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The paper aims at discussing techniques for administering one implementation issue that often arises in the application of particle
filters: sample impoverishment. Dealing with such problem can significantly improve the performance of particle filters and can
make the difference between success and failure. Sample impoverishment occurs because of the reduction in the number of truly
distinct sample values. A simple solution can be to increase the number of particles, which can quickly lead to unreasonable
computational demands, which only delays the inevitable sample impoverishment. There are more intelligent ways of dealing with
this problem, such as roughening and prior editing, procedures to be discussed herein. The nonlinear particle filter is based on the
bootstrap filter for implementing recursive Bayesian filters.The application consists of determining the orbit of an artificial satellite
using real data from theGPS receivers.The standard differential equations describing the orbitalmotion and theGPSmeasurements
equations are adapted for the nonlinear particle filter, so that the bootstrap algorithm is also used for estimating the orbital state.
The evaluation will be done through convergence speed and computational implementation complexity, comparing the bootstrap
algorithm results obtained for each technique that deals with sample impoverishment.

1. Introduction

The orbit of an artificial satellite is determined using real data
from the Global Positioning System (GPS) receivers. In the
orbit determination process of artificial satellites, the nature
of the dynamic system and the measurements equations are
nonlinear. As a result, it is necessary tomanage a fully nonlin-
ear problem in which the disturbing forces as well as themea-
surements are not easilymodelled. In this orbit determination
problem, the variables that completely specify a satellite
trajectory in the space are estimated, with the processing of
a set of pseudorange measurements related to the body.

A spaceborne GPS receiver is a powerful resource to
determine orbits of artificial Earth satellites by providing
many redundantmeasurements, which ultimately yields high

degree of the observability to the problem.The Jason satellite
is a nice example of usingGPS for space positioning.Through
an on-boardGPS receiver, the pseudoranges (error corrupted
distance from satellite to each of the tracked GPS satellites)
can be measured and used to estimate the full orbital state.

The bootstrap filter is a particle filter whose central idea
is to express the required probability density function (PDF)
as a set of random samples, instead of a function over state
space [1–3].

Numerous strategies have been developed for solving the
particles degeneracy (or sample impoverishment) problem
that often arises in particle filter applications like introduction
of a risk-sensitive particle filter as an alternative approach
to mitigate sample impoverishment based on constructing
explicit risk functions from a general class of factorizable
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functions [4]; incorporation of genetic algorithms into a
particle filter [5, 6]; and many others [7–9]. All these strate-
gies, although extremely interesting and suitable for the orbit
determination problem, are not in the scope of this work.
Here, the option was done for studying two classical methods
to solve (or try to solve) the degeneracy problem: roughening
and prior editing.

Herein, the main goal is to analyze the bootstrap fil-
ter behavior for the highly nonlinear orbit determination
problem. Its simulation results are compared taking into
account the sample impoverishment. A reference solution is a
bootstrap particle filter (BPF) applied to orbit determination
that has already been compared to the unscented Kalman
filter solution for the same problem and works well for the
analysis of the sample impoverishment issue [10].

2. Particle Filter

The particle filter was designed to numerically implement
the Bayesian estimator [2].The Bayesian approach consists of
constructing the PDF of the state based on all the available
information, and, for nonlinear or non-Gaussian problem,
the required PDF has no closed form. The bootstrap filter
represents the required PDF as a set of random samples,
which works as an alternative to the function over state space.
This filter is a recursive algorithm for propagation and update
of these samples for the discrete time problem. The Bayes
rule, the key update stage of the method, is implemented as a
weighted bootstrap [1].

The main idea of the BPF is intuitive and direct. At the
beginning, 𝑁 particles 𝑥

+

0,𝑖
(𝑖 = 1, . . . , 𝑁) are randomly

generated, based on the known initial PDF 𝑝(𝑥
0
). At each

step of time 𝑘, the particles are propagated to the next
step using the dynamics equation [2]. After receiving the
measurement at time 𝑘, the PDF 𝑝(𝑦

𝑘
| 𝑥
𝑖

𝑘−1
) is evaluated.

That is, the conditional relative likelihood of each particle 𝑥−
𝑘,𝑖

is calculated. If an 𝑚-dimensional measurement equation is
given as 𝑦

𝑘
= ℎ (𝑥

𝑘
)+V
𝑘
and V
𝑘
is a Gaussian random variable

with a mean of zero and a variance of 𝑅, V
𝑘
∼ 𝑁(0, 𝑅), then

a relative likelihood 𝑞
𝑖
that the measurement is equal to a

specific measurement 𝑦∗, given the premise that 𝑥
𝑘
is equal

to the particle 𝑥𝑖
𝑘−1

, can be computed as follows [2]:
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𝑅
−1
[𝑦
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− ℎ (𝑥

𝑖

𝑘−1
)]

2
) .

(1)

In (1), the symbol ∼means that the probability is directly
proportional to the right side. So if the equation is used for
all particles 𝑥

−

𝑘,𝑖
, then the relative likelihood that the state

is equal to each particle is correct. The relative likelihood
values are normalized to ensure that the sum of all likelihood
values is equal to one. Next, a new set of randomly generated
particles 𝑥

+

𝑘,𝑖
is computed from the relative likelihood 𝑞

𝑖
.

In the resampling step, roughening was used, in order to
prevent sample impoverishment. At this point, there is a set
of particles 𝑥

+

𝑘,𝑖
that are distributed according to the PDF

𝑝(𝑥
𝑘
| 𝑦
𝑘
), and any desired statistical measure of it can be

computed [2].
The particle filter, adjusted to the orbit determination

problem, can be summarized as follows.

(1) The dynamic and the measurement equations are
given as

x
𝑘+1

= f
𝑘
(x
𝑘
) + w
𝑘
,

y
𝑘
= h
𝑘
(x
𝑘
) + ^
𝑘
,

(2)

where w
𝑘
and ^

𝑘
are independent white noise pro-

cesses with known PDFs.
(2)𝑁 initial particles x+

0,𝑖
(𝑖 = 1, . . . , 𝑁) are randomly

generated on the basis of the known initial state PDF
𝑝(x
0
).𝑁 is a parameter chosen as a trade-off between

computational cost and estimation accuracy [2].
(3) For 𝑘 = 1, 2, . . .,

(a) in the time propagation step, obtain a priori
(predicted) particles x−

𝑘,𝑖
, using the dynamics

equation and the PDF of the process noise, both
known:

x−
𝑘,𝑖

= f
𝑘−1

(x+
𝑘−1,𝑖

) + w𝑖
𝑘−1

, 𝑖 = 1, . . . , 𝑁, (3)

where each noise vector, w𝑖
𝑘−1

, is randomly
generated on the basis of the known PDF of
w
𝑘−1

;
(b) compute the relative likelihood 𝑞

𝑖
of each

particle 𝑥
−

𝑘,𝑖
, conditioned on the measurement

y
𝑘
, using the nonlinear measurement equation

and the PDF of themeasurement noise, as in (1);
(c) normalize the relative likelihood values:

𝑞
𝑖
=

𝑞
𝑖

∑
𝑁

𝑗=1
𝑞
𝑗

; (4)

(d) in the resampling step, generate a set of a
posteriori (resampled) particles x+

𝑘,𝑖
, on the basis

of the relative likelihood 𝑞
𝑖
;

(e) now, there is a set of particles x+
𝑘,𝑖
distributed

according to the PDF 𝑝(x
𝑘

| y
𝑘
), and mean

and covariance statistical measures can be com-
puted.

In the implementation of the bootstrap filter, there is only
a small overlap between the prior and the likelihood.

There are some procedures that may be implemented
for combating the consequent reduction in the number of
truly distinct sample values, such as increasing the number of
particles, roughening, and prior editing [1]. Here, they were
implemented: a bootstrap particle filter with resampling (PF);
a PF with roughening (PFR); and a PFR with prior editing
(PFPE), in order to evaluate roughening and prior editing
strategies for dealing with sample impoverishment.



Mathematical Problems in Engineering 3

2.1. Roughening. Roughening will be the first remedy for
sample impoverishment to be discussed. It restrains the
resampled particles spread (a posteriori particles) by adding
random noise to them, which is similar to adding artifi-
cial process noise to the Kalman filter [2]. In roughening
approach, the a posteriori particles are modified, after the
resampling step, as follows:

x+
𝑘,𝑖
(𝑚) = x+

𝑘,𝑖
(𝑚) + Δx (𝑚) , 𝑚 = 1, . . . , 𝑛,

Δx (𝑚) ∼ (0, 𝐾M (𝑚)𝑁
−1/𝑛

) .

(5)

Δx(𝑚) is a zero-mean random variable (usually Gaussian);𝐾
is a constant tuning parameter;𝑁 is the number of particles;
𝑛 is the state space dimension; and M is a vector of the
maximum difference between the particle elements before
roughening. The𝑚th element of theM vector is given as

M (𝑚) = max
𝑖,𝑗


x+
𝑘,𝑖
(𝑚) − x+

𝑘,𝑗
(𝑚)


, 𝑚 = 1, . . . , 𝑛, (6)

where 𝑘 is the step time and 𝑖 and 𝑗 are particle numbers.
The tuning parameter 𝐾 choice is a compromise. Being

too large, a value would blur the distribution, but being too
small, it would produce tight clusters of points around the
original particles [1]. In this paper,𝐾 = 0.1.

2.2. Prior Editing. Prior editing can be tried if roughening
does not prevent sample impoverishment. Such approach
edits the a posteriori particles from the prior time instant,
x+
𝑘−1,𝑖

(after roughening), if the a priori particle from actual
instant, x−

𝑘,𝑖
, does not satisfy a coarse, pragmatic acceptance

test [1]. Therefore, this procedure artificially boosts the
number of samples of the prior editing in the neighborhood
of the likelihood, for if an a priori particle is in a region of
state space with small 𝑞

𝑖
, it is rejected. Then, the a priori

rejected particle can be roughened asmany times as required,
according to (5), until it is in a region of significant 𝑞

𝑖
[2].The

prior editing was implemented as follows [1]:

(a) Pass the resampled sample from previous instant,
x+
𝑘−1

, through roughening and system model to gen-
erate the predicted sample from current instant, x−

𝑘
.

(b) Calculate 𝜐
𝑘,𝑖

= 𝑧
𝑘
− h(x−

𝑘,𝑖
), the residual between

the true and the predicted measurements, for the 𝑖th
particle of the sample, considering that the actual
instant observation is available.

(c) If the magnitude of 𝜐
𝑘,𝑖

is higher than six standard
deviations of the measurement noise, then it is highly
unlikely that x−

𝑘,𝑖
is chosen as an a posteriori particle.

In this case, x−
𝑘,𝑖

is rejected, and x+
𝑘−1,𝑖

is roughened
again and passes one more time through dynamic
model to generate a new a priori particle x−

𝑘,𝑖
. As x+
𝑘−1,𝑖

has already passed through roughening and generated
a rejected predicted particle, this procedure may be
repeated while x−

𝑘,𝑖
is in a region of no negligible

probability.

Due to the high computational cost involving prior
editing, such approach was done only once. It is important
to make it clear that, here, the 𝑖th particle is, in fact, an 𝑛-
dimensional vector, while a sample is a 𝑛 × 𝑁 matrix, where
the 𝑛th state variable is represented by𝑁 particles.

The accommodation of roughening and prior editing in
the bootstrap particle filter algorithm can be schematized as
Figure 1 shows.

3. Orbit Determination

The orbit determination is a process for obtaining values
of the parameters that completely specify the motion of an
orbiting body (as an artificial satellite), based on a set of
observations of the body. It involves nonlinear dynamical
and nonlinear measurement systems, which depends on
the tracking system and the estimation technique [11, 12].
The dynamical system model consists of describing satellite
orbital motion, which includes Earth’s rotation effects and
perturbationmodels andmeasurements models.These mod-
els depend on the state variables initial conditions, as well as a
variety of parameters which affect both the dynamic motions
as themeasurement process [13]. Due to the complexity of the
appliedmodels, usually it is not possible to solve suchmodels
equations directly for any of these parameters from a given
set of observations.

The observationmay be obtained from the ground station
networks using laser, radar, Doppler, or space navigation
systems, as the GPS. The choice of the tracking system
depends on a compromise between the goals of the mission
and the available tools. In the case of the GPS, the advantages
are global coverage, high precision, low cost, and autonomous
navigation resources. The GPS may provide orbit deter-
mination with accuracy at least as good as the methods
using ground tracking networks.The latter provides standard
precision around tens of meters and the former can provide
precision as tight as some centimetres.TheGPS provides, at a
given instant, a set of many redundant measurements, which
makes the orbit position observable geometrically.

After some advances of technology, the single frequency
GPS receivers provide a good basis to achieve fair precision at
relatively low cost, still attaining the accuracy requirements
of the mission operation. The GPS allows the receiver to
determine its position and time, geometrically, anywhere
at any instant, with data from at least four satellites. The
principle of navigation by satellites is based on sending signals
and data from theGPS satellites to a receiver located on board
the satellite whose orbit needs to be determined.This receiver
measures the travel time of the signal and then calculates the
distance between the receiver and the GPS satellite. Those
measurements of distances are called pseudoranges.

The instantaneous orbit determination using GPS satel-
lites is based on the geometric method. In such method, the
observer knows the set ofGPS satellites position in a reference
frame, obtaining its ownposition in the same reference frame.

3.1. Dynamics Model. In the case of orbit determination via
GPS, the ordinary differential equations which represent the
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Figure 1: Roughening and prior editing accommodation in the BPF algorithm.

dynamic model are, in its simplest form, given traditionally
as follows:

̇r = k,

k̇ = −𝜇
r
𝑟3

+ a + wV,

�̇� = 𝑑,

̇𝑑 = 𝑤
𝑑
,

(7)

wherein the variables are placed in the inertial reference
frame. In (7), r is the vector of the position components
(𝑥, 𝑦, 𝑧); k is the velocity vector; a represents the modelled
perturbing accelerations; wV is the white noise vector with
covariance Q; 𝑏 is the user satellite GPS clock bias; 𝑑 is the
user satellite GPS clock drift; and 𝑤

𝑑
is the noise associated

with the GPS clock. The GPS receiver clock offset was not
taken into account, so as not to obscure the conclusions
drawn in this paper due to introduction of clock offsetmodels
in the filters. Indeed, the receiver clock offset was beforehand

obtained and used to correct the GPS measurements, so
that the measurements are free from the error derived from
receiver clock offset.

3.2. Forces Model. There are gravitational and nongravi-
tational forces that affect the orbit of an Earth’s artificial
satellite. The main disturbing forces of gravitational nature
are the nonuniform distribution of Earth’s mass; ocean and
terrestrial tides; and the gravitational attraction of the Sun
and the Moon. And the principal nongravitational effects are
Earth atmospheric drag; direct and reflected solar radiation
pressure; electric drag; emissivity effects; relativistic effects;
and meteorites impacts.

The disturbing effects are, in general, included according
to the physical situation presented and to the accuracy that is
intended for the orbit determination. Here, only a minimum
set of perturbations was included which enable analyzing the
performance of the particle filter [14]: geopotential [15]; direct
solar radiation pressure [16, 17]; and third body point mass
effect of the Sun and the Moon [18, 19].
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3.3. Observations Model. The nonlinear equation of the
observation model is

y
𝑘
= h
𝑘
(x
𝑘
, 𝑡
𝑘
) + ^
𝑘
, (8)

where, at instant 𝑡
𝑘
, y
𝑘
is the vector of𝑚 observations; h

𝑘
(x
𝑘
)

is the nonlinear function of state x
𝑘
, with dimension 𝑚;

and ^
𝑘
is the observation errors vector, with dimension 𝑚

and covariance R
𝑘
. For the present application, the ion-free

pseudorange measurements from the Jason-2 GPS receiver
are used. Also, the receiver clock offset was computed
before and used to correct the pseudorange measurements.
Additionally, the nonlinear pseudorange measurement was
modelled according to [20].

4. Results

The tests and the analysis for the bootstrap particle filter
and two procedures for avoiding sample impoverishment
(roughening and prior editing) are presented. To validate
and to analyze the methods, real GPS data from the Jason-
2 satellite are used. Ocean Surface Topography Mission
(OSTM)/Jason-2 is a follow-on altimetry mission to the very
successful TOPEX/Poseidon mission and Jason-1. It is a joint
mission between NASA and CNES (French space agency),
launched June 20, 2008. Jason-2 has a repeat period of
approximately 10 days with 254 passes per cycle. Its nodal
period is 6,745.72 sec (near 1.87 hours). Sometimes there may
be anomalous or missing data. Occasionally Jason-2 must
perform maneuvers to maintain orbit. When the satellite
detects something abnormal, it will go into safe hold and will
turn off all instruments and no data will be collected [21].

The filters estimated position and velocity are compared
with Jason-2 precise orbit ephemeris (POE) from JPL/NASA.
The test conditions consider real ion-free pseudorange data,
collected by the GPS receiver on-board Jason-2, on October
22, 2010, presenting up to 12 GPS satellites tracked. The tests
were limited to 5.5 hours of GPS data spaced 10 s. After that,
there was an undesirable data gap which could spoil the
test case. Such 5.5-hour arc (near 3 Jason-2 orbital periods)
was considered sufficient for evaluating the bootstrap particle
filter and roughening and prior editing approaches, in this
orbit determination application.

The force model comprises perturbations due to geopo-
tential up to order and degree 50 × 50; direct solar radiation
pressure; and Sun-Moon gravitational attraction. This model
of forces is suitable for implementation in orbit determination
because of the low computational cost added compared
to the improvement in the results accuracy [22–24]. The
pseudorange measurements were corrected to the first order
with respect to ionosphere.

This work is not a search for results accuracy. It aims
at analyzing the application of a bootstrap filter to the orbit
determination problem. The analysis is based on comparing
the errors in position (translated to the orbital radial, normal,
and along-track RNT components) among three solutions:

(1) The bootstrap particle filter with resampling, applied
without any sample impoverishment procedure
(named “PF” in the results).

(2) The bootstrap particle filter applied with roughening
(named “PFR” in the results).

(3) The bootstrap particle filter applied with roughening
and prior editing (named “PFPE”in the results).

The RNT system interpretation is straightforward: the
radial component “R” points to the nadir direction; the nor-
mal “N” is perpendicular to orbital plane; and the transversal
(along-track) “T” is orthogonal to “R” and “N,” and it is
also the velocity component. Thus, it is possible to analyze
what happens with the orbital RNT components and the
orbit evolution as well. There is also interest for processing
time, in order to analyze the computational efforts face to the
accuracy achieved by each algorithm.

Regarding time of processing, 𝑡CPU, it was expected that
the time required for the bootstrap particle filter algorithm
was increasing in two scenarios: if the number of particles
rises and if roughening and prior editing were added to the
algorithm. According to the estimator nature, each element
of the state was replaced by an array of 𝑁 particles, where
𝑁 is a trade-off between computational cost and estimation
accuracy. Here, tests were done for 17, 100, 300, and 700
particles.

As said before, prior editing recomputes any particle that
does not match a specific criterion. Therefore, a relevant
test is to observe the instant when each algorithm starts
rejecting particles which will be presented. The goal is to
verify whether, as a procedure is included, it delays the
rejection process. It will also be analyzedwhether the number
of particles affects the particle rejection, that is, whether
its increase may work as an approach for avoiding sample
impoverishment.

If 𝑁 is set (so the analysis is per line in Table 1), it is
noticeable that 𝑡CPU, CPU time, measured for PF and PFR is
very similar, with a maximum 3% of difference. However, the
algorithm that includes prior editing, PFPE, is significantly
more costly, reaching 39% of increase. This was expected
for PFPE, because of the particles that do not pass the
acceptance test and need to return to prior instant. Regarding
the effects of increasing the number of particle, for the same
algorithm (so the analysis is per column in Table 1), the raise
in processing time was 83% from 17 to 100 particles, 67%
from 100 to 300, and 59% from 300 to 700. Considering that,
for 17, 100, 300, and 700 particles, the increase in 𝑁 is 6, 3,
and 2.3 times, respectively; then, 𝑡CPU increase is not directly
proportional to the number of particles used. Therefore, the
CPU time and the increase in the number of particles show
that the time of processing is related to the chosen number
of particles only when the number of particles changes, but it
has no relation with the estimator implemented.

For computing time of processing and for all the simu-
lations shown, a computer Intel Core i5-2430M processor of
2.40GHz, with 2.70GB of RAM, was used. The program was
coded in FORTRAN 77 within operating system Windows
XP and compiler Compaq Visual Fortran version 6.1.

When some particles do not reach prior editing criterion
(i.e., the magnitude of 𝜐

𝑘,𝑖
is higher than six standard

deviation of the measurement noise), they need to be edited
in the prior instant of time.The first instant when any particle
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Table 1: Time of processing.

𝑁 PF PFR PFPE

𝑡CPU

17 44 s 45 s 1min 23 s
100 4min 16 s 4min 19 s 7min 07 s
300 12min 49 s 13min 05 s 20min 56 s
700 31min 09 s 31min 27 s 50min 31 s

Table 2: Instant of the first rejection of particles occurrence.

𝑁 PF PFR PFPE

𝑡PE

17 16min 00 s 26min 40 s 26min 40 s
100 10min 00 s 45min 50 s 45min 50 s
300 9min 20 s 45min 50 s 45min 50 s
700 9min 00 s 45min 50 s 45min 50 s

needed to be edited, 𝑡PE, was computed, for each algorithm
and𝑁, as can be verified in Table 2.

In Table 2, the rejection of particles was first detected
in the PF algorithm, despite the number of particles used.
This was expected, since no procedure in order to combat
the number of truly distinct samples reduction was used
in this algorithm. And the instant when the first rejection
occurred in PFR and PFPE concurred for all changing in
the number of particles. This is considerably consistent,
since prior editing procedure depends first on roughening
implementation. Regarding the increase in the number of
particles (from 17 to 100), it is noticeable that, when proce-
dures for avoiding sample impoverishment are adopted (in
PFR and PFPE cases), the instant when the first rejection of
particles is detected is delayed in 42%. Nevertheless, for the
other cases analyzed (300 and 700 particles), such instant
remains the same. This suggests that increasing 𝑁 as an
approach for minimizing the sample impoverishment issue
is a little efficient, with a very high computational burden,
as seen in Table 1. For PF, the results were not conclusive.
It seems that the higher the number of particles, the faster
their impoverishment if nothing is done for avoiding sample
impoverishment.

As said before, the number of particles is chosen as a
trade-off between computational cost and estimation accu-
racy. The results in Table 3 present mean and standard
deviation of the errors in RNT components evaluated for
𝑁 = 17; 100; 300; and 700. If only these statistics are
analyzed, it is clear that the estimation accuracy improves
as the number of particles increases. The largest standard
deviation occurred for PFPE (𝑁 = 17). In the along-track
component, a divergence occurrence in all algorithms (𝑁 =

17) was detected, which can be verified by the high mean
and standard deviation values obtained in the three cases.
Such divergence disappears when𝑁 is increased. When𝑁 =

700, the statistics and the errors behavior were very similar
in the results obtained by PFR and PFPE versions. By the
information presented, it is possible to conclude that if the
number of particles is very small, any sample impoverishment
avoidance procedure will not be effective. Even more, the
PFPE approach as used here (particles edition executed only
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Figure 3: Errors in RNT coordinates for PFR simulation (𝑁 = 300).

once) does not present any significant improvement facing
the PFR procedure, no matter the number of particles used.
And taking into account the higher computational cost for
only one edition of particles, if the PFPE is implemented as
many times as necessary, the computation burden is enough
to contraindicate this procedure use, even if the results are
improved.

In order to show the behavior of the errors in terms
of RNT coordinates, Figures 2, 3, and 4 are presented.
Figure 2 shows the worst result, the solution obtained for
PFPE algorithm considering 𝑁 = 17, where the divergence
in along-track coordinate is shown. Figure 3 shows a PFR
solution for 𝑁 = 300, while Figure 4 presents the 𝑁 = 700

solution. It was chosen to introduce PFR solutions because
this is the algorithm with better performance during orbit
determination process. The errors decrease considerably in
all implementations, for 100 or more particles (see Table 3),
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Table 3: Mean and standard deviation statistics.

Estimator 𝑁
Mean ± standard deviation (m)

R N T

PF

17 −5.940 ± 36.276 −1.821 ± 17.869 120.504 ± 212.955
100 −10.289 ± 14.711 −0.238 ± 9.961 94.695 ± 119.586
300 −1.065 ± 9.367 0.139 ± 7.333 −9.177 ± 50.723
700 −1.031 ± 8.089 0.038 ± 7.047 −1.792 ± 34.949

PFR

17 27.666 ± 64.094 6.011 ± 31.725 37.537 ± 343.973
100 −6.876 ± 19.706 −2.935 ± 12.435 2.562 ± 11.078
300 −6.105 ± 16.806 −2.335 ± 5.478 1.066 ± 6.198
700 −5.246 ± 12.361 −1.322 ± 4.574 −0.051 ± 3.486

PFPE

17 −101.686 ± 63.379 −1.322 ± 75.400 1394.298 ± 902.146
100 −9.833 ± 15.272 −1.813 ± 7.972 1.290 ± 9.093
300 −5.839 ± 15.008 −1.890 ± 7.615 0.602 ± 3.953
700 −5.250 ± 12.675 −1.669 ± 4.164 −0.243 ± 4.043
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Figure 4: Errors in RNT coordinates for PFR simulation (𝑁 = 700).

despite an incongruous behavior close to 1 and 5 hours of
processing, from which the filters recover later. This anoma-
lous behavior is detected in all simulations results. In the
graphics, blue curves correspond to radial component (R);
red to normal (N); and green to along-track (T). Increasing
𝑁 from 300 to 700 was more meaningful to along-track
component, as its mean and standard deviation had higher
improvement (decreasing in values) and less significant to
normal coordinate.

According to Figures 3 and 4, the results for 𝑁 = 300

are as competitive as for 𝑁 = 700. And if computational
burden of implementing 700 particles is taken into account,
300 particles are sufficient for the evaluation proposed in this
paper.

Despite the undesirable data gap near 5.5 hours of GPS
data, in order to properly evaluate the fittest algorithm
(PFR) regarding number of particles, two other graphics
were generated. Figures 5 and 6 present Δ𝑟 and ΔV, the
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Figure 5: Δ𝑟 (m) obtained in the PFR simulation.
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Figure 6: ΔV (m/s) obtained in the PFR simulation.

errors in position and velocity, respectively, for 24 hours of
implementation. The results obtained for 𝑁 = 300 (green
curves) are compared with 𝑁 = 17 (dark blue curves).
According to the results, it is clear that a higher number of
particles are important for improving the results, since the
amplitude of errors diminished considerably when 𝑁 = 300
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was used. And despite the troublesome data, for 300 particles
case, PFR can recover and continue the estimation process,
without divergence, which is an indication of the particle filter
robustness. In each figure, Δ𝑟 and ΔV represent, respectively,
the absolute value of the errors in position and in velocity,
in the ECEF (Earth-Centered Earth-Fixed) reference frame,
also known as ECR (Earth-Centered Rotational).

5. Conclusions

A Bayesian bootstrap particle filter was applied for the satel-
lite orbit determination problem, using a set of GPSmeasure-
ments. The development was evaluated taking into account
performance and computational burden. The bootstrap filter
results, implemented with resampling, were compared with
two other versions, which include roughening and prior
editing, aiming at avoiding sample impoverishment.

With regard to time of processing, results showed that
PFPE algorithm requires greater time than PF, which is as
competitive as PFR. Since the number of particles is chosen
as a trade-off between computational cost and estimation
accuracy, the CPU time is related to the variation in number
of particles chosen.

When the number of particles used is analyzed, it is
also possible to conclude that if it is very small, any sample
impoverishment avoidance procedure will not be effectual.
And since PFPE approach executes particles edition only
once here, it does not present any significant improvement
facing the PFR procedure, no matter the number of particles
used. Additionally, if the computational costs between PFR
and PFPE (as implemented) are compared, the computation
burden is enough to contraindicate PFPE implementation as
many times as necessary, even if the results are improved.

Results confirm that the greater the number of particles,
the better the estimation accuracy. The best result was
achieved for𝑁 = 700, in the three versions of the estimator,
although a higher computational effort was demanded in this
case. Therefore, when results are compared, it is possible to
assure that 300 particles are enough to achieve the accuracy
level aimed in this paper.

In order to obtain a better bootstrap particle filter
performance, especially in terms of estimation accuracy,
adjustments in the many filter variants might be done for
improving its efficiency. Such adjustments are directly related
to the knowledge about the filter. Other strategies can also
be tried for solving implementation issues such as sample
impoverishment. Another approach for improving particle
filtering is to combine it with another filter such as extended
Kalman filter or unscented Kalman filter. In this approach,
each particle is updated at the measurement time using the
extended or the unscented filter, and then resampling is
performed using the measurements.
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