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To support system-wide synchronization accuracy and precision in the sub-microsecond range without using GPS technique, the
precise time protocol (PTP) standard IEEE-1588 v2 is chosen. Recently, a new clock skew estimation technique was proposed for the
slave based on a dual slave clock method that assumes that the packet delay variation (PDV) in the Ethernet network is a constant
delay. However, papers dealing with the Ethernet network have shown that this PDV is a long range dependency (LRD) process
which may be modeled as a fractional Gaussian noise (fGn) with Hurst exponent (𝐻) in the range of 0.5 < 𝐻 < 1. In this paper,
we propose a new clock skew estimator based on the maximum likelihood (ML) technique and derive an approximated expression
for the Cramer-Rao lower bound (CRLB) both valid for the case where the PDV is modeled as fGn (0.5 < 𝐻 < 1). Simulation
results indicate that our new clock skew method outperforms the dual slave clock approach and that the simulated mean square
error (MSE) obtained by our new proposed clock skew estimator approaches asymptotically the developed CRLB.

1. Introduction

Recently, the topic of synchronization in network nodes has
attracted significant attention for a number of applications
[1–10]. In many cases the global positioning system (GPS)
is used to synchronize frequency and time accuracy in the
sub-microsecond range. On the other hand, although GPS
can offer reliable clock synchronization accuracy, network
operators are seeking tominimize the use of GPS within their
networks (especially for the indoor places) due to a weak
indoor GPS signal [11]. Technologies like synchronous Ether-
net (SyncE) [12], network time protocol (NTP) [13], and IEEE
1588v2 (PTP) [14] have been employed to deliver frequency
synchronization (GPS, SyncE, NTP, and PTP) and time
synchronization (GPS, NTP, and PTP) in Ethernet networks.
This provides significant cost savings in network equipment
as well as in ongoing installation and maintenance [15].

The SyncE is defined by the ITU [12] as a means of
using Ethernet to transfer frequency via the Ethernet physical
layer. It recovers frequency from one or more Ethernet
signals and delivers timing to outgoing Ethernet signals.
However, in order to use SyncE effectively, hardware changes

in the switches and routers across the network are needed,
which are not yet done.

The NTP was proposed for the first time in 1985 and
has been revised several times [16]. The time filtering rules
and the servoregulation algorithms implemented by the
NTP clients have been designed for large networks; hence
they are able to trace time down to a few milliseconds on
geographically large-scale network [16]. However, the NTP
protocol is not designed for local area networks (LANs) and,
due to slow response and software clock implementations
(timestamping at application layer), cannot compete with
PTP performance even when special implementation are
used [17].

IEEE 1588 v2 is also named as PTP, used for time synchro-
nization in networked measurement and control systems.
IEEE 1588 is a master-slave time synchronization protocol
that targets clock synchronization accuracy of less than 1 𝜇s
[18] due to the precise timestamping at the physical layer. In
the last decade, the PTP has experienced a large diffusion
in systems that require high performance synchronization
over Ethernet, since its simplicity and autoconfiguration are
suitable for embedded and low cost applications [19].
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Table 1: Comparison between the various estimation methods.

Model Reference Up- and Downlink
assumption

PDV model existence
in the algorithm PDV model Exposure to PDV

(2WD/OWD)
Basic concept of IEEE 1588 [20, 21, 23] Symmetry — — Up- and downlink
Dual slave clock in a slave [18] Asymmetry/symmetry — — Uplink only
Gaussian delay model [42, 46] Asymmetry/symmetry ✓ Gaussian Up- and downlink
Exponential delay model [42–45, 47, 48] Asymmetry/symmetry ✓ Exponential Up- and downlink
MLE of clock skew in IEEE 1588
with fGn (New model) Asymmetry/symmetry ✓ fGn Uplink only

There are two main functions established by the standard
[20]: (i) establishing a master-slave hierarchy of clocks in
which each slave synchronizes to its master and (ii) making
the necessary information available for the slaves to perform
this synchronization. Most of the basic approaches [20,
21, 23] involve clock synchronization that is based on the
knowledge of the link propagation delay that is the master-
to-slave message delay (uplink) and slave to master message
delay (downlink). By assuming symmetric communication
links (uplink delay = downlink delay) [20, 21, 23] estimate
the clock offset, that is, the time difference between the
master and the slave. However, in a realistic network the
up- and downlink delays may be very different. Thus, this
approach may lead to errors in clock synchronization in a
realistic network. Recently, a clock synchronization method
(frequency synchronization)was proposed [18] based on dual
slave clocks in a slave, suitable for symmetric and asymmetric
communication links. This estimation method [18] is based
on the knowledge of the one-way delay (OWD) (on the
uplink delay) instead on the knowledge of the two-way delay
(2WD) (namely, on both directions up- and downlink delays)
as introduced in the basic concept of the IEEE 1588 [22].
It does not assume having symmetric communication links
(uplink delay = downlink delay) unlike [20, 21, 23]. Thus, its
estimation method accuracy [18] does not depend on the up-
and downlink symmetry unlike in [20, 21, 23]. Therefore, if
the up- and downlink are asymmetric, the estimationmethod
accuracy of [18] will not be affected by this asymmetry unlike
how it is in the case of [20, 21, 23]. However, [18] does not take
into account the PDV existing in the network. According to
[24], PDV is a random delay due to the behavior of switches
or routers in the network.The primary source of this random
delay is the output queuing delay, causedwhen a PTPmessage
arrives at a switch or router when the exit port is blocked by
other traffic, and the PTP Syncmessage has towait in a queue.
This random delay (PDV) is characterized according to [25–
30] as LRD characteristics such as fGn with Hurst exponent
in the range of 0.5 < 𝐻 < 1.

According to [31], fGn is a commonly used model of
network traffic with LRD. In [32], the authors state that fGN
with a single parameter (with𝐻) is a widely used traditional
traffic model and refer the reader to [33–35]. They [32] also
add that traditional methods to synthesize traffic are based
on fGN with a single parameter and refer the reader to [36–
40]. Please note that, in [30, 41], fGN was used to model the
network traffic where the work in [26] is a supplement of [41]

that supplies experimental investigations to show that fGN
can yet be used for modeling autocorrelation functions of
various types of network traffic consistently in the sense that
the modeling accuracy (expressed by mean square error) is
in the order of magnitude of 10−3. The conclusion of [30] was
that the analyses of generating fGN data have shown that this
generator should be recommended for practical simulation
studies of high-speed telecommunication networks (Ether-
net, ATM, VBR video traffic, Web traffic, Telnet, and FTP),
since it is very accurate.

It should be pointed out that there are also other works
[42–48] that model the PDV as a Gaussian or exponential
delay. These papers [42–48] do not need the symmetric
assumption on the up- and down link unlike [20, 21, 23].
However, they ([42–48]) workwith the 2WDmessaging tech-
nique where both sides (uplink and downlink) are affected
by the PDV unlike with the OWD messaging technique.
Therefore, in cases where the uplink PDV is lower than
the downlink PDV we may get with the OWD messaging
method which is affected only by the uplink PDV, better
performance compared with the 2WD messaging technique.
As already explained earlier in this paper, [18] uses the
OWD messaging technique (unlike [42–48]) and does not
assume a symmetric communication link unlike [20, 21, 23].
But, [18] does not take into account the PDV. Please refer
to Table 1 for a brief comparison between the mentioned
methods. Our motivation in this paper is to develop a new
normalized frequency estimator for the clock skew that works
with the OWD messaging technique, does not assume a
symmetric communication link, and takes into account the
PDV modeled with the fGN.

In this paper we propose a new normalized frequency
estimator for the clock skew based on the dual slave clocks
technique proposed in [18], where the PDV ismodeled as fGn
unlike how it was done in [18]. The clock skew is defined as
the normalized difference in the clock frequencies between
the slave and the master. This new method is based on
the ML estimation technique and outperforms the existing
method [18] from the MSE point of view in a realistic
communication link. In addition we derive in this paper an
approximated expression for the Cramer-Rao lower bound
(CRLB) depending on the Hurst exponent in the range
of 0.5 < 𝐻 < 1. Simulation results indicate that the
MSE obtained from our new proposed normalized frequency
estimator declines and approaches asymptotically our new
derived CRLB.
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Figure 1: PTP messaging timing diagram.

The paper is organized as follows.The system description
is first introduced in Section 2. The proposed ML estimator
and the CRLB are presented in Section 3. In Section 4
simulation results are presented and the conclusion is given
in Section 5.

2. System Description

2.1. IEEE 1588: Basic Concept. In this subsection we describe
the basic concept of IEEE 1588 based on [18]. Figure 1
(recalled from [18] and slightly modified) describes the PTP
messaging. The master sends Sync messages at a default rate
of once every 2 s. The master clock measures the time 𝑇

𝑚.1

when the first Sync message is sent. When a slave clock
receives the Sync message, it measures and stores the time of
reception 𝑇

𝑠.1

. The master then sends a Follow Up message
that contains the actual value of the timestamp 𝑇

𝑚.1

. At this
point the slave calculates the master-to-slave delay𝐷

𝑚2𝑠

[18]:

𝐷
𝑚2𝑠

= 𝑇
𝑠.1

− 𝑇
𝑚.1

. (1)

On the other hand, the master-to-slave delay𝐷
𝑚2𝑠

is the sum
of the time difference between themaster and the slave clocks
(i.e., clock offset) 𝜃 and the master-to-slave message delay
Message𝐷

𝑚2𝑠

[22]:

𝐷
𝑚2𝑠

= 𝜃 +Message𝐷
𝑚2𝑠

. (2)

In order to estimate the clock offset 𝜃 the slave periodi-
cally sends the Delay Req message and stores the transmis-
sion time with a timestamp 𝑇

𝑠.1

. When the master receives
theDelay Reqmessage, it sends aDelay Respmessage, which
conveys the timestamp 𝑇

𝑚.1

of the reception time of the
request message. The slave calculates the slave-to-master
delay𝐷

𝑠2𝑚

from these timestamps as [18]

𝐷
𝑠2𝑚

= 𝑇


𝑚.1

− 𝑇


𝑠.1

. (3)

On the other hand, the slave-to-master delay 𝐷
𝑠2𝑚

is the
sum of the negative time difference between the slave and

the master clocks (i.e., clock offset) 𝜃 and the slave-to-master
message delay Message𝐷

𝑠2𝑚

[22]:

𝐷
𝑠2𝑚

= −𝜃 +Message𝐷
𝑠2𝑚

. (4)

Assuming that the master-to-slave message delay
Message𝐷

𝑚2𝑠

is equal to the slave-to-master message delay
Message𝐷

𝑠2𝑚

we may write [22]

𝐷
𝑤

= Message𝐷
𝑚2𝑠

= Message𝐷
𝑠2𝑚

, (5)

where 𝐷
𝑤

is the estimated message delay of the uplink or
downlink. By using (1) to (5), the slave estimates 𝐷

𝑤

and the
clock offset (𝜃) as

𝐷
𝑤

=
𝐷
𝑚2𝑠

+ 𝐷
𝑠2𝑚

2
, (6)

𝜃 = 𝐷
𝑚2𝑠

− 𝐷
𝑤

=
𝐷
𝑚2𝑠

− 𝐷
𝑠2𝑚

2
. (7)

The slave adjusts its time to minimize the clock offset (𝜃),
thereby synchronizing with themaster clock. Please note that
(7) assumes that there is no frequency offset between the
master and the slave clocks.

Every oscillator has its unique clock frequency consisting
of a nominal frequency 𝑓

0

in addition to a normalized
frequency difference of 𝑥 parts per million (PPM) from the
nominal frequency multiplied by this nominal frequency. In
addition, every oscillator has a random jitter 𝜙. Therefore the
master and the slave clocks may have different frequencies
and thus are not synchronized. For example, suppose that
mater’s frequency is (𝑓

0

+ 𝑥𝑓
0

) and slave’s frequency is (𝑓
0

−

𝑥𝑓
0

); thus their frequencies are not synchronized. In that
case, the clock offset (𝜃) generally keeps increasing and may
cause the communication link to fail.Thus, the importance of
estimating the normalized frequency difference between the
slave and the master that is clock skew (𝜀).

2.2. Dual Slave Clocks Method. In this subsection we present
briefly the dual slave clock method in a slave as presented in
[18]. The basic PTP concept makes the assumption that the
up- and downlink delays are equal. However, in a realistic
network the up- and downlink delays may be very different.
Thus, this approach (where the up- and downlink delays
are assumed to be equal) may lead to errors in the clock
synchronization task in a realistic network. To eliminate
the assumption of symmetric links, [18] proposed two slave
clocks, triggering the clock counters in the slaves. Figure 2
(recalled from [18] and slightly modified) describes the PTP
messaging required by the dual slave clocks method, where
𝑇
𝑚.𝑖

is the time when the 𝑖th Sync message is sent. 𝑇
𝑠1.𝑖

and
𝑇
𝑠2.𝑖

are the times that slave clocks 1 and 2 measure at the
receive of the 𝑖th Sync message, respectively. Notably, the
dual slave clocksmethod requires only one-way time transfer.
Clock 2 runs at a normalized clock period of (1 + 𝜀) which
is normalized to that of the master clock, where 𝜀 is the
normalized clock frequency difference between slave clock
2 and the master clock (i.e., normalized clock skew). A D-
type flip-flop is employed to divide the frequency by two.
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Figure 2: Synchronization of dual slave clocks.

Therefore, slave clock 2 runs at a normalized clock period
of (1 + 𝜀), which is half of the slave clock 1 running at a
normalized clock period of 2(1 + 𝜀). Both slave clocks have
the same offset, which is assumed to be 𝜃. Thus, according to
[18] we may express the times 𝑇

𝑠1.𝑖

, 𝑇
𝑠2.𝑖

as

𝑇
𝑠1.𝑖

= 2 (1 + 𝜀) (𝑇
𝑚.𝑖

+ 𝐷
𝑚2𝑠

) + 𝜃 + 𝜙
1,𝑖

,

𝑇
𝑠2.𝑖

= (1 + 𝜀) (𝑇
𝑚.𝑖

+ 𝐷
𝑚2𝑠

) + 𝜃 + 𝜙
2,𝑖

,

(8)

where

(i) 𝜙
1,𝑖

and 𝜙
2,𝑖

are random jitters of slave clock 1 and 2
within the 𝑖th period, respectively.

(ii) The random jitter 𝜙
1,𝑖

is assumed to be an indepen-
dent Gaussian random variable (RV) with zero mean
and variance 𝜎2.

(iii) Since slave clock 2 is derived from slave clock 1 and
the period of slave clock 2 is twice that of slave clock
1, the variance of 𝜙

2,𝑖

is 2𝜎2 due to accumulation of
random jitters at two positive edges of slave clock 1.

Here ends the brief presentation of the dual slave clock
method in a slave as presented in [18].

The uplink delay can be represented as a constant value
with an additive zero mean random noise called PDV. The
PDV as already was mentioned results from the behaviour
of switches or routers in the packet network [24]. In the
following, the constant value is the 𝐷

𝑚2𝑠

we saw in [18], and
𝑋
𝑖

will be denoted by the PDV of the 𝑖th cycle. Therefore, (8)
must be written in the following form:

𝑇
𝑠1.𝑖

= 2 (1 + 𝜀) (𝑇
𝑚.𝑖

+ 𝐷
𝑚2𝑠

+ 𝑋
𝑖

) + 𝜃 + 𝜙
1,𝑖

, (9)

𝑇
𝑠2.𝑖

= (1 + 𝜀) (𝑇
𝑚.𝑖

+ 𝐷
𝑚2𝑠

+ 𝑋
𝑖

) + 𝜃 + 𝜙
2,𝑖

, (10)

where 𝑋
𝑖

is assumed to be fractional Gaussian noise (fGn)
with zero mean with Hurst exponent𝐻

𝑥

and variance 𝜎2
𝑊𝑥

.

3. ML Clock Skew Estimation for Fractional
Gaussian Noise PDV

MLestimators have a number of attractive characteristics. For
example, they are asymptotically unbiased and efficient.

In this sectionwe derive theML estimation and the CRLB
for the clock skew based on the dual slaves clock model
presented in [18] where the PDV is modeled with fGn unlike
how it was done in [18].

In Section 3.1 we derive the ML estimation for the clock
skew under the assumption of fGn PDVwith Hurst exponent
in the range of 0.5 < 𝐻

𝑥

< 1.
In Section 3.2 we derive an expression for the Cramer-

Rao (CR) lower bound on the variance of the clock skew.

3.1. ML Estimation of Clock Skew

Theorem 1. For the following assumptions

(i) the Hurst exponent is in the range of 0.5 < 𝐻
𝑥

< 1,
(ii) 𝜉
𝑖

= 𝑋
𝑖

− 𝑋
𝑖−1

,

𝜉
𝑖

is assumed to be fGn with zero mean with Hurst exponent
𝐻
𝜉

and variance 𝜎2
𝑊𝜉

.

TheML estimation for the clock skew may be defined as

𝜀

= (2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

) (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)]])

⋅ (

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [Δ𝑇
𝑚.𝑗

(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

)

+Δ𝑇
𝑚.𝑖

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)]])

−1

− 1,

(11)

where 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) is defined by

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

= [
Γ (𝑁)

Γ (−𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5)

]

2

⋅ ((Γ (𝑖 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑖 + 𝑘)

⋅ Γ (𝑗 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑗 + 𝑘))

⋅ (Γ (𝑁 − 𝑖 + 𝑘) Γ (𝑁 − 𝑗 + 𝑘) Γ (𝑖 − 𝑘) Γ (𝑗 − 𝑘))
−1

)

⋅ [
1

(𝑖 − 𝑘)

1

(𝑗 − 𝑘)
−

1

(𝑁 − 𝑖 + 𝑘)

1

(𝑁 − 𝑗 + 𝑘)
] .

(12)
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Γ(⋅) denotes Gamma function and𝑁 is the number of obser-
vation.

Comments

(i) Δ denotes the difference between two consecutive
samples.

(ii) The system equations are (9) and (10) instead of (8)
in order to describe the system more closely to a real
system with PDV.

Proof. Subtracting (10) from (9) yields

(1 + 𝜀) (𝑇
𝑚.𝑖

+ 𝐷
𝑚2𝑠

+ 𝑋
𝑖

) = 𝑇
𝑠1.𝑖

− 𝑇
𝑠2.𝑖

+ 𝜙
2,𝑖

− 𝜙
1,𝑖

. (13)

Subtracting (13) of the (𝑖 − 1)th Sync message from that of the
𝑖th Sync message indicates that

(1 + 𝜀) (𝑇
𝑚.𝑖

− 𝑇
𝑚.(𝑖−1)

+ 𝑋
𝑖

− 𝑋
𝑖−1

)

= (𝑇
𝑠1.𝑖

− 𝑇
𝑠1.(𝑖−1)

) − (𝑇
𝑠2.𝑖

− 𝑇
𝑠2.(𝑖−1)

)

+ (𝜙
2,𝑖

− 𝜙
2,𝑖−1

) − (𝜙
1,𝑖

− 𝜙
1,𝑖−1

)

(14)

which can be also written as

(1 + 𝜀) (Δ𝑇
𝑚.𝑖

+ 𝜉
𝑖

) = Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

. (15)

Thus, 𝜉
𝑖

may be expressed as

𝜉
𝑖

= 𝜀


(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

) − Δ𝑇
𝑚.𝑖

, (16)

where according to [42]

𝜀


≜
1

1 + 𝜀
; 𝜀 ̸= 0. (17)

According to [49, 50], the probability density function (PDF)
of vector 𝜉 (of length𝑁) may be given by

𝑝 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

) =
1

(2𝜋)
𝑁/2

|𝑅|
1/2

exp {−1
2
𝜉
𝑇

𝑅
−1

𝜉} , (18)

where 𝜉𝑇 denotes the transpose of 𝜉 and |𝑅| denotes the
determinant of the matrix 𝑅.
𝑅 is the covariance matrix of the vector 𝜉:

𝑅 (𝐻
𝜉

, 𝜎
2

𝑊𝜉

) = 𝐸 [𝜉𝜉
𝑇

] . (19)

The elements of 𝑅 are given by [50, 51]

[𝑅]
𝑖𝑗

= 𝑟 [
𝑖 − 𝑗

] = 𝑟 [𝑘]

= 𝜎
2

𝑊𝜉

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

Γ (1 − 𝑑
𝜉

) Γ (𝑘 + 𝑑
𝜉

)

Γ (𝑑
𝜉

) Γ (𝑘 + 1 − 𝑑
𝜉

)

= 𝜎
2

𝑊𝜉

Γ (−2𝐻
𝜉

+ 2) Γ (𝑘 + 𝐻
𝜉

− 0.5)

Γ (−𝐻
𝜉

+ 1.5) Γ (𝐻
𝜉

− 0.5) Γ (𝑘 + 1.5 − 𝐻
𝜉

)

,

(20)

where, according to [51, 52],

𝑑
𝜉

= 𝐻
𝜉

− 0.5,

𝑑
𝜉

∈ (−0.5, 0.5) ; 𝐻
𝜉

∈ (0, 1) .

(21)

Note that𝐻
𝑥

̸= 0.5 so𝐻
𝜉

̸= 0.5.
𝑅 can be decomposed as was done in [49, 50]

𝑅 = 𝜎
2

𝑊𝜉

𝑅
1

= 𝜎
2

𝑊𝜉

(
(

(

𝑟
1

[0] 𝑟
1

[1] ⋅ ⋅ ⋅ 𝑟
1

[𝑁 − 1]

𝑟
1

[1] 𝑟
1

[0] 𝑟
1

[1] ⋅

𝑟
1

[2] ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑟
1

[𝑁 − 1] 𝑟
1

[𝑁 − 2] ⋅ ⋅ ⋅ 𝑟
1

[0]

)
)

)

,

(22)

where

𝑟
1

[
𝑖 − 𝑗

] =
𝑟 [
𝑖 − 𝑗

]

𝜎
2

𝑊𝜉

. (23)

According to [50] we can write

𝑅
2

=
(
(

(

𝑟
2

[0] 𝑟
2

[1] ⋅ ⋅ ⋅ 𝑟
2

[𝑁 − 1]

𝑟
2

[1] 𝑟
2

[0] 𝑟
2

[1] ⋅

𝑟
2

[2] ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑟
2

[𝑁 − 1] 𝑟
2

[𝑁 − 2] ⋅ ⋅ ⋅ 𝑟
2

[0]

)
)

)

,

(24)

where

𝑟
2

[
𝑖 − 𝑗

] =
𝑟
1

[
𝑖 − 𝑗

]

𝑟
1

[0]
. (25)

Next, we recall from [50] the expression for the log-likelihood
function:

𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

) = log𝑝 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

= −
𝑁

2
log (2𝜋) − 𝑁

2
log (𝜎2

𝑊𝜉

) −
1

2
log 𝑅1



−
1

2𝜎
2

𝑊𝜉

𝜉
𝑇

𝑅
−1

1

𝜉.

(26)

Thederivative of the log-likelihood function (26)with respect
to 𝜀 yields

𝜕𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀
=
𝜕

𝜕𝜀
(−

1

2𝜎
2

𝑊𝜉

𝜉
𝑇

𝑅
−1

1

𝜉) . (27)

Note that [50] has taken the derivative of (26) with respect to
𝑑. Thus, our final expression is very different.
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From (24) and (25) we can write

𝑅
1

= 𝑟
1

[0] 𝑅
2

. (28)

By substituting (28) into (27) we obtain

𝜕𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀
= −

1

2𝜎
2

𝑊𝜉

𝑟
1

[0]

𝜕

𝜕𝜀
(𝜉
𝑇

𝑅
−1

2

𝜉) . (29)

According to [50], the expression 𝜉𝑇𝑅−1
2

𝜉 can be written as

𝜉
𝑇

𝑅
−1

2

𝜉

=
1

𝑃
𝑁−1

⋅

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

[𝑎
𝑁−1

(𝑖 − 𝑘) 𝑎
𝑁−1

(𝑗 − 𝑘)

− 𝑎
𝑁−1

(𝑁 − 𝑖 + 𝑘) 𝑎
𝑁−1

(𝑁 − 𝑗 + 𝑘)] 𝜉
𝑖

𝜉
𝑗

,

(30)

where

𝑃
𝑁−1

= 𝑃
𝑁−2

(1 −

(𝐻
𝜉

− 0.5)
2

(𝑁 − 0.5 − 𝐻
𝜉

)
2

) ; 𝑃
0

= 1, (31)

𝑎
𝑘

(𝑖) = (

𝑘

𝑖
)

(𝑖 − 𝑑
𝜉

− 1)! (𝑘 − 𝑑
𝜉

− 𝑖)!

(−𝑑
𝜉

− 1)! (𝑘 − 𝑑
𝜉

)!

for 1 ≤ 𝑖 ≤ 𝑘.

(32)

Then, we substitute (30) into (29) and obtain

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= −
1

2𝜎
2

𝑊𝜉

𝑟
1

[0]

1

𝑃
𝑁−1

×
𝜕

𝜕𝜀
[

[

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

[𝑎
𝑁−1

(𝑖 − 𝑘) 𝑎
𝑁−1

(𝑗 − 𝑘)

− 𝑎
𝑁−1

(𝑁 − 𝑖 + 𝑘)

⋅ 𝑎
𝑁−1

(𝑁 − 𝑗 + 𝑘)] 𝜉
𝑖

𝜉
𝑗

]

]

.

(33)

Let us define for simplicity the next two variables:

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) ≜ 𝑎
𝑁−1

(𝑖 − 𝑘) 𝑎
𝑁−1

(𝑗 − 𝑘)

− 𝑎
𝑁−1

(𝑁 − 𝑖 + 𝑘) 𝑎
𝑁−1

(𝑁 − 𝑗 + 𝑘) ,

(34)

𝐾 ≜ −
1

2𝜎
2

𝑊𝜉

𝑟
1

[0]

1

𝑃
𝑁−1

. (35)

Inserting (34) and (35) into (33) gives

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾
𝜕

𝜕𝜀
[

[

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) 𝜉
𝑖

𝜉
𝑗

]

]

.

(36)

Next, the derivative of the log-likelihood function (36) with
respect to 𝜀 is carried out and set to zero

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀
= 0. (37)

Appendix A shows in detail the derivation of the log-
likelihood function (36) and the calculation of (37). In
Appendix C we give the sum limitation of (36).

According to Appendices A and C we obtain the ML
estimation of the clock skew 𝜀 as written in (11), where
𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻

𝜉

) is obtained in Appendix B as given in (12).
This completes our proof.

3.2. CRLB for the ML Estimation of Clock Skew

Theorem 2. For the following assumption
(i) Δ𝑇

𝑚.𝑖

= Δ𝑇
𝑚.𝑗

= 𝛽, where 𝛽 is the fixed interval
between consecutive PTP Sync messages.

The CRLB of the clock skew ML estimation may be defined
as

Var [𝜀 − 𝜀] ≥
(1 + 𝜀)

2

𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[𝐵 (𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎
2

𝑊

)]

,

(38)

where Var[⋅] denotes the variance of [⋅] and 𝐵(𝑁, 𝑖, 𝑗, 𝑘,𝐻,
𝛽, 𝜎
2

𝑊

) is defined by

𝐵 (𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎
2

𝑊

)

= 𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

Γ (1.5 − 𝐻
𝜉

) Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝜉

)

⋅ [3 +
𝛽
2

𝐶 (𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

)
]

(39)

and 𝐶(𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

) is defined by

𝐶 (𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

)

= 𝜎
2

𝑊𝑥

Γ (−2𝐻
𝑥

+ 2)

Γ (−𝐻
𝑥

+ 1.5)

1

Γ (𝐻
𝑥

− 0.5)

⋅ [2
Γ (𝑗 − 𝑖 + 𝐻

𝑥

− 0.5)

Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝑥

)
−
Γ (𝑗 − 𝑖 − 1.5 + 𝐻

𝑥

)

Γ (𝑗 − 𝑖 − 𝐻
𝑥

+ 0.5)

−
Γ (𝑖 − 𝑗 − 1.5 + 𝐻

𝑥

)

Γ (𝑖 − 𝑗 − 𝐻
𝑥

+ 0.5)
] .

(40)
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Proof. The inequality of the Cramer-Rao bound is given by

Var [𝜀 − 𝜀] ≥ −[𝐸[
𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2
]]

−1

. (41)

First, we will calculate the second derivative of the log-
likelihood function.

From (36) and Appendix C we can write the derivative of
the log-likelihood function with respect to 𝜀 as

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾
𝜕

𝜕𝜀

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) 𝜉
𝑖

𝜉
𝑗

] .

(42)

Inserting (16) into (42) gives

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[

[

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅
𝜕

𝜕𝜀

[

[

(
(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)

− Δ𝑇
𝑚.𝑖

)

⋅ (

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

(1 + 𝜀)

− Δ𝑇
𝑚.𝑗

)]

]

]

]

.

(43)

Therefore, according to Appendix D, the second derivative of
the log-likelihood function with respect to 𝜀 may be written
as

𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2

=
2

(1 + 𝜀)
2

𝐾

⋅

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(𝛽 + 𝜉
𝑖

) 𝜉
𝑗

+ (𝛽 + 𝜉
𝑗

)

⋅ (𝛽 + 𝜉
𝑖

) + (𝛽 + 𝜉
𝑗

) 𝜉
𝑖

]] ,

(44)

where the full proof is provided in Appendix D.

Next, we will derive the mean of (44) and according to
Appendix D we may write

𝐸[

𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2
]

=
2

(1 + 𝜀)
2

⋅ 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ 𝐸 [3𝜉
𝑖

𝜉
𝑗

+ 2𝛽𝜉
𝑗

+ 2𝛽𝜉
𝑖

+ 𝛽
2

]] .

(45)

Finally, by substituting (45) into (41) and using some proper-
ties obtained in Appendix D, we come back to the expression
for the CRLB as given in (38).

This completes our proof.

4. Simulation

In this section we show the MSE performance comparison
between our proposed expression for the clock skew (11)
compared with the conventional dual slaves clock method
proposed in [18]. We also test the performance of our new
proposed expression for the clock skew (11) for two different
values of 𝜎2

𝑊𝑥

and 𝐻
𝑥

. In our simulation the Sync interval 𝛽
and the clock skew 𝜀 have the same values as in [18]: the Sync
interval 𝛽 = 2 sec and the clock skew 𝜀 = 40 ppm.

Figures 3 and 4 show the MSE performance comparison
between the proposed approach (11) and the conventional
dual slaves clock method given in equation (11) in [18]
for 𝐻

𝑥

= 0.55 and 𝐻
𝑥

= 0.8, respectively. Namely, the
MSE performance comparisons (Figures 3 and 4) are carried
out for the case where the PDV is modeled with fGn. The
standard deviation 𝜎

𝑊𝑥

is the same value as was taken in
[18] for the random jitter (±40 ps). Figures 3 and 4 show that
our proposed expression (11) for the clock skew outperforms
(in the MSE point of view) the dual slaves clock method
given in equation (11) in [18] for both cases 𝐻

𝑥

= 0.55

and 𝐻
𝑥

= 0.8. Thus we may conclude that the proposed
algorithm for the clock skew [18] may not fit for a realistic
Ethernet network where PDV exists. But it should be pointed
out that the proposed algorithm for the clock skew [18] is very
simple compared to our proposed approach (11). As a matter
of fact the computational complexity of (11) is 𝑂(𝑁3) while
the computational complexity of [18] is only 𝑂(𝑁) (where
𝑂(𝑄) is defined as lim

̃

𝑄→0

(𝑂(𝑄)/𝑄) = 𝑟const and “𝑟const” is
a constant).

Figures 5–8 show the MSE performance obtained from
our proposed clock skew estimator (11) as a function of𝑁 for
two different values of 𝜎2

𝑊𝑥

and𝐻
𝑥

.
Since the simulation tool (MATLAB) can not calculate

the Gamma function for an argument higher than 175, we
can not run the simulation for 𝑁 > 60. Therefore, we have
to reduce the value for 𝜎2

𝑊𝑥

in order to be able to show results
also for higher values of the Hurst exponent for which the
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Figure 3: MSE comparison between the proposed ML estimator
for the clock skew (11) to the conventional dual slave method ((11)
in [18]) as a function of the observation number 𝑁. The standard
deviation 𝜎

𝑊𝑥

is ±40 ps.
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Figure 4: MSE comparison between the proposed ML estimator
for the clock skew (11) to the conventional dual slave method ((11)
in [18]) as a function of the observation number 𝑁. The standard
deviation 𝜎

𝑊𝑥

is ±40 ps.

MSE approaches the CRLB. Nevertheless, in order to show
it, Figures 5 and 6 were produced with a lower value for
𝜎
2

𝑊𝑥

(than chosen in Figures 7-8) in order to show that the
MSE approaches the CRLB also for higher values of the Hurst
exponent as expected. According to Figures 5-6 we can see
that the MSE declines and approaches the CRLB (38) as 𝑁
increases. However, according to Figures 7 and 8 we can see
that even for the higher values for 𝜎2

𝑊𝑥

the MSE declines and
goes in the right direction towards the CRLB, which means
that for greater values for 𝑁 we will see a complete match
between the MSE to the CRLB.
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Figure 5: MSE and CRLB of the clock skew as a function of the
observation number 𝑁. The standard deviation 𝜎

𝑊𝑥

of the PDV is
±0.04 ps.
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Figure 6: MSE and CRLB of the clock skew as a function of the
observation number 𝑁. The standard deviation 𝜎

𝑊𝑥

of the PDV is
±0.04 ps.

5. Conclusion

In this paper we developed a new clock skew method for
the case where the PDV is modeled as fGn, as proposed
in the literature for a realistic Ethernet network. Simulation
results indicate that our new proposed method for the clock
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Figure 7: MSE and CRLB of the clock skew as a function of the
observation number 𝑁. The standard deviation 𝜎
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of the PDV is
±40 ps.
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Figure 8: MSE and CRLB of the clock skew as a function of the
observation number 𝑁. The standard deviation 𝜎

𝑊𝑥

of the PDV is
±40 ps.

skew leads the system with a lower MSE compared with the
literature proposed dual slave clocks in a slave. In this paper
we derived also the CRLB (𝐻 dependent) for our proposed
clock skew method and have shown that the simulated MSE
obtained from our proposed method achieves asymptotically
our new derived CRLB.

Appendices

A. Log-Likelihood Function Derivation

In this appendix we derive in detail the derivative of the log-
likelihood function with respect to 𝜀.

We also show the calculation of the log-likelihood func-
tion maximum value.

Equation (36) determines

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾
𝜕

𝜕𝜀
[

[

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) 𝜉
𝑖

𝜉
𝑗

]

]

.

(A.1)

Since 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) is not dependent on 𝜀, we can write

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾[

[

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)
𝜕

𝜕𝜀
(𝜉
𝑖

𝜉
𝑗

)]

]

.

(A.2)

Then, we substitute (16) into (A.2) and obtain

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

×
𝜕

𝜕𝜀
[(𝜀


(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

) − Δ𝑇
𝑚.𝑖

)

⋅ (𝜀


(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

) − Δ𝑇
𝑚.𝑗

)] .

(A.3)

Now, we will derive the internal expression with respect to 𝜀
and get

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [2𝜀


(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

⋅ (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

− Δ𝑇
𝑚.𝑗

(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

− Δ𝑇
𝑚.𝑖

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)] .

(A.4)
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Next, we set (A.4) to zero in order to find the log-likelihood
function maximum value:

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀
= 0. (A.5)

After some basic algebraic operations we get

𝜀


= (

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [Δ𝑇
𝑚.𝑗

(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

+ Δ𝑇
𝑚.𝑖

⋅ (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)])

⋅ (2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

⋅ (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)])

−1

.

(A.6)

Hence, by substituting (17) into (A.6) we obtain

𝜀 = (2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

⋅ (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)])

⋅ (

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [Δ𝑇
𝑚.𝑗

(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

+ Δ𝑇
𝑚.𝑖

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)])

−1

− 1.

(A.7)

Since 𝐸[𝜙
2.𝑖

] = 𝐸[𝜙
1.𝑖

] = 0 we can say that

1

𝑁

𝑁

∑

𝑖=1

𝜙
1.𝑖

= 0,
1

𝑁

𝑁

∑

𝑖=1

𝜙
2.𝑖

= 0. (A.8)

Now, we will multiply the numerator and denominator in the
first term of (A.7) by 1/𝑁:

𝜀 = (
2

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

⋅ (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)])

⋅ (
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [Δ𝑇
𝑚.𝑗

(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

+ Δ𝑇
𝑚.𝑖

⋅ (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)])

−1

− 1.

(A.9)

Inserting (A.8) into (A.9) gives

𝜀 = (
2

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

) (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)

+ (Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

) (Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)])

⋅ (
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [Δ𝑇
𝑚.𝑗

(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

)

+ Δ𝑇
𝑚.𝑖

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)])

−1

− 1.

(A.10)

Since the random jitters 𝜙
1

and 𝜙
2

are assumed to be
independent we will write

𝐸 (𝜙
1.𝑖

𝜙
2.𝑖

) = 0,

1

𝑁

𝑁

∑

𝑖=1

𝜙
1.𝑖

𝜙
2.𝑖

= 0.

(A.11)
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Inserting (A.11) into (A.10) gives

𝜀 = (
2

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

) (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)

+ (Δ𝜙
2,𝑖

) (Δ𝜙
2,𝑗

) + (Δ𝜙
1,𝑖

) (Δ𝜙
1,𝑗

)])

⋅ (
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [Δ𝑇
𝑚.𝑗

(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

)

+ Δ𝑇
𝑚.𝑖

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)])

−1

− 1.

(A.12)

Since the random jitter 𝜙
2

is assumed to be an independent
Gaussian RVwith zeromean and variance of 2𝜎2 we canwrite

𝐸 [𝜙
2

2

] = 2𝜎
2

. (A.13)

Therefore

1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

Δ𝜙
2,𝑖

Δ𝜙
2,𝑗

=
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝜙
2,𝑖

𝜙
2,𝑗

− 𝜙
2,𝑖

𝜙
2,𝑗−1

− 𝜙
2,𝑖−1

𝜙
2,𝑗

+ 𝜙
2,𝑖−1

𝜙
2,𝑗−1

)

= 𝑎
2

+ 𝑏
2

= 0,

(A.14)

where (1/𝑁)∑𝑁
𝑖=1

∑
𝑁

𝑗=1

𝜙
2,𝑖

𝜙
2,𝑗

= 𝐶 ̸= 0 only when 𝑖 = 𝑗.
𝑎
2

= (2𝜎
2

+2𝜎
2

)𝑁 because 𝑖 = 𝑗 occurs𝑁 times. 𝑏
2

= (−2𝜎
2

−

2𝜎
2

)𝑁 because 𝑖 = 𝑗 − 1 or 𝑗 = 𝑖 − 1 occurs𝑁 times.
We will use the same technique regarding 𝜙

1

:

𝐸 [𝜙
2

1

] = 𝜎
2

. (A.15)

Therefore

1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

Δ𝜙
1,𝑖

Δ𝜙
1,𝑗

=
1

𝑁

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

(𝜙
1,𝑖

𝜙
1,𝑗

− 𝜙
1,𝑖

𝜙
1,𝑗−1

− 𝜙
1,𝑖−1

𝜙
1,𝑗

+ 𝜙
1,𝑖−1

𝜙
1,𝑗−1

)

= 𝑎
1

+ 𝑏
1

= 0,

(A.16)

where (1/𝑁)∑𝑁
𝑖=1

∑
𝑁

𝑗=1

𝜙
1,𝑖

𝜙
1,𝑗

= 𝐶 ̸= 0 only when 𝑖 = 𝑗. 𝑎
1

=

(𝜎
2

+ 𝜎
2

)𝑁 because 𝑖 = 𝑗 occurs𝑁 times. 𝑏
1

= (−𝜎
2

− 𝜎
2

)𝑁

because 𝑖 = 𝑗 − 1 or 𝑗 = 𝑖 − 1 occurs𝑁 times.
Inserting (A.14) and (A.16) into (A.12) gives

𝜀 = (2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

) (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)])

⋅ (

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [Δ𝑇
𝑚.𝑗

(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

)

+ Δ𝑇
𝑚.𝑖

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)])

−1

− 1.

(A.17)

Finally, according to Appendix C we may write (A.17) with
the proper sum limitation:

𝜀

= (2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

) (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)]])

⋅ (

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [Δ𝑇
𝑚.𝑗

(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

)

+ Δ𝑇
𝑚.𝑖

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

)]])

−1

− 1.

(A.18)

B. 𝐴(𝑁,𝑖,𝑗,𝑘,𝐻
𝜉

) Derivation

In this appendix we derive in detail the expression for
𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻

𝜉

).
Earlier we defined 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻

𝜉

) in (34):

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) = 𝑎
𝑁−1

(𝑖 − 𝑘) 𝑎
𝑁−1

(𝑗 − 𝑘)

− 𝑎
𝑁−1

(𝑁 − 𝑖 + 𝑘) 𝑎
𝑁−1

(𝑁 − 𝑗 + 𝑘) .

(B.1)
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By setting (32) into (B.1) we obtain

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

= (

𝑁 − 1

𝑖 − 𝑘
)

(𝑖 − 𝑘 − 𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

− (𝑖 − 𝑘))!

(−𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

)!

⋅ (

𝑁 − 1

𝑗 − 𝑘
)

(𝑗 − 𝑘 − 𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

− (𝑗 − 𝑘))!

(−𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

)!

− (

𝑁 − 1

𝑁 − 𝑖 + 𝑘
)

⋅

(𝑁 − 𝑖 + 𝑘 − 𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

− (𝑁 − 𝑖 + 𝑘))!

(−𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

)!

⋅ (

𝑁 − 1

𝑁 − 𝑗 + 𝑘
)

⋅

(𝑁 − 𝑗 + 𝑘 − 𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

− (𝑁 − 𝑗 + 𝑘))!

(−𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

)!

= (

𝑁 − 1

𝑖 − 𝑘
)

(𝑖 − 𝑘 − 𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

− 𝑖 + 𝑘)!

(−𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

)!

⋅ (

𝑁 − 1

𝑗 − 𝑘
)

(𝑗 − 𝑘 − 𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

− 𝑗 + 𝑘)!

(−𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

)!

− (

𝑁 − 1

𝑁 − 𝑖 + 𝑘
)

(𝑁 − 𝑖 + 𝑘 − 𝑑
𝜉

− 1)! (−1 − 𝑑
𝜉

+ 𝑖 − 𝑘)!

(−𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

)!

⋅ (

𝑁 − 1

𝑁 − 𝑗 + 𝑘
)

⋅

(𝑁 − 𝑗 + 𝑘 − 𝑑
𝜉

− 1)! (−1 − 𝑑
𝜉

+ 𝑗 − 𝑘)!

(−𝑑
𝜉

− 1)! (𝑁 − 1 − 𝑑
𝜉

)!

.

(B.2)
Now, by substituting (21) into (B.2) and performing some
algebraic operation we obtain

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

= (

𝑁 − 1

𝑖 − 𝑘
)

⋅

(𝑖 − 𝑘 − (𝐻
𝜉

− 0.5) − 1)! (𝑁 − 1 − (𝐻
𝜉

− 0.5) − 𝑖 + 𝑘)!

(− (𝐻
𝜉

− 0.5) − 1)! (𝑁 − 1 − (𝐻
𝜉

− 0.5))!

⋅ (

𝑁 − 1

𝑗 − 𝑘
)

⋅

(𝑗 − 𝑘 − (𝐻
𝜉

− 0.5) − 1)! (𝑁 − 1 − (𝐻
𝜉

− 0.5) − 𝑗 + 𝑘)!

(− (𝐻
𝜉

− 0.5) − 1)! (𝑁 − 1 − (𝐻
𝜉

− 0.5))!

− (

𝑁 − 1

𝑁 − 𝑖 + 𝑘
)

⋅

(𝑁 − 𝑖 + 𝑘 − (𝐻
𝜉

− 0.5) − 1)! (−1 − (𝐻
𝜉

− 0.5) + 𝑖 − 𝑘)!

(− (𝐻
𝜉

− 0.5) − 1)! (𝑁 − 1 − (𝐻
𝜉

− 0.5))!

⋅ (

𝑁 − 1

𝑁 − 𝑗 + 𝑘
)

⋅

(𝑁 − 𝑗 + 𝑘 − (𝐻
𝜉

− 0.5) − 1)! (−1 − (𝐻
𝜉

− 0.5) + 𝑗 − 𝑘)!

(− (𝐻
𝜉

− 0.5) − 1)! (𝑁 − 1 − (𝐻
𝜉

− 0.5))!

= (

𝑁 − 1

𝑖 − 𝑘
)

⋅

(𝑖 − 𝑘 − 𝐻
𝜉

+ 0.5 − 1)! (𝑁 − 1 − 𝐻
𝜉

+ 0.5 − 𝑖 + 𝑘)!

(−𝐻
𝜉

+ 0.5 − 1)! (𝑁 − 1 − 𝐻
𝜉

+ 0.5)!

⋅ (

𝑁 − 1

𝑗 − 𝑘
)

⋅

(𝑗 − 𝑘 − 𝐻
𝜉

+ 0.5 − 1)! (𝑁 − 1 − 𝐻
𝜉

+ 0.5 − 𝑗 + 𝑘)!

(−𝐻
𝜉

+ 0.5 − 1)! (𝑁 − 1 − 𝐻
𝜉

+ 0.5)!

− (

𝑁 − 1

𝑁 − 𝑖 + 𝑘
)

⋅

(𝑁 − 𝑖 + 𝑘 − 𝐻
𝜉

+ 0.5 − 1)! (−1 − 𝐻
𝜉

+ 0.5 + 𝑖 − 𝑘)!

(−𝐻
𝜉

+ 0.5 − 1)! (𝑁 − 1 − 𝐻
𝜉

+ 0.5)!

⋅ (

𝑁 − 1

𝑁 − 𝑗 + 𝑘
)

⋅

(𝑁 − 𝑗 + 𝑘 − 𝐻
𝜉

+ 0.5 − 1)! (−1 − 𝐻
𝜉

+ 0.5 + 𝑗 − 𝑘)!

(−𝐻
𝜉

+ 0.5 − 1)! (𝑁 − 1 − 𝐻
𝜉

+ 0.5)!

= (

𝑁 − 1

𝑖 − 𝑘
)

(𝑖 − 𝑘 − 𝐻
𝜉

− 0.5)! (𝑁 − 𝐻
𝜉

− 0.5 − 𝑖 + 𝑘)!

(−𝐻
𝜉

− 0.5)! (𝑁 − 𝐻
𝜉

− 0.5)!

⋅ (

𝑁 − 1

𝑗 − 𝑘
)

(𝑗 − 𝑘 − 𝐻
𝜉

− 0.5)! (𝑁 − 𝐻
𝜉

− 0.5 − 𝑗 + 𝑘)!

(−𝐻
𝜉

− 0.5)! (𝑁 − 𝐻
𝜉

− 0.5)!

− (

𝑁 − 1

𝑁 − 𝑖 + 𝑘
)

⋅

(𝑁 − 𝑖 + 𝑘 − 𝐻
𝜉

− 0.5)! (−𝐻
𝜉

− 0.5 + 𝑖 − 𝑘)!

(−𝐻
𝜉

− 0.5)! (𝑁 − 𝐻
𝜉

− 0.5)!

⋅ (

𝑁 − 1

𝑁 − 𝑗 + 𝑘
)

⋅

(𝑁 − 𝑗 + 𝑘 − 𝐻
𝜉

− 0.5)! (−𝐻
𝜉

− 0.5 + 𝑗 − 𝑘)!

(−𝐻
𝜉

− 0.5)! (𝑁 − 𝐻
𝜉

− 0.5)!

.

(B.3)
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We will write 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) with the Gamma function
instead of the factorial function because𝐻

𝜉

∈ R.
The main character of the Gamma function is

𝑧! ≜ Γ (𝑧 + 1) ; 𝑧 ∈ R. (B.4)

Therefore

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

=
Γ (𝑁)

Γ (𝑖 − 𝑘 + 1) Γ (𝑁 − 𝑖 + 𝑘)

⋅

Γ (𝑖 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑖 + 𝑘)

Γ (−𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5)

⋅
Γ (𝑁)

Γ (𝑗 − 𝑘 + 1) Γ (𝑁 − 𝑗 + 𝑘)

⋅

Γ (𝑗 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑗 + 𝑘)

Γ (−𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5)

−
Γ (𝑁)

Γ (𝑁 − 𝑖 + 𝑘 + 1) Γ (𝑖 − 𝑘)

⋅

Γ (𝑁 − 𝑖 + 𝑘 − 𝐻
𝜉

+ 0.5) Γ (−𝐻
𝜉

+ 0.5 + 𝑖 − 𝑘)

Γ (−𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5)

⋅
Γ (𝑁)

Γ (𝑁 − 𝑗 + 𝑘 + 1) Γ (𝑗 − 𝑘)

⋅

Γ (𝑁 − 𝑗 + 𝑘 − 𝐻
𝜉

+ 0.5) Γ (−𝐻
𝜉

+ 0.5 + 𝑗 − 𝑘)

Γ (−𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5)

.

(B.5)

Finally, we will arrange the expression for 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

more elegantly

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

= (((Γ (𝑁))
2

Γ (𝑖 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑖 + 𝑘)

⋅ Γ (𝑗 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑗 + 𝑘))

⋅ (Γ (−𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5))
−2

)

⋅ [
1

Γ (𝑖 − 𝑘 + 1) Γ (𝑁 − 𝑖 + 𝑘)

1

Γ (𝑗 − 𝑘 + 1) Γ (𝑁 − 𝑗 + 𝑘)

−
1

Γ (𝑁 − 𝑖 + 𝑘 + 1) Γ (𝑖 − 𝑘)

⋅
1

Γ (𝑁 − 𝑗 + 𝑘 + 1) Γ (𝑗 − 𝑘)
]

= (((Γ (𝑁))
2

Γ (𝑖 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑖 + 𝑘)

⋅ Γ (𝑗 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑗 + 𝑘))

⋅ ((Γ (−𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5))
2

⋅ Γ (𝑁 − 𝑖 + 𝑘) Γ (𝑁 − 𝑗 + 𝑘) Γ (𝑖 − 𝑘) Γ (𝑗 − 𝑘))

−1

)

⋅ [
1

(𝑖 − 𝑘)

1

(𝑗 − 𝑘)
−

1

(𝑁 − 𝑖 + 𝑘)

1

(𝑁 − 𝑗 + 𝑘)
]

= [
Γ (𝑁)

Γ (−𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5)

]

2

× ((Γ (𝑖 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑖 + 𝑘)

⋅ Γ (𝑗 − 𝑘 − 𝐻
𝜉

+ 0.5) Γ (𝑁 − 𝐻
𝜉

+ 0.5 − 𝑗 + 𝑘))

⋅ (Γ (𝑁 − 𝑖 + 𝑘) Γ (𝑁 − 𝑗 + 𝑘) Γ (𝑖 − 𝑘) Γ (𝑗 − 𝑘))
−1

)

⋅ [
1

(𝑖 − 𝑘)

1

(𝑗 − 𝑘)
−

1

(𝑁 − 𝑖 + 𝑘)

1

(𝑁 − 𝑗 + 𝑘)
] .

(B.6)

This is the final form of 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)mentioned in (12).

C. Log-Likelihood Function First Derivative
Sum Limitation

In this Appendix we derive in detail the 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) sum
limitations:∑𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

.
We can get the above limitation by two different ways:

(i) examining the limitations on the Gamma function
arguments that exist in 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻

𝜉

),
(ii) examining the limitation on the 𝑎

𝑁−1

(𝑖) expression
mentioned in [50] that built up the 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻

𝜉

)

expression.

The first way:
(i) The Gamma function Γ(𝑧) has simple poles at 𝑧 =

−𝑛, 𝑛 = 1, 2, 3, . . ..
Now, under the above knowledge, we examine all the

Gamma function arguments existing in (B.6):

(i.A) 𝑁 ̸= −𝑛 always exists;
(i.B) 𝑖 − 𝑘−𝐻

𝜉

+0.5 ̸= −𝑛 => 𝑖 ̸= 𝑘 (𝐻
𝜉

= 0.5) exists under
(1.J);

(i.C) 𝑁 −𝐻
𝜉

+ 0.5 − 𝑖 + 𝑘 ̸= −𝑛 => 𝑁 − 𝐻
𝜉

+ 0.5 − 𝑖 + 𝑘 >

0 => 𝑁 −𝐻
𝜉

+ 0.5 + 𝑘 > 𝑖 always exists;
(i.D) 𝑗−𝑘−𝐻

𝜉

+0.5 ̸= −𝑛 => 𝑗 ̸= 𝑘 (𝐻
𝜉

= 0.5) exists under
(1.K);

(i.E) 𝑁−𝐻
𝜉

+ 0.5 − 𝑗 + 𝑘 ̸= −𝑛 => 𝑁 −𝐻
𝜉

+ 0.5 − 𝑗 + 𝑘 >

0 => 𝑁 −𝐻
𝜉

+ 0.5 + 𝑘 > 𝑗 always exists;
(i.F) −𝐻

𝜉

+ 0.5 ̸= −𝑛 always exists;
(i.G) 𝑁 −𝐻

𝜉

+ 0.5 ̸= −𝑛 always exists;
(i.H) 𝑁− 𝑖 + 𝑘 ̸= −𝑛 => 𝑁 − 𝑖 + 𝑘 > 0 => 𝑁 + 𝑘 > 𝑖 always

exists;
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(i.I) 𝑁−𝑗+𝑘 ̸= −𝑛 => 𝑁−𝑗+𝑘 > 0 => 𝑁+𝑘 > 𝑗 always
exists;

(i.J) 𝑖 − 𝑘 ̸= −𝑛 => 𝑖 − 𝑘 > 0 => 𝑖 > 𝑘;
(i.K) 𝑗 − 𝑘 ̸= −𝑛 => 𝑗 − 𝑘 > 0 => 𝑗 > 𝑘;
(i.L) 𝑖 − 𝑘 ̸= 0 => 𝑖 ̸= 𝑘 exists under (1.J);
(i.M) 𝑗 − 𝑘 ̸= 0 => 𝑗 ̸= 𝑘 exists under (1.K);
(i.N) 𝑁 − 𝑖 + 𝑘 ̸= 0 => 𝑁 + 𝑘 ̸= 𝑖 always exists;
(i.O) 𝑁 − 𝑗 + 𝑘 ̸= 0 => 𝑁 + 𝑘 ̸= 𝑗 always exists.

From (i.J) and (i.K)we get the limitation: 1 ≤ 𝑘 ≤ min(𝑖, 𝑗)−1.
Note that (i.A)–(i.I) and (i.L)–(i.O) are always true for the

abovementioned limitations.
Therefore, the conclusion from the first way is

1 ≤ 𝑖, 𝑗 ≤ 𝑁

1 ≤ 𝑘 ≤ min (𝑖, 𝑗) − 1.
(C.1)

The second way:
(ii) From the 𝑎

𝑁−1

(𝑖) limitation mentioned in [50, page
2981], we can learn that 𝑎

𝑁−1

(𝑖) is only defined for 𝑖 ≥ 0 and
𝑖 ≤ 𝑁 − 1.

Therefore
(ii.A) 𝑎

𝑁−1

(𝑖 − 𝑘) => 0 ≤ 𝑖 − 𝑘 ≤ 𝑁 − 1 => 𝑘 ≤ 𝑖 and
𝑖 ≤ 𝑁 − 1 + 𝑘,

(ii.B) 𝑎
𝑁−1

(𝑗 − 𝑘) => 0 ≤ 𝑗 − 𝑘 ≤ 𝑁 − 1 => 𝑘 ≤ 𝑗 and
𝑗 ≤ 𝑁 − 1 + 𝑘,

(ii.C) 𝑎
𝑁−1

(𝑁− 𝑖 + 𝑘) => 0 ≤ 𝑁− 𝑖+𝑘 ≤ 𝑁−1 => 𝑘 ≤ 𝑖 − 1

and 𝑖 ≤ 𝑁 + 𝑘,
(ii.D) 𝑎

𝑁−1

(𝑁−𝑗+𝑘) => 0 ≤ 𝑁−𝑗+𝑘 ≤ 𝑁−1 => 𝑘 ≤ 𝑗−1

and 𝑗 ≤ 𝑁 + 𝑘.
From (ii.A) and (ii.B) and from the fact that min(𝑘) = 1 we
get that 1 ≤ 𝑖, 𝑗 ≤ 𝑁.

From (ii.C) and (ii.D) we get the limitation: 1 ≤ 𝑘 ≤

min(𝑖, 𝑗) − 1.
In conclusion we get the same limitations as in (C.1).

D. Log-Likelihood Function-Second Derivative

In this Appendix we derive in detail the Cramer-Rao lower
bound (CRLB).

The inequality of the Cramer-Rao bound as given in (41)
is

Var [𝜀 − 𝜀] ≥ −[𝐸[
𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2
]]

−1

. (D.1)

In order to calculate the second derivative of the log-
likelihood function we will write the first derivative of the
log-likelihood function with respect to 𝜀.

We can write it from (36)

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾
𝜕

𝜕𝜀

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) 𝜉
𝑖

𝜉
𝑗

] .

(D.2)

Then, we substitute (16) for the 𝑖th sample and (16) for the 𝑗th
sample into (D.2) and obtain

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

×
𝜕

𝜕𝜀
[((Δ𝑇

𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

⋅ (1 + 𝜀)
−1

− Δ𝑇
𝑚.𝑖

)

⋅ ((Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

⋅ (1 + 𝜀)
−1

− Δ𝑇
𝑚.𝑗

)]] .

(D.3)

Next, we will take the derivative according to the product role
and get

𝜕 log 𝐿 (𝜉;𝐻
𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀

= 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

× [(− (Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

−Δ𝜙
1,𝑖

) ⋅ (1 + 𝜀)
−2

)

⋅ ((Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

−Δ𝜙
1,𝑗

) ⋅ (1 + 𝜀)
−1

− Δ𝑇
𝑚.𝑗

)

+ (− (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

−Δ𝜙
1,𝑗

) ⋅ (1 + 𝜀)
−2

)

⋅ ((Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

⋅ (1 + 𝜀)
−1

− Δ𝑇
𝑚.𝑖

)]] .

(D.4)

Now, let us calculate the second derivative of the log-
likelihood function by deriving (D.4) with respect to 𝜀

𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2

= 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

×
𝜕

𝜕𝜀
[(
− (Δ𝑇

𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)
2

)

⋅ (

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

(1 + 𝜀)

− Δ𝑇
𝑚.𝑗

)
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+ (− (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

⋅ (1 + 𝜀)
−2

)

⋅ (
(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)

− Δ𝑇
𝑚.𝑖

)]]

= 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

× [(
2 (Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)
3

)

⋅ (

(Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

(1 + 𝜀)

− Δ𝑇
𝑚.𝑗

)

+(

− (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

(1 + 𝜀)
2

)

⋅ (
− (Δ𝑇

𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)
2

)

+(

2 (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

(1 + 𝜀)
3

)

⋅ (
(Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)

− Δ𝑇
𝑚.𝑖

)

+ (
− (Δ𝑇

𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)
2

)

⋅ (− (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

⋅ (1 + 𝜀)
−2

)]] .

(D.5)

Inserting (16) into (D.5) we obtain

𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2

= 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

×[(
2 (Δ𝑇
𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)
3

)𝜉
𝑗

+ (− (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

⋅ (1 + 𝜀)
−2

)

⋅ (
− (Δ𝑇

𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)
2

)

+ (2 (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

⋅ (1 + 𝜀)
−3

) 𝜉
𝑖

+(
− (Δ𝑇

𝑠1.𝑖

− Δ𝑇
𝑠2.𝑖

+ Δ𝜙
2,𝑖

− Δ𝜙
1,𝑖

)

(1 + 𝜀)
2

)

⋅ (− (Δ𝑇
𝑠1.𝑗

− Δ𝑇
𝑠2.𝑗

+ Δ𝜙
2,𝑗

− Δ𝜙
1,𝑗

)

⋅ (1 + 𝜀)
−2

)]]

= 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

× [(
2 (1 + 𝜀) (Δ𝑇

𝑚.𝑖

+ 𝜉
𝑖

)

(1 + 𝜀)
3

)𝜉
𝑗

+ 2(

− (1 + 𝜀) (Δ𝑇
𝑚.𝑗

+ 𝜉
𝑗

)

(1 + 𝜀)
2

)

⋅ (
− (1 + 𝜀) (Δ𝑇

𝑚.𝑖

+ 𝜉
𝑖

)

(1 + 𝜀)
2

)

+ (

2 (1 + 𝜀) (Δ𝑇
𝑚.𝑗

+ 𝜉
𝑗

)

(1 + 𝜀)
3

)𝜉
𝑖

]] .

(D.6)

Therefore

𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2

=
2

(1 + 𝜀)
2

𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(𝛽 + 𝜉
𝑖

) 𝜉
𝑗

+ (𝛽 + 𝜉
𝑗

)

⋅ (𝛽 + 𝜉
𝑖

) + (𝛽 + 𝜉
𝑗

) 𝜉
𝑖

]] .

(D.7)

Now, we will calculate the mean of the second derivative of
the log-likelihood function:

𝐸[

𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2
]

= 𝐸[

[

2

(1 + 𝜀)
2
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⋅ 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [(𝛽 + 𝜉
𝑖

) 𝜉
𝑗

+ (𝛽 + 𝜉
𝑗

)

⋅ (𝛽 + 𝜉
𝑖

) + (𝛽 + 𝜉
𝑗

) 𝜉
𝑖

]]]

]

= 𝐸[

[

2

(1 + 𝜀)
2

⋅ 𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [3𝜉
𝑖

𝜉
𝑗

+ 2𝛽𝜉
𝑗

+ 2𝛽𝜉
𝑖

+ 𝛽
2

]]]

]

.

(D.8)

Because (2/(1 + 𝜀)2)𝐾 and 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) are deterministic
values we can say

𝐸[

𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2
]

=
2

(1 + 𝜀)
2

𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ 𝐸 [3𝜉
𝑖

𝜉
𝑗

+ 2𝛽𝜉
𝑗

+ 2𝛽𝜉
𝑖

+ 𝛽
2

]] .

(D.9)

Since 𝑋
𝑖

and 𝑋
𝑗

are assumed to be with zero mean, we can
write

𝐸 [𝜉
𝑖

] = 𝐸 [(𝑋
𝑖

− 𝑋
𝑖−1

)] = 0,

𝐸 [𝜉
𝑗

] = 𝐸 [(𝑋
𝑗

− 𝑋
𝑗−1

)] = 0.
(D.10)

Now, by substituting (D.10) into (D.9) we obtain

𝐸[

𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2
]

=
2

(1 + 𝜀)
2

𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [3𝐸 [𝜉
𝑖

𝜉
𝑗

] + 𝛽
2

]] .

(D.11)

According to Appendices E and F and by substituting (20)
into (D.11) we obtain

𝐸[

𝜕
2 log 𝐿 (𝜉;𝐻

𝜉

, 𝜎
2

𝑊𝜉

)

𝜕𝜀2
]

=
2

(1 + 𝜀)
2

𝐾

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

min(𝑖,𝑗)−1

∑

𝑘=1

[

[

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅ [

[

3𝜎
2

𝑊𝜉

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

⋅

Γ (1 − 𝑑
𝜉

) Γ (𝑗 − 𝑖 + 𝑑
𝜉

)

Γ (𝑑
𝜉

) Γ (𝑗 − 𝑖 + 1 − 𝑑
𝜉

)

+ 𝛽
2]

]

]

]

,

(D.12)

where

𝜎
2

𝑊𝜉

= 𝜎
2

𝑊𝑥

Γ (−2𝐻
𝑥

+ 2)

Γ (−𝐻
𝑥

+ 1.5)

1

Γ (𝐻
𝑥

− 0.5)
[2
Γ (𝑗 − 𝑖 + 𝐻

𝑥

− 0.5)

Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝑥

)
−
Γ (𝑗 − 𝑖 − 1.5 + 𝐻

𝑥

)

Γ (𝑗 − 𝑖 − 𝐻
𝑥

+ 0.5)
−
Γ (𝑖 − 𝑗 − 1.5 + 𝐻

𝑥

)

Γ (𝑖 − 𝑗 − 𝐻
𝑥

+ 0.5)
]

Γ (−2𝐻
𝜉

+ 2)

Γ (−𝐻
𝜉

+ 1.5)

Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝜉

)

,

(D.12)
𝑑
𝜉

= 𝐻
𝜉

− 0.5, (D.14)
𝐻
𝜉

= 0.3114𝐻
2

𝑥

− 0.2851𝐻
𝑥

+ 0.2199. (D.15)

Then, by substituting (35) and (D.12) into (D.1) we obtain

Var [𝜀 − 𝜀] ≥
(1 + 𝜀)

2

𝜎
2

𝑊𝜉

𝑟
1

[0] 𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[

[

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)[

[

3𝜎
2

𝑊𝜉

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

Γ (1 − 𝑑
𝜉

) Γ (𝑗 − 𝑖 + 𝑑
𝜉

)

Γ (𝑑
𝜉

) Γ (𝑗 − 𝑖 + 1 − 𝑑
𝜉

)

+ 𝛽2]

]

]

]

.

(D.16)
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Let us divide the numerator and denominator by 𝜎2
𝑊𝜉

Var [𝜀 − 𝜀] ≥
(1 + 𝜀)

2

𝑟
1

[0] 𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[

[

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)[

[

3

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

Γ (1 − 𝑑
𝜉

) Γ (𝑗 − 𝑖 + 𝑑
𝜉

)

Γ (𝑑
𝜉

) Γ (𝑗 − 𝑖 + 1 − 𝑑
𝜉

)

+
𝛽
2

𝜎
2

𝑊𝜉

]

]

]

]

.

(D.17)

In order to find 𝑟
1

[0] we will set 𝑖 − 𝑗 = 0 into (23) and obtain

𝑟
1

[0] =
𝑟 [0]

𝜎
2

𝑊𝜉

. (D.17)

Similarly, in order to find 𝑟[0] we will set 𝑖 − 𝑗 = 0 into (20)
and obtain

𝑟 [0] = 𝜎
2

𝑊𝜉

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

. (D.19)

By substituting (D.19) into (D.17) we obtain

𝑟
1

[0] =

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

. (D.20)

Then, we substitute (D.20) into (D.17) and obtain

Var [𝜀 − 𝜀] ≥

(1 + 𝜀)
2

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[

[

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)[

[

3

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

Γ (1 − 𝑑
𝜉

) Γ (𝑗 − 𝑖 + 𝑑
𝜉

)

Γ (𝑑
𝜉

) Γ (𝑗 − 𝑖 + 1 − 𝑑
𝜉

)

+
𝛽
2

𝜎
2

𝑊𝜉

]

]

]

]

. (D.21)

Let us divide the numerator and denominator by
(−2𝑑
𝜉

)!/((−𝑑
𝜉

)!)
2

Var [𝜀 − 𝜀] ≥
(1 + 𝜀)

2

𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[

[

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)[

[

3

Γ (1 − 𝑑
𝜉

) Γ (𝑗 − 𝑖 + 𝑑
𝜉

)

Γ (𝑑
𝜉

) Γ (𝑗 − 𝑖 + 1 − 𝑑
𝜉

)

+
𝛽
2

𝜎
2

𝑊𝜉

((−𝑑
𝜉

)!)
2

(−2𝑑
𝜉

)!

]

]

]

]

.

(D.22)
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Finally, by substituting (D.14) into (D.22) we obtain

Var [𝜀 − 𝜀]

≥
(1 + 𝜀)

2

𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[

[

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)[

[

3

Γ (1 − (𝐻
𝜉

− 0.5)) Γ (𝑗 − 𝑖 + (𝐻
𝜉

− 0.5))

Γ ((𝐻
𝜉

− 0.5)) Γ (𝑗 − 𝑖 + 1 − (𝐻
𝜉

− 0.5))

+
𝛽
2

𝜎
2

𝑊𝜉

((− (𝐻
𝜉

− 0.5))!)
2

(−2 (𝐻
𝜉

− 0.5))!

]

]

]

]

=
(1 + 𝜀)

2

𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[

[

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)[

[

3

Γ (1 − 𝐻
𝜉

+ 0.5) Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1 − 𝐻
𝜉

+ 0.5)

+
𝛽
2

𝜎
2

𝑊𝜉

((−𝐻
𝜉

+ 0.5)!)
2

(−2𝐻
𝜉

+ 1)!

]

]

]

]

=
(1 + 𝜀)

2

𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[

[

𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)[

[

3

Γ (1.5 − 𝐻
𝜉

) Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝜉

)

+
𝛽
2

𝜎
2

𝑊𝜉

Γ (−𝐻
𝜉

+ 1.5)
2

Γ (−2𝐻
𝜉

+ 2)

]

]

]

]

=
(1 + 𝜀)

2

𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[𝐵 (𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎
2

𝑊

)]

.

(D.23)

According to Appendices E and G and the above equation
(D.23) the CRLB is defined by

Var [𝜀 − 𝜀] ≥
(1 + 𝜀)

2

𝑃
𝑁−1

∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[𝐵 (𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎
2

𝑊

)]

,

(D.24)

where

𝑃
𝑁−1

= 𝑃
𝑁−2

(1 −

(𝐻
𝜉

− 0.5)
2

(𝑁 − 0.5 − 𝐻
𝜉

)
2

) , 𝑃
0

= 1,

𝐵 (𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎
2

𝑊

)

= 𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

Γ (1.5 − 𝐻
𝜉

) Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝜉

)

⋅ [3 +
𝛽
2

𝐶 (𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

)
]

(D.25)

and 𝐶(𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

) is obtained by

𝐶 (𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

)

= 𝜎
2

𝑊𝑥

Γ (−2𝐻
𝑥

+ 2)

Γ (−𝐻
𝑥

+ 1.5)

1

Γ (𝐻
𝑥

− 0.5)

⋅ [2
Γ (𝑗 − 𝑖 + 𝐻

𝑥

− 0.5)

Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝑥

)
−
Γ (𝑗 − 𝑖 − 1.5 + 𝐻

𝑥

)

Γ (𝑗 − 𝑖 − 𝐻
𝑥

+ 0.5)

−
Γ (𝑖 − 𝑗 − 1.5 + 𝐻

𝑥

)

Γ (𝑖 − 𝑗 − 𝐻
𝑥

+ 0.5)
] .

(D.26)

E. 𝜎2
𝑊𝜉

Calculation

In this Appendix we show in detail how to calculate 𝜎2
𝑊𝜉

.
According to equation (2.5) given in [50], the covariance

function of a fractionally differenced Gaussian noise process
(fdGn) 𝑤

𝑑

(𝑛) is given by

𝐸 [𝑤
𝑑

(𝑛) 𝑤
𝑑

(𝑛 + 𝑘)] = 𝐸 [𝑋
𝑛

𝑋
𝑛+𝑘

]

= 𝜎
2

𝑊𝑥

(−2𝑑
𝑥

)!

((−𝑑
𝑥

)!)
2

Γ (1 − 𝑑
𝑥

) Γ (𝑘 + 𝑑
𝑥

)

Γ (𝑑
𝑥

) Γ (𝑘 + 1 − 𝑑
𝑥

)
.

(E.1)

Therefore, we can write

𝐸 [𝜉
𝑖

𝜉
𝑗

] = 𝜎
2

𝑊𝜉

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

Γ (1 − 𝑑
𝜉

) Γ (𝑗 − 𝑖 + 𝑑
𝜉

)

Γ (𝑑
𝜉

) Γ (𝑗 − 𝑖 + 1 − 𝑑
𝜉

)

. (E.2)
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On the other hand, we defined in this paper (assumption (2)
in subsection “ML Estimation of Clock Skew”) 𝜉

𝑖

, 𝜉
𝑗

as

𝜉
𝑖

= 𝑋
𝑖

− 𝑋
𝑖−1

,

𝜉
𝑗

= 𝑋
𝑗

− 𝑋
𝑗−1

.
(E.3)

By substituting (E.3) into 𝐸[𝜉
𝑖

𝜉
𝑗

] we can say that

𝐸 [𝜉
𝑖

𝜉
𝑗

] = 𝐸 [(𝑋
𝑖

− 𝑋
𝑖−1

) (𝑋
𝑗

− 𝑋
𝑗−1

)]

= 𝐸 [(𝑋
𝑖

𝑋
𝑗

− 𝑋
𝑖

𝑋
𝑗−1

− 𝑋
𝑗

𝑋
𝑖−1

+ 𝑋
𝑖−1

𝑋
𝑗−1

)]

= 𝐸 [(2𝑋
𝑖

𝑋
𝑗

− 𝑋
𝑖

𝑋
𝑗−1

− 𝑋
𝑗

𝑋
𝑖−1

)] .

(E.4)

Next, by substituting (E.1) into (E.4) we obtain

𝐸 [𝜉
𝑖

𝜉
𝑗

]

= 2𝜎
2

𝑊𝑥

(−2𝑑
𝑥

)!

((−𝑑
𝑥

)!)
2

Γ (1 − 𝑑
𝑥

) Γ (𝑗 − 𝑖 + 𝑑
𝑥

)

Γ (𝑑
𝑥

) Γ (𝑗 − 𝑖 + 1 − 𝑑
𝑥

)

− 𝜎
2

𝑊𝑥

(−2𝑑
𝑥

)!

((−𝑑
𝑥

)!)
2

Γ (1 − 𝑑
𝑥

) Γ (𝑗 − 𝑖 − 1 + 𝑑
𝑥

)

Γ (𝑑
𝑥

) Γ (𝑗 − 𝑖 − 𝑑
𝑥

)

− 𝜎
2

𝑊𝑥

(−2𝑑
𝑥

)!

((−𝑑
𝑥

)!)
2

Γ (1 − 𝑑
𝑥

) Γ (𝑖 − 𝑗 − 1 + 𝑑
𝑥

)

Γ (𝑑
𝑥

) Γ (𝑖 − 𝑗 − 𝑑
𝑥

)
.

(E.5)

By comparing (E.2) with (E.5) we get

𝜎
2

𝑊𝜉

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

Γ (1 − 𝑑
𝜉

) Γ (𝑗 − 𝑖 + 𝑑
𝜉

)

Γ (𝑑
𝜉

) Γ (𝑗 − 𝑖 + 1 − 𝑑
𝜉

)

= 𝜎
2

𝑊𝑥

(−2𝑑
𝑥

)!

((−𝑑
𝑥

)!)
2

Γ (1 − 𝑑
𝑥

)

Γ (𝑑
𝑥

)

⋅ [2
Γ (𝑗 − 𝑖 + 𝑑

𝑥

)

Γ (𝑗 − 𝑖 + 1 − 𝑑
𝑥

)
−
Γ (𝑗 − 𝑖 − 1 + 𝑑

𝑥

)

Γ (𝑗 − 𝑖 − 𝑑
𝑥

)

−
Γ (𝑖 − 𝑗 − 1 + 𝑑

𝑥

)

Γ (𝑖 − 𝑗 − 𝑑
𝑥

)
] .

(E.6)

Finally, by substituting (D.14) into (E.6), we get

𝜎
2

𝑊𝜉

= 𝜎
2

𝑊𝑥

(−2𝑑
𝑥

)!

((−𝑑
𝑥

)!)
2

Γ (1 − 𝑑
𝑥

)

Γ (𝑑
𝑥

)
[2

Γ (𝑗 − 𝑖 + 𝑑
𝑥

)

Γ (𝑗 − 𝑖 + 1 − 𝑑
𝑥

)
−
Γ (𝑗 − 𝑖 − 1 + 𝑑

𝑥

)

Γ (𝑗 − 𝑖 − 𝑑
𝑥

)
−
Γ (𝑖 − 𝑗 − 1 + 𝑑

𝑥

)

Γ (𝑖 − 𝑗 − 𝑑
𝑥

)
]

(−2𝑑
𝜉

)!

((−𝑑
𝜉

)!)
2

Γ (1 − 𝑑
𝜉

) Γ (𝑗 − 𝑖 + 𝑑
𝜉

)

Γ (𝑑
𝜉

) Γ (𝑗 − 𝑖 + 1 − 𝑑
𝜉

)

,

𝜎
2

𝑊𝜉

=𝜎
2

𝑊𝑥

(−2𝐻
𝑥

+ 1)!

((−𝐻
𝑥

+ 0.5)!)
2

Γ (1 − 𝐻
𝑥

+ 0.5)

Γ (𝐻
𝑥

− 0.5)
[2

Γ (𝑗 − 𝑖 + 𝐻
𝑥

− 0.5)

Γ (𝑗 − 𝑖 + 1 − 𝐻
𝑥

+ 0.5)
−
Γ (𝑗 − 𝑖 − 1 + 𝐻

𝑥

− 0.5)

Γ (𝑗 − 𝑖 − 𝐻
𝑥

+ 0.5)
−
Γ (𝑖 − 𝑗 − 1 + 𝐻

𝑥

− 0.5)

Γ (𝑖 − 𝑗 − 𝐻
𝑥

+ 0.5)
]

(−2 (𝐻
𝜉

− 0.5))!

((− (𝐻
𝜉

− 0.5))!)
2

Γ (1 − (𝐻
𝜉

− 0.5)) Γ (𝑗 − 𝑖 + (𝐻
𝜉

− 0.5))

Γ ((𝐻
𝜉

− 0.5)) Γ (𝑗 − 𝑖 + 1 − (𝐻
𝜉

− 0.5))

,

𝜎
2

𝑊𝜉

= 𝜎
2

𝑊𝑥

Γ (−2𝐻
𝑥

+ 2)

(Γ (−𝐻
𝑥

+ 1.5))
2

Γ (1.5 − 𝐻
𝑥

)

Γ (𝐻
𝑥

− 0.5)
[2
Γ (𝑗 − 𝑖 + 𝐻

𝑥

− 0.5)

Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝑥

)
−
Γ (𝑗 − 𝑖 − 1.5 + 𝐻

𝑥

)

Γ (𝑗 − 𝑖 − 𝐻
𝑥

+ 0.5)
−
Γ (𝑖 − 𝑗 − 1.5 + 𝐻

𝑥

)

Γ (𝑖 − 𝑗 − 𝐻
𝑥

+ 0.5)
]

Γ (−2𝐻
𝜉

+ 2)

(Γ (−𝐻
𝜉

+ 1.5))
2

Γ (1.5 − 𝐻
𝜉

) Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝜉

)

.

(E.7)

Therefore, the definition of 𝜎2
𝑊𝜉

is given by

𝜎
2

𝑊𝜉

= 𝜎
2

𝑊𝑥

Mod
Frac

, (E.8)

where

Mod =
Γ (−2𝐻

𝑥

+ 2)

Γ (−𝐻
𝑥

+ 1.5)

1

Γ (𝐻
𝑥

− 0.5)

⋅ [2
Γ (𝑗 − 𝑖 + 𝐻

𝑥

− 0.5)

Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝑥

)
−
Γ (𝑗 − 𝑖 − 1.5 + 𝐻

𝑥

)

Γ (𝑗 − 𝑖 − 𝐻
𝑥

+ 0.5)

−
Γ (𝑖 − 𝑗 − 1.5 + 𝐻

𝑥

)

Γ (𝑖 − 𝑗 − 𝐻
𝑥

+ 0.5)
] ,

Frac =
Γ (−2𝐻

𝜉

+ 2)

Γ (−𝐻
𝜉

+ 1.5)

Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝜉

)

.

(E.9)

F. 𝐻
𝜉

Calculation

In this Appendix we show in detail how to calculate𝐻
𝜉

.
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We will calculate 𝐻
𝜉

according to the Rescaled-Range
(𝑅/𝑆) analysis.

According to [51, 52] in order to estimate the Hurst
exponent of a time series 𝜉 (𝜉 denotes vector of [𝑁𝑋1] data
set), we should execute the following process.

First, the time series 𝜉 of full length 𝑁 is divided into a
number of shorter time series of length 𝑛 = 𝑁,𝑁/2,𝑁/4 ⋅ ⋅ ⋅ .

The average Rescaled-Range is then calculated for each
value of 𝑛.

The Rescaled-Range is calculated as follows.
(i) Mean calculation:
The mean of the time series 𝜉 = [𝜉

1

𝜉
2

⋅ ⋅ ⋅ 𝜉
𝑁

] is
calculated as follows:

𝑚 =
1

𝑛

𝑁

∑

𝑖=1

𝜉
𝑖

. (F.1)

(ii) Adjusted mean series calculation:

𝑌
𝑡

= 𝜉
𝑡

− 𝑚; 𝑡 = 1, 2, . . . , 𝑛. (F.2)

(iii) Cumulative deviate series 𝑍 calculation:

𝑍
𝑡

=

𝑡

∑

𝑖=1

𝑌
𝑖

; 𝑡 = 1, 2, . . . , 𝑛. (F.3)

(iv) Range series 𝑅 calculation:

𝑅 (𝑛) = max (𝑍
𝑡

) −min (𝑍
𝑡

) ; 𝑡 = 1, 2, . . . , 𝑛. (F.4)

(v) Standard deviation series 𝑆 calculation:

𝑆 (𝑛) = √
1

𝑛

𝑁

∑

𝑖=1

(𝜉
𝑖

− 𝑚)
2

. (F.5)

(vi) Average over all the partial time series of length 𝑛 of
the Rescaled-Range 𝑅(𝑛)/𝑆(𝑛):

𝐸[
𝑅 (𝑛)

𝑆 (𝑛)
] = 𝐶𝑛

𝐻𝜉 , 𝑛 → ∞,

log𝐸[𝑅 (𝑛)
𝑆 (𝑛)

] = log𝐶 + 𝐻
𝜉

log 𝑛.
(F.6)

And finally are (vii) plotting the logarithm 𝐸[𝑅(𝑛)/𝑆(𝑛)] as a
function of log

2

𝑛 and fitting a straight line according to the
linear regression method. The slope of the line gives𝐻

𝜉

.
Figure 9 shows the plot of the Rescaled-Range analysis as

a function of log
2

𝑛 (where log
2

is defined as the log function
with base of 2) for the case of𝐻

𝑥

= 0.8.

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9
Linear regression of rescaled range values

Linear regression

Hurst exponent out = 0.16064

log2(n)

lo
g 2

(R
/S
)

log2(R/S) log2(n)versus

Figure 9: The 𝑅/𝑆 analysis in case of Hurst exponent𝐻
𝑥

= 0.6. The
obtained zeta Hurst exponent is𝐻

𝜉

= 0.16064.

Operating the above 𝑅/𝑆 analysis on several 𝜉 data sets
(corresponding to several values of 𝐻

𝑥

) and by taking the
mean value gives the following results:

𝐻
𝑥

𝐻
𝜉

0.55 0.1572

0.6 0.1612

0.65 0.1664

0.7 0.1729

0.75 0.1810

0.8 0.1914.

(F.7)

The values for𝐻
𝑥

are denoted by𝐻
𝑥

and the values for𝐻
𝜉

are
denoted by𝐻

𝜉

.
By a second-order polynominal fit preformed in Excel, we

find the following strong (𝑅2 = 0.972) connection between
𝐻
𝑥

and𝐻
𝜉

:

𝐻
𝜉

= 0.3114𝐻
2

𝑥

− 0.2851𝐻
𝑥

+ 0.2199, (F.8)

where 𝑅 is the Pearson product-moment correlation coeffi-
cient and the 𝑅2 value can be interpreted as the proportion of
the variance in𝐻

𝜉

attributable to the variance in𝐻
𝑥

.
𝑅 is a measure of the dependence between two variables,

giving a value between +1 and −1 inclusive, where 1 is total
positive correlation. It is widely used in the sciences as a
measure of the degree of dependence between two variables.
𝑅 can be calculated by the following equation:

𝑅 =

𝐸 [(𝐻
𝑥

− 𝜇
𝐻𝑥

) (𝐻
𝜉

− 𝜇
𝐻𝜉

)]

𝜎
𝐻𝑥

𝜎
𝐻𝜉

, (F.9)

where
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(i) 𝜇
𝐻𝑥

and 𝜇
𝐻𝜉

are the mean of the𝐻
𝑥

and𝐻
𝜉

data sets,
respectively.

(ii) 𝜎
𝐻𝑥

and 𝜎
𝐻𝜉

are the standard deviation of the𝐻
𝑥

and
𝐻
𝜉

data sets, respectively.

G. 𝐵(𝑁,𝑖,𝑗,𝑘,𝐻,𝛽,𝜎2
𝑊

) Derivation

In this Appendix we derive in detail the definition
of 𝐵(𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎

2

𝑊

) and its sum limitations:
∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

.
Inserting (E.8) into (D.23) gives

𝐵 (𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎
2

𝑊

)

= 𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

⋅

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

3

Γ (1.5 − 𝐻
𝜉

) Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝜉

)

+
𝛽
2

𝜎
2

𝑊𝑥

Γ (−2𝐻
𝑥

+ 2)

Γ (−𝐻
𝑥

+ 1.5)

1

Γ (𝐻
𝑥

− 0.5)
[2
Γ (𝑗 − 𝑖 + 𝐻

𝑥

− 0.5)
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)
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𝜉
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𝜉
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𝜉
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𝜉
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2

𝑊𝑥

Γ (−2𝐻
𝑥

+ 2)

Γ (−𝐻
𝑥

+ 1.5)

1

Γ (𝐻
𝑥

− 0.5)
[2
Γ (𝑗 − 𝑖 + 𝐻

𝑥
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𝑥
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𝑥
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𝑥
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𝑥

)
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]
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𝜉
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2
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𝜉
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]
]
]
]
]

]
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)

⋅

[
[
[
[
[
[
[
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Therefore, 𝐵(𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎2
𝑊

) is defined by

𝐵 (𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎
2

𝑊

)

= 𝐴 (𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

Γ (1.5 − 𝐻
𝜉

) Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝜉

)

⋅ [3 +
𝛽
2

𝐶 (𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

)
] ,

(G.2)

where 𝐶(𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

) is defined as

𝐶 (𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

)

= 𝜎
2

𝑊𝑥

Γ (−2𝐻
𝑥

+ 2)

Γ (−𝐻
𝑥

+ 1.5)

1

Γ (𝐻
𝑥

− 0.5)

⋅ [2
Γ (𝑗 − 𝑖 + 𝐻

𝑥

− 0.5)

Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝑥

)
−
Γ (𝑗 − 𝑖 − 1.5 + 𝐻

𝑥

)

Γ (𝑗 − 𝑖 − 𝐻
𝑥

+ 0.5)

−
Γ (𝑖 − 𝑗 − 1.5 + 𝐻

𝑥

)

Γ (𝑖 − 𝑗 − 𝐻
𝑥

+ 0.5)
] .

(G.3)

Next we will explain the sum limitations of 𝐵(𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽,
𝜎
2

𝑊

).
First, the sum limitations contains at least the same

limitations as in 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

) (shown in Appendix C)
because 𝐵(𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎2

𝑊

) is a product of 𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)

with additional term. Therefore, the first limitation will be

1 ≤ 𝑘 ≤ min (𝑖, 𝑗) − 1. (G.4)

Second, we will examine the limitations on the Gamma
function arguments existing in the second term of
𝐵(𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎

2

𝑊

):

Γ (1.5 − 𝐻
𝜉

) Γ (𝑗 − 𝑖 + 𝐻
𝜉

− 0.5)

Γ (𝐻
𝜉

− 0.5) Γ (𝑗 − 𝑖 + 1.5 − 𝐻
𝜉

)

[3 +
𝛽
2

𝐶 (𝑖, 𝑗,𝐻
𝑥

, 𝜎
2

𝑊𝑥

)
] .

(G.5)

As alreadymentioned in this paper, theGamma function Γ(𝑧)
has simple poles at 𝑧 = −𝑛, 𝑛 = 1, 2, 3, . . .; therefore

(A) 1.5 − 𝐻
𝜉

̸= −𝑛 always exists;
(B) 𝑗 − 𝑖 + 𝐻

𝜉

− 0.5 ̸= −𝑛 always exists under𝐻
𝜉

̸= 0.5;
(C) 𝐻

𝜉

− 0.5 ̸= −𝑛 always exists;
(D) 𝑗 − 𝑖 + 1.5 − 𝐻

𝜉

̸= −𝑛 always exists under𝐻
𝜉

̸= 0.5;
(E) −2𝐻

𝑥

+ 2 ̸= −𝑛 always exists;
(F) −𝐻

𝑥

+ 1.5 ̸= −𝑛 always exists;
(G) 𝐻

𝑥

− 0.5 ̸= −𝑛 always exists;
(H) 𝑗 − 𝑖 + 𝐻

𝑥

− 0.5 ̸= −𝑛 always exists under𝐻
𝑥

̸= 0.5;
(I) 𝑗 − 𝑖 + 1.5 − 𝐻

𝑥

̸= −𝑛 always exists under𝐻
𝑥

̸= 0.5;
(J) 𝑗 − 𝑖 − 1.5 + 𝐻

𝑥

̸= −𝑛 always exists under𝐻
𝑥

̸= 0.5;

(K) 𝑗 − 𝑖 − 𝐻
𝑥

+ 0.5 ̸= −𝑛 always exists under𝐻
𝑥

̸= 0.5;
(L) 𝑖 − 𝑗 − 1.5 + 𝐻

𝑥

̸= −𝑛 always exists under𝐻
𝑥

̸= 0.5;
(M) 𝑖 − 𝑗 − 𝐻

𝑥

+ 0.5 ̸= −𝑛 always exists under𝐻
𝑥

̸= 0.5;

Finally, we will examine the terms in the (G.5) denominator:

(i) Γ(𝐻
𝜉

−0.5)Γ(𝑗− 𝑖+1.5−𝐻
𝜉

) ̸= 0 always exists; Γ(𝑧) ̸=

0, ∀𝑧.
(ii) Γ(−2𝐻

𝑥

+ 2) ̸= 0 always exists; Γ(𝑧) ̸= 0, ∀𝑧.

Therefore, the conclusion is that
∑
𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[𝐵(𝑁, 𝑖, 𝑗, 𝑘,𝐻, 𝛽, 𝜎
2

𝑊

)] has the same
limitations like ∑𝑁

𝑖=1

∑
𝑁

𝑗=1

∑
min(𝑖,𝑗)−1
𝑘=1

[𝐴(𝑁, 𝑖, 𝑗, 𝑘,𝐻
𝜉

)].
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