model. A
system level global target was attained by optimizing the
local performance with proper communication topology.
Secondly, a cooperative differential game is constructed
to solve the distributed optimal problem with conflicting
individual objectives. We proved that a Pareto equilibrium
would be reached when the communication topology of
the subsystem in heavy haul trains was strongly connected.
Thirdly, we proved that the cooperative game can be solved
only by local information, while, in most existing literatures,
global information is necessary for solving the game. Lastly,
we develop an efficient multivariable extremum seeking
algorithm, which was proposed to approximate the partial
differential equation deduced by solving the cooperative
game.

The remainder of this paper is organized as follows.
In Section 2, the model of heavy haul trains is given,
including kinetic model and communication connections
model. In Section 3, the distributed optimal control for heavy
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haul trains is formulated and then a cooperative game is
constructed. In Section 4, the stability and convergence of
formulated cooperative game are analyzed. In Section 5, a
multivariable extremum seeking algorithm is designed to
approximate the partial differential equation deduced by
solving the cooperative game. In Section 6, a simulation
scenario is set based on application. At last, the conclusion
is given.

2. Model of Heavy Haul Trains

In this section, the formulation of distributed optimal control
problem and the train model used in this paper is summa-
rized.

There are two types of model of heavy haul trains
discussed in the existing literatures, namely, point-mass
model used in [3, 14] and spring-mass model used in [7, 15].
Spring-mass model is mostly used when considering the
complex in-train dynamics and the effectiveness is validated
against experimental data collected on a train operated by
Spoornet on its COALlink in South Africa [16]. The wired
Lonworks communication or wireless GSM-R and LTE-R
communication is used to operate heavy haul trains more
efficiently with the development of communication based
train control system. In our paper, the spring-mass model of
heavy haul trains is used with considering the communica-
tion connections among the cars (for ease of presentation,
in what follows both locomotives and wagons in heavy haul
trains are referred to as cars), which is more realistic.

2.1. Kinetic Model of Heavy Haul Trains. The longitudinal
dynamic characters of heavy haul trains can be described by
the following set of equations [7, 16]:
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wherei = 2,...,n— 1 and n (positive integer) is the number
of cars in heavy haul trains. When x;, v;, and m; denote the
displacement with respect to an inertial frame, the speed, and
the mass of the ith car, respectively, u; is the traction force
or braking force added to the ith car. FC is the in-train force
between the ith and (i + 1)th car and can be formulated as
follows:

Y =k (= xpp0) + i (% = %340) @)

1

where k; is the coupler’s spring constant of the ith car and d;
is the coupler’s damp constant of the ith car.
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a) Wired network equipped on heavy haul trains

(b) Wireless network equipped on heavy haul trains

FIGURE 1: Two types of network equipped on heavy haul trains. In (a) C; (i € n, n is the number of cars in the train) is the ith controller
equipped on the cars. They can communicate with each other by wired Lonworks protocol. J; is the conjunction box between the cars. (b) It
is a wireless network configuration of heavy haul trains. The physical connections are ignored in the figure.

The in-train forces can be viewed as the coupling force
between the cars and we can rewrite (1) as follows:

i+1

z—Az+Zc®z +Bu (3)

j=i—1
where the letter & is used to denote a vector. 2, = [x; v,]" €
R is the ith car’s states vector, the matrix A = [0 1; 0 0],
the matrix B=[0 1]7, ¢;j is coupling coeflicient, and ¢; = 1
wheni # j, G =2 wheni=j,0=1[0 0; k/m d/m]

is the coupling matrix where we suppose that all the k; and
d; are equal, if the types of couplers in the train are the same
actually, and u; is the control input.

2.2. Model of Communication Connections among the Cars.
As a benefit from the communication network equipment
laid on heavy haul trains, more flexible control strategy can
be designed. Lonworks is the most popular network protocol
used in heavy haul trains equipped with ECP/iDP systems
as shown in Figure 1(a). However, heavy haul trains need to
marshal when loading and unloading freight, and then the
wireless network equipped on the train will be more flexible,
such as LTE-R (Long Term Evolution-Railway), as shown in
Figure 1(b).

Remark 1. Tt is obvious that there are some drawbacks of
configuration as shown in Figure 1(a). If one of the nodes
fails, the whole network will be broken. Moreover, frequent
marshalling of the train makes it difficult and expensive to
maintain. Configuration (b) is much more flexible and can
provide larger bandwidth. LTE-R has already been laid out in
Shuohuang Railway in China.

A direction graph is used to describe the communication
among subsystems. According to the trains model equation
(1), there are n vertexes v = {v,v,,...,v,} in the Graph
E(v,&,9), which is used to describe the communication
among the cars (a node in the graph) similarly as [17]. The
set of edges or arcs is € € v x v. An edge from node j to node i
is denoted by (v}, v;), which means that node i receives the
information from node j. The associated adjacency matrix
o = [a,-j] R™", where a;; = 1if (v;,v;) € &, means node
i can receive information from node j, a; = 0 otherwise.
Particulalry, a; = 0; that is to say, there is no self-loop

in the Graph. Node j is called a neighbor of node i if
(vj,v;) € & The set of neighbors of node i is denoted as

N; = {vj €ev:i(v,v) € e}. The degree of node i is defined
as d; = ZjeN,. a;. N \ {i} is used to denote all of the cars
except i. If there is a sequence of nodes vy, v,, ..., v; such that
(Vi viy1) € &1 € {1,2,...,j — 1}, then there is a path from
v to v;. A direction graph is said to have a spanning tree, if
there is a node i, (called the root), such that there is a directed
path from the root to every other node in the graph. In the
communication graph &, if there is a path from node i to
node j, we denote that j is reachable from i. If there is at least
a path between any two nodes i and j, the graph is strongly
connected [18].

2.3. Desired Speed Profile. The heavy haul trains travel
according to a desired speed profile and the speed profile can
be expressed as

Xo = Vo» Vo = Ups (4)

where x, vy, and u, are the desired displacement, speed, and
vo] "

Usually, we can view the desired speed profile as the
operator’s command and can be scheduled offline due to
experience or online heuristic or close-loop global optimality
of energy consumption, traveling time, and so on. However
how to design the desired speed profile is not our focus in this
paper. If the desired speed profile is scheduled appropriately,
and the heavy haul trains can track the profile well under
our proposed controller, the trains can travel with favorable
performance.

input, respectively, and Z, = [x,

3. Control Problem Formulation

3.1. Distributed Optimal Control with Neighbor’s Information.
Due to the different control requirements caused by undulat-
ing grades of the railway and unpredictable communication
failure among cars in the train, distributed controllers are
designed by neighbor’s information (available information
from cars in the train, and global information is not nec-
essary), with considering some performance index to track



the desired speed profile. The disagreement of car i to his
neighbors and the desired speed profile is denoted in

f; = Zaij <2i_2j)+li0 (2 - %), (5)
jeN;
where a;; is defined in the section of communication model
and [, = 1 if the car i can directly receive the operator’s
command.

The controllers in the train cooperate to achieve a system
level objective. So, the objective of our work is to design u; in
(1) with optimizing the local performance index J; as designed
in

Ji = J L; (7w, t) dt
0

(6)
(o)
S ST s T s T
= _L <’1iQii’7i +u;Ryu; + ZujRijuj >dt)

JEN;

where Q;;, R;;, and féij are weight coefficients. In the per-
formance index J;, Q; is the weight of tracking desired
speed and the in-train forces and R;; is the weight of energy
consumption and fZ,-j is the weight of energy consumption
of neighbor cars. To minimize the performance index J;
means optimization about the train’s travel time, in-train
forces, and energy consumption [7]. The significant differ-
ence is J; defined in (6) depending only on local neighbors’
information and the performance index may be coupled and
conflict. We can see that decreasing the input of one car will
result in increasing inputs of others, which makes solving
of optimal control problem very difficult. The distributed
optimal control problem discussed in this paper will be
formulated as a cooperative game problem, which is capable
of solving problems of many individuals with cooperative
and/or conflict interests.

3.2. Applying Cooperative Game Strategy to Heavy Haul
Trains. As discussed in the section of distributed optimal
control problem, it is converted to a cooperative game. The
detailed description and definition will be given as follows.

A four-tuple [Z; ¢; u; J;] is used to describe the
state of a car in the train. u; is a controller’s decision value,
namely, control input, considering the neighbors’ states. u_;
denotes the decision values of i’s neighbors. %; is used to
denote the set of available decisions for car i. A tuple i =
(up,ty,...,u,) = ILU,; € % is denoted as a joint value. A
function V;(#;(t)) is used to denote the cost of taking decision
u;. The cost function is defined as (7), which coincides with
performance index J;:

V; (7; (1)) = J <’7iQii’7iT + ”iRii“iT + Z ”J‘Rij”j> dt. (7)

t jeN;

Assumption 2. Assume that V;(#;(t)) is continuous and first-
order derivative and from the expression equation (7), it is an
integral of quadratic form function, then V; is nonnegative.
The neighbors’ states are available to make a decision for
car i. It is always impossible to minimize the performance
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index for a single car without increasing that of other cars. It
implies that there exists an equilibrium for the whole system,
which coincides with the characters of Pareto optimality. The
Pareto optimality equilibrium for cooperative game is defined
in [12], with global information of the system.

Lemma 3. Global Pareto optimality: u* are Pareto optimal
solutions for the formulated cooperative game, if and only if,
for Vi € n, u* minimizes J,(u) on the constrained set:

U2{ued|J,(u")<];w),¥jeN\{i}. (8)

However, when only partial information is available to
design the decision during game, Lemma 3 needs to be
extended in the sense of local Pareto optimality equilibrium.
If the communication topology of the system meets some
conditions, the global Pareto optimality equilibrium will be
reached on the basis of local Pareto optimality equilibrium.
The definition of local Pareto optimality equilibrium is given
in Definition 4.

Definition 4. Local Pareto optimality: subsystem 7’s Pareto
best response to neighbours’ fixed u_;,i € N; is the rule u;
such that minimizing J; and for all j € N;, the following
inequation holds, ]j(ui*, u) < Ji(uu_y).

The objective of the paper is to design a decision making
algorithm while playing the cooperative game. The game
converges to a global Pareto optimality when every player is
achieving local Pareto optimality.

For a distributed optimal problem formulated in our
paper, if the designed decision making rule u;, Vi to play
the game is continuous and ;(0) = 0 can stabilize the
disagreement #j; of every car locally with minimizing J;, and
the value function V;(#;(¢)) is finite, we say that a global
optimization is reached under distributed optimal controllers
by cooperative game.

Design u; to minimize the value function V;(#;(t)) subject
to the state transition function of the system equation (3) and
the initial states Z;(0) with states bound Y, su; < V;-

By Lemma 3 and conclusion from [13], this game can
be solved by a group of constrained optimal equations.
Construct a Hamiltonian function with boundary conditions
and Y, su; < y; as

H; (u; u_p, 73, 29) = & (1) ¢; (2;"2]"”1’) +L;+ ”jﬁjj”]r
9)
+ G (=) + 5% (Zi - ”i)’

u;) = %; and Z; is denoted in (3), L,

where ¢,(Z;,Z;, is
defined in (6), and {; and «; are positive real numbers [19].

To minimize the local performance index equation (6) with
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constrains, by Pontryagin’s minimum principle and Karush-
Kuhn-Tucker condition, the following equations should be
satisfied:

dH; ()
7 =,
dt
21* =¢ (21'*)’
. 0H,
& (1) = TR (10)
i
oH,
ou,
Z(0) = Z,,
where
£ (t) = —AE; (t) - 2Q;7,» (1)
H. - N
ou;
= u

i

1 212 >_1- 2_1=
-T2 (ff (t) (d; + L) RiilBT - KiRiiIIZ + iR“112)

if k; = (;, (12) can be written as

u; = _%Ei () (d; + 1) R;IET- (13)

4. Stability and Convergence
of Cooperative Game

Theorem 5. Let car i in the heavy haul trains be reachable for
alli € n, and let every car i be in local Pareto optimality as
Definition 4 to all of its neighbors j € N;. Then all the cars are
in global Pareto optimality as Lemma 3 if and only if the graph
is strongly connected.

Proof. If every car i is in local Pareto optimality to its
neighbours j € Nj, then follow the Definition 4, we have Vi,
and J; is minimized at J;(u;, u_;) < ]]-(uf,u:), where j € N;.
We analyze the problem from a viewpoint of propagation.
Choose any car labeled i, its neighbours are N;, and not all
the cars are included in this group. Then for this group Gr;,
the Pareto optimal is reached. Because the graph is strongly
connected, for the group Gr;, there is at least a car k which
is reachable for other cars not in group Gr;. It is the same
for the group Gr, which is different from Gr;. Then the
Pareto optimality is propagated from Gr; to Gry. The Pareto
optimality is propagated to other cars until there is no any
car left in the graph. Then we can say that the global Pareto
optimality is reached.

Necessity. If the graph is not strongly connected, there is at
least a pair of i and j between which there is no path. Then
the Pareto optimalilty related with i cann’t propagate to j, and
then the global Pareto optimality is not achieved.

Sufficiency. When the graph is strongly connected, the global
Pareto optimality is not achieved and only some local Pareto

optimality is achieved, for example, Gr;, Gr;, and Gry. That
istosay,i € N;,i ¢ Nj,andi ¢ N;. By the view of Pareto
optimality propagation, we can deduce that there is no path
from i to j or k, so this is contradictory to the graph that is
strongly connected. O

Theorem 6 (stability of cooperative distributed optimal
controller). Let Assumption 2 hold. To design a distributed
cooperative optimal controller through game, according to (13),
aiming at effecting on state disagreement and deviation to
the desired profile, u; should be related with the variety of u;,
that is oV;/0n;. Given &,(t) = 0V;/0n;, Vi, under the Pareto
optimal u, the heavy haul trains are asymptotically stable and
terminally converge to the desired speed profile.

Proof. To analyze the stability of cooperative distributed
optimal control, we utilize the Lyapunov function. Choose
the value function V; as a Lyapunov function, V; > 0. The
time derivative of V; is as follows:

v,- 2
i a’—/il rli
(14)
. ST A T =4 T
==Li= ) | AiQul; +wiRyuj + Y wRpauy |,
jeN; keN;

where L; is designated in (6). The terms in V; are quadratic
form, and then we can derive that V; < 0. So the system is
asymptotically stable and 7j; — 0. Thatistosayz; — Z; —
Z, the states converge to the desired profile. O

5. Multivariable Extremum Seeking Algorithm
for Cooperative Game

To drive the cooperative game to a Pareto optimal equilib-
rium, the decision rule equation (13) must be computable.
According to Theorem 6, ; is in the form of

10V, 213
u; = ‘Ea_ﬁ, (d; + 1) RiilBT‘ (15)

Substituting u; into (9), we derive a partial differential
equation. It is hard to get an analytical solution for such an
equation. Extremum seeking algorithm provides a numerical
perturbation based method to steer an unknown dynamical
system to the optimality. Motivated by [20, 21], a multivari-
able extremum seeking estimator is designed to solve the
Pareto optimality. A basic multivariable extremum seeking
algorithm is given in [22], which is based on perturbation and
periodic (sinusoidal) excitation signals are primarily used
to probe the nonlinearity and couplings. According to the
equations of u; and #j;, block diagram of the multivariable
extremum seeking algorithm for solving Pareto optimality
is given as Figure 2, where h; is a vector to pick J; whose

ith element is 1, and other elements are 0. f; is a vector of
[1,2(d;+1,) " B™'R;;], and then the estimator of (;, 7;) can be
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FIGURE 2: Block diagram of multivariable extremum seeking algo-
rithm for solving Pareto optimal.

derived as (i;, ﬁi). a, w;, and k; are real numbers. According to
the extremum seeking algorithm shown as Figure 2, one has

ﬁi = ak;]J; sin w;t + aw; cos w;t,
?:]i = ak;p;]; sin w;t + aw;p; cos w;t, (16)
-1 2.1R
Pi =2 (dl + liO) B Rii'

Remark 7. In our designed extremum seeking algorithm, J;
is not measured directly but can be derived by measuring
other states according to (6), which depends on local available
states. w; affects the frequency of perturbation and avoiding
of reaching a local optimality for nonconvex system. It is
insignificant to set w; uniformly as w for simplify. k; is set
similarly. By the multivariable extremum seeking algorithm,

we aim at forcing the solutions (ﬁi,%i), Vi € n finally

converge to the Pareto optimal i, ﬁl* , Vi € n, and then the
distributed optimal problem is solved.

Theorem 8. Consider a distributed optimal problem aiming
at tracking the desired profile which would be solved by a
game, to minimize the performance index J;, Vi € n as
defined in (6), Lemma 3. Through a multivariable extremum
seeking algorithm described in Figure 2 and (16), the Pareto
optimality can be solved online at J, u; and n;". If w; is large

sufficiently, the Pareto optimal solution (ﬁ:,ﬁ:), Vi € n,is
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globally uniformly asymptotically stable for system as described
in (16).

Proof. Motivated by [21], a Lie brackets based analysis
method is developed. Firstly, we consider the stability of u;.
According to (16), the overall states can be written as

ii= fv, +gv,, 17)
- T 2
where i = (v, wy o w], f =
T 5
l[ak,], ak,], ak,J,] . and g =
[aw, aw, aw,] . v, = sinw;it and v, = cosw;t

are fictitious control input. Then an input affine system is
constructed. .

The Lie bracket operation of vector f and g is defined as
follows:

[f’ ﬁ] = _azzkiwivu,.]ia (18)
i=1

where V, J; is the gradient of J; at the direction of u;. Then a
Lie bracket system can be defined according to (18):

-1

i =101+ 22 1.3, (19)

0
where v, = Lﬂn jo sin 7 cos 0 dt d, calculating the integral,
and y,, = 7. Then the Lie bracket system can be written as

5! 1 5%
ui = —Ea i:zlkiwivui]i. (20)

Construct a global Lyapunov functionas V;, = Y J; —
Y, 7. It is obvious that V; > 0 because J;" is minimized.
The time derivative of V} is as follows:

n
V= YV, T (21)
i=1

Substitute (20) into (21),

v, = —2 [%azikiwi (v, ],.)2] <0 (22)

i=1

when V; = 0 and V; = 0, we can see that J; will converge to
Pareto optimal equilibrium J;" for all i and the optimal control
u will be achieved at the same time. So the system is globally
uniformly asymptotically stable. O

6. Results and Discussion

To validate the performance of proposed distributed coop-
erative optimal controller, a simulation scenario based on
field application is set. A segment of track, desired speed
profile Figure 3, and simulation parameters of trains are given
in Table 1, which comes from heavy haul trains running
on Dagin railway in China. Without loss of generality, the
number of locomotives of heavy haul trains is set to be four
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FIGURE 3: Desired speed profile.
TaBLE 1: The simulation parameters.
Parameter Value Unit
Mass m; 292000 kg
Locomotive length 20 m
Coupler length L;; | 1 m
k, 100 x 10° Nm™
d, 100 x 10* Nsm™
Max traction 450 kN
Max brake 382 kN
Number of wagons 200 —
Number of locomotives 4 —
Start point 0.2 km
End point 12 km

in the simulation, which isa 1+2+1 (namely, one locomotive
+ some wagons + two locomotives + some wagons + one
locomotive) mode usually used in Daqin. Traction or braking
of the train mainly act on locomotive and the dynamics of
wagons are not considered for simplicity and treat them as
rigid body in our simulation. But the method can be easily
applied to more cars scenario.

The communication is limited due to the long distance
among the cars, so the cars can only get some information
of the whole train. By Theorem 6, a strongly connected com-
munication scenario is set as Figure 4, where the locomotives
in the heavy haul trains are labeled 1, 2, 3, and 4. The car
labeled 0 describes the order imposed on the heavy haul
trains. The order may come from the operator or an automatic
driving system. It is easy to validate that the graph is strongly
connected according to the definition in Section 2.

FIGURE 4: Communication topology of simulation system.
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FIGURE 5: Velocity response under distributed optimal controller.

The desired speed profile v(t) is given in Figure 3, and
the initial speeds of the locomotives are set to be
v, (0) = 59.40 km/h, v, (0) = 60.12km/h,
23
v, (0) = 59.44km/h, v, (0) = 59.29 km/h. 29

When the distributed optimal controller is used, the
velocities of the locomotives response as shown in Figure 5.
The lateral axis displays the train’s traveling distance during
simulation. The vertical axis displays the speed response of
locomotives under the controller designed in our paper. We
can see that the locomotives in the heavy haul trains can
track desired speed profile very well under the distributed
controller with local performance index. That is because the
controller aims to minimize a performance index J; where #;
contains a term about tracking the desired speed. When the
desired speed changes, there is a transient process before the
locomotives reach the new desired speed. A partial enlarged
figure in Figure 5 (from 7.5km to 8.5km) shows the detailed
speed dynamics.

The cars’ velocity deviation to the desired profile under
distributed optimal controller is shown in Figure 6. The
lateral axis displays the train’s traveling distance during
simulation. The vertical axis displays the velocity deviation
to the desired profile under the controller designed in our
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FIGURE 6: Velocity deviation to the desired profile under distributed
optimal controller.
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FIGURE 7: The control inputs under distributed optimal controller.

paper. We can see that the velocity deviation becomes very
large when the desired speed changes but under the function
of proposed controller, the deviation converges to nearly zero
gradually. Because of the influence of gravitation on the ramp
of railway, there is small speed fluctuation.

Figure 7 shows the resulted control inputs for each loco-
motive under the designed controller. The lateral axis displays
the train’s traveling distance during simulation. The vertical
axis displays the control input including traction force and
brake force under the controller designed in our paper. As
shown in Table 1, the maximum of traction force is 450 kN
and the maximum of brake force is —382kN. It is obvious
that all of the control inputs are within the normal range. The
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FIGURE 8: Performance index of distributed optimal controller.

ultimate value of performance index J (sum of J;, J,, J5, and
J) of distributed optimal controller is a little bigger than 600
(Figure 8). From the definition of (6), the velocity deviation,
position deviation, and control input are optimized.

7. Conclusions

Optimization control is an important topic in train’s oper-
ation. Generally, traveling time, energy consumption, and
in-train forces are considered in the performance index.
Different from other types of trains, heavy haul trains are
multipowered networked system with great length. In-train
forces have to be considered in optimal control of heavy haul
trains due to safety and cost of maintenance. Main focus has
been on designing optimal controller by global information
of the whole train and more recently on distributed control
designed by partial information without considering the
performance optimization. This paper studies the distributed
optimal problem with individual performance index, which
is designed by neighbors’ information. The distributed opti-
mization problem is very difficult due to couplings and
conflicts among the indexes. Nonetheless, in this paper, the
distributed optimization problem is formulated as a coopera-
tive game problem. We derived the condition for achieving
global Pareto optimality equilibrium in this cooperative
game. An online multivariable extremum seeking algorithm
is used to approximate the partial differential equation during
designing the game rules. Rigorous valuation of the proposed
algorithm is done against application to Daqin railway. It
is revealed that the designed controller can make the train
track the desired speed profile with optimization of proposed
performance index.
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