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There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term
traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulationmodels, whilst high-resolution
in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions.
At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting
emission pollutants other than CO

2
are proposed. A genetic algorithm approach is adopted to select the predicting variables for the

black box model.The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results
reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

1. Introduction

Fuel consumption and emission estimation can be critical for
comprehensive transportation planning. In light of the strong
relationship between CO

2
emissions and fuel consumption

[1] and the high volatility in crude oil prices, this requires
more accurate and robust tools to quantify environmental
impacts so that project evaluation can adequately address
community expectations. Quantitative travel demand and
emission models are necessary for the evaluation of future
transport/land use options, as well as for the management of
existing transport systems.Themodelling of emissions is seen
as an increasingly important tool in transportation planning
and management.

Historically, car-following and traffic flow models have
been developed using different theoretical basis. This has
given rise to two main kinds of models of traffic dynamics,
namely, microscopic representations, based on the descrip-
tion of the individual behavior of each vehicle, and macro-
scopic representations describing traffic as a continuous flow

obeying global rules [2]. Strategic travel demandmodels tend
to be large and regional in nature whereas microsimulation
models are used for detailed tactical or operational testing of
options. Taking the highest macroscopic level as an example,
the total vehicle flow and the average speed over an entire
network may be all that is provided [3]. At the lowest level
of the hierarchy, high-resolution microscopic transportation
models typically produce second-by-second vehicle trajec-
tories (location, speed, acceleration, etc.). Hence, the traffic
modelling and emissionmodelling shouldmatch by the accu-
racy level and aggregation level. For instance, driving cycles
used for vehicle emission testing are specified on a second-
by-second speed-time profile. Microscopic traffic models
should integrate real time emission predictionmodels, which
are able to utilize high-resolution transportation modelling
results, therefore generating potentially more precise emis-
sion estimations.

Taking the highest macroscopic level as an example,
the total vehicle flow and the average speed over an entire
network may be all that is provided [4]. Correspondingly,
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a number of emission models deliver the predictions based
on the aggregated traffic model outputs, for example, the
ARTEMIS in Europe and Mobile 6 from US [5, 6]. The
common macrolevel modelling approach used to produce
a mobile source emission inventory is based on two pro-
cessing steps. The first step consists of determining a set of
emission factors that specifies the rate at which emissions
are generated, and the second step is to produce an estimate
of vehicle activity. The emission inventory is then calculated
by multiplying the results of these two steps together. This
methodology has two major shortcomings as follows.

Inaccurate Characterization of Traffic Activities. The overall
rate of error in 20-year traffic forecasts resulting from
strategic transport models is likely to be large due to the
uncertainty attached to input forecasts. The predictive ability
of current emission models depends on (a) the errors in the
input data used to estimate the amount and characteristics of
traffic flow—such data are usually the result of travel demand
modelling analysis that is known to have a large degree of
uncertainty associated with it—and (b) the adequacy and
quality of the information on emission rates that is used in
the models.

Emissions Factors May Not Represent Actual Conditions Ade-
quately. The current methods used for determining emission
factors are based on average driving characteristics embodied
in a predetermined driving cycle. Emissionmeasurements are
used as base values to reconstruct statistically the relationship
between emission rates and average vehicle speeds. These
“averaged speeds” are at variance with the vehicle dynamic
operation in microscope.

At the lowest level of the hierarchy, high-resolution
microscopic transportation models typically produce sec-
ond-by-second vehicle trajectories (location, speed, and
acceleration). Driving cycles used for vehicle emission testing
are also specified on a second-by-second speed-time profile.
Microscopic models should be integrated with real time
emission prediction models which are able to utilize high-
resolution transportation modelling results, thereby gener-
ating potentially more precise emission estimates. Several
commercial microsimulation traffic packages are widely used
to estimate the emissions [7].

There have been a number of modelling approaches on
microlevel proposed to estimate future vehicle emissions in
conjunction with the outputs of transport models. One such
approach is the use of engine power as the main predictive
basis. Another is the use of vehicle speed and acceleration
as predictive variables. There are three main types of mod-
elling approaches, namely, power-based, speed-based, and
hybrid models. Two models from each category, as shown in
Table 1, have been analysed [13]. It is found that power-based
models have good performance on CO

2
emission and fuel

consumption. In contrast, the predicted HC, CO, and NOx
do not match well with the measured results [8]. Moreover,
it is difficult to collect some coefficients associated with
instantaneous power, such as aerodynamic drag coefficient,
vehicle frontal area, and gearing. The results from speed-
based models highlight the need to model acceleration,

Table 1: Emission models assessed.

General
approach Model Reference

Power-based

Commonwealth scientific and
industrial research organisation
(CRISCO)

[8]

Comprehensive modal emissions
model (CMEM) [3]

Speed-based Energy and emissions model (VT) [9]
Instantaneous traffic emissions [10]

Hybrid Microscale modelling [11]
Microscale modelling [12]

deceleration, and cruising stages of the urban cycle separately.
The instantaneous traffic emissions model, a speed-based
approach which utilises the microtransportation simulation
result as an input, was found to have merit based on the
evaluation results. More complexmodels, whilst theoretically
more desirable, may mean additional input measurement
errors, such that the overall effectmaynot yieldmore accurate
estimates [14].

The instantaneous traffic emissions model developed by
Int Panis et al. [10] has been adopted by the AIMSUN traffic
simulation model [7]. The latter integrates traffic simula-
tion results with emission prediction equations. Emission
functions for each vehicle were derived with instantaneous
speed and acceleration as parameters using nonlinear mul-
tiple regression techniques. The model, shown in (1), was
calibrated using data from twenty-five vehicles (six buses,
two trucks, and seventeen cars) in Europe. The pollutants
modelled are nitrogen oxide (NOx), hydrocarbon (HC),
carbon dioxide (CO

2
), and particulate matter (PM):
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where 𝐸
0
is a lower limit of emission (g/s) specified for each

vehicle and pollutant type; V
𝑛
(𝑡) is instantaneous speed of

vehicle 𝑛 at time 𝑡; 𝑎
𝑛
(𝑡) is acceleration of vehicle 𝑛 at time

𝑡; 𝑓
1
to 𝑓
6
are emission constants specific for each vehicle and

pollutant type determined by the regression analysis.
For certain pollutants, whenever visual inspection of

the data plot reveals a clear distinction in the scatter for
acceleration and deceleration, the approach suggests that
different functional forms should be derived for different
driving modes, such as acceleration (with 𝑎

𝑛
(𝑡) ≥ 0.5m/s2),

cruising (with −0.5m/s2 ≤ 𝑎
𝑛
(𝑡) < 0.5m/s2), and decel-

eration (with 𝑎
𝑛
(𝑡) < −0.5m/s2). The modelling results for

pollutant emissions such as HC are unsatisfactory, as shown
in Section 4.

The current paper aims to develop vehicle emission
models for predicting emission pollutants other than CO

2
.

The models adopt genetic algorithm (GA) for selection of
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Table 2: Selected average-aged vehicles for model development.

Vehicle(1) Variant Odometer (km) Engine displacement (L) Mass (kg)
323 Protégé 75,615 1.6 1215
Echo — 53,859 1.5 921
Vectra CD 81,666 2.0 1317
323 Protégé 62,229 1.8 1142
Camry CSI 81,783 2.2 1395
Tarago GLi 90,749 2.4 1615
Pulsar LX 65,120 1.6 1067
Commodore Executive 95,979 3.8 1654
(1)All vehicles are 4-cylinder except the Commodore (V6).

the predicting variables. This paper is structured as follows:
Section 2 briefly describes the data sources used and the
selection and validation prior to the model development;
Section 3 proposes the model development approach; and
Section 4 then discusses the findings. Finally, some overall
conclusions and limitations are drawn from the results and
future research avenues are recommended.

2. Data Sources, Selection, and Validation

Thedata used for analysis in the current paper were extracted
from the Australian national in-service emissions study
(NISE2) [15], which was developed using a Composite Urban
EmissionsDriveCycle (petrol CUEDC).This cycle represents
typical vehicle journeys in a given metropolitan study area,
where data were collected in the Brisbane, Sydney, Mel-
bourne, Adelaide, and Perth areas. The emission rates for
CO
2
, CO, HC, and NOx of the test-bed vehicles from the

NISE2 fleet, which travels on the composite urban driving
cycle (CUEDC),were recorded second-by-second in addition
to the instantaneous speed. Prior to analysis, the integrity
of the emission measurements from NISE2 was reconfirmed
and corrected to enhance the reliability of the instantaneous
emissions using the method followed by Smit et al. [16]. In
addition, cold start affected datasets were filtered prior to
analysis by adopting an approach recommended by Favez
et al. [17]. Eight average-aged passenger vehicles (which had
travelled approximately 50,000–100,000 km each), as listed in
Table 2, were shortlisted from the NISE2 database for model
development. The vehicles selected are similar to Australian
vehicle fleet characteristics (e.g., in mileage and age) [18].
The instantaneous emission observations were averaged over
those vehicles.

The AIMSUN emission methodology was adopted for
further evaluation using the NISE2 data subset described ear-
lier. Each vehiclewas “driven” through the speed profile of the
CUEDC drive cycle which was simulated using a purpose-
specific program. The averaged CO

2
emission observations

from the selected eight vehicles were compared with the pre-
dicted second-by-second output from the AIMSUN model.
The goodness of fit, 𝑅2, for the two sets of data was 0.80, as
shown in Figure 1.
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Figure 1: CO
2
by AIMSUN model predictions and averaged

observed data.

3. Development of Emission Models

Microsimulation basedmodelling results for pollutants other
than CO

2
are usually unsatisfactory [12]. The current paper

proposes a methodology to improve those results. The con-
cept is briefly described below.

Currentmicroscopicmodels use a combination of instan-
taneous velocity and acceleration to predict various gaseous
pollutants including HC and CO. Gaseous pollutants such
as HC and CO are primarily formed during in-cylinder
combustion processes depending on many factors such as
air-fuel ratio, cylinder temperature and pressure, and engine
speed [19]. The formation of HC and CO rises in a rich fuel
environment.Thus, the fact of high correlation between CO

2

emission rate and fuel consumptionwas taken into account in
themodelling of these gaseous pollutants. In addition, vehicle
acceleration or deceleration leads to substantial change in fuel
injection per combustion cycle. The change in air-fuel ratio
forces the engine to adapt to a new equilibrium and tends
to lead to a transient variation in pollutant formation [20].
This effect may be compounded by dynamic effects in the
catalyst and exhaust system, such as catalyst malfunctioning,
which can cause a sudden increase of the pollutant emissions.
For these reasons, modelling of HC and CO, as the products
of incomplete combustion fuel, should take the time-lag
effect described above into consideration. Hence, several
“historical” variables (i.e., variables at previous time steps of
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𝑡-1, 𝑡-2, 𝑡-3, or 𝑡-4 seconds) of the time-lag effect are
introduced into the models as predicting variables.

A range of variables for the instantaneous and “historical”
velocity, acceleration, and CO

2
emission rate were selected

and tested:
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where 𝐵
0
is constant;𝑉

𝑖
is velocity at time 𝑖;𝐴

𝑖
is acceleration

at time 𝑖; Rate CO
2𝑖
is CO

2
emission rate at time 𝑖.

A total of 23 candidate predicting variables were identi-
fied. An exhaustive enumeration method is not a practical
alternative, while stepwise and stagewise regression pro-
cedures produce only local optimum solutions [21]. Cur-
rent highly divided emissions models that are reviewed in
Section 1 cannot provide any prototype of variable combina-
tion. Compared with other artificial intelligent algorithms,
unsupervised heuristic genetic algorithm is independent
from any a priori knowledge, such as training dataset. In
addition, the GA is a stochastic search process that mimics
the natural process of “survival of the fittest” through the
manipulation of a population of chromosomes [22]. With
proper binary encoding, the GA can deliver a fair hybrid
emission model which synthesizes variables of different
models reviewed in Section 1. To be pointed out, the GAmay
not deliver an optimized result due to premature convergence
and “Hamming cliff” problems [23]. However, it is more
difficult, but not impossible, for a GA to become trapped
in a local minimum unlike the more conventional gradient
methods [24].

The elite individual solution is a balanced one with
high accuracy and consisting of strong statistically related
variables. The GA programme was compiled using Matlab
8.4. A selective weighted fitness for the GA, (2), was used
to implement an automated variables selection procedure to
build the calibrationmodels based on least-square regression:
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regression analysis;
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0 otherwise;
(3)

𝛽
𝑖
is coefficient derived from regression analysis;𝑁 is number

of observations.
𝑃
𝑖
is the prediction of emission rate as a product of

selected coefficients and the corresponding candidate vari-
ables whose 𝑃 value of the 𝑡-statistical analysis is lower than
0.05. The reciprocal relationship of root-mean-square error
enables the accurate prediction of solutions with high fitness
values.

Table 3: Parameters tuning of genetic operators.

Population size (𝑁) 600
Crossover rate (𝐶) 1
Crossover type Uniform crossover
Scaling method Sigma
Sigma scaling coefficient 1
Mutation rate (𝑀) 0.003
Mutation method Bit string
Selection strategy (𝑆) Pure selection

Figure 2 shows the flowchart of the GA application.
Firstly, chromosomes that represent feasible solutions of
a nonlinear optimisation problem are randomly generated
to form the initial population following the fitness test
(see (2)). Each individual chromosome in binary format
symbolises a potential solution to the emission modelling
problem. Figure 3 demonstrates an example of an individual
chromosome consisting of 23 bits. Each bit represents a
corresponding variable in the list of all potential variables.
The dichotomous data on each bit are the choice of “included
in the model” valued 1 or “not included in the model” valued
0.The size of the solution is therefore 223. In determining the
fitness value, the chromosome tends to take more variables
for better prediction accuracy. This may include irrelevant
candidate variables and undermine the robustness of the
model. In order to avoid this from happening, the calculation
of the emission rate prediction, 𝑃

𝑖
, was limited to those statis-

tically significant variables (𝑃 < 0.05). In order to achieve
acceptable solutions, the calculations of the fitness values and
selection of chromosomes continued.This procedure evolves
through many generations by a natural genetic process. The
genetic process includes three types of operation, namely,
crossover, selection, and mutation [25]. It repeats until the
number of iterations exceeds a predefined limit. The number
of chromosomes in a population and the number of iterations
are set to 600 and 100, respectively. The tuning of genetic
operator parameters follows the simple genetic algorithm
proposed byMitchell [25]; the details are presented inTable 3.

Figures 4(a) and 4(b) show the maximum and averaged
fitness reached over the iterations. The averaged fitness for
each generation increases substantially at the beginning stage
and reaches stability towards the end. The elite fitness trends
upward and fluctuates at the beginning. After 20 generations’
evolution, the fitness becomes mature. These results indicate
that the chromosome evolvements improve the accuracy of
the solution and reach a saturated condition eventually. After
30–40 different runs, the paper shortlists the results and
selects the modelling equation based on statistical analysis.
Table 4 shows three candidates for acceleration-phase HC
emission modelling. Based on modelling fitness and variable
significance, this paper selects candidate 1 to be the promising
one. As the GA program can be configured to enable the
mutation operator only, a random solution is generated by
a 600 × 100 random process. The chosen one is compared
with the random solution. However, the randomly selected
candidate is hardly a solution, due to variable significance
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Table 4: HC acceleration phase modelling candidates.

(a) Candidate 1

Modeling 𝑅2 0.6474
Variable name 𝐵0 𝐴 𝑉𝐴 𝑉

3
𝑉
2
𝐴 𝑉

𝑖−1
CO
2

CO
2𝑖−3

𝑃 value 0.0151 0.0008 0.00172 5.52𝐸 − 05 0.003202 1.03𝐸 − 06 7.94𝐸 − 13 0.016642

(b) Candidate 2

Modeling 𝑅2 0.6449
Variable name 𝐵0 𝑉 𝑉𝐴 𝑉

3
𝑉
2
𝐴 𝑉

𝑖−1
𝐴
𝑖−3

CO
2

𝑃 value 0.0088 0.00264 5.99𝐸 − 03 0.000214 1.94𝐸 − 02 5.54𝐸 − 03 0.035107 1.19𝐸 − 10

(c) Candidate 3

Modeling 𝑅2 0.6493
Variable name 𝐵0 𝐴 𝑉

2
𝑉
3

𝑉𝐴
2

𝐴
𝑖−4

CO
2

𝑃 value 0.0492 0.01617 5.2𝐸 − 08 1.57𝐸 − 07 0.036635 0.022996 3.23𝐸 − 14

Initial generation

Select variables by individual chromosome and calculate the fitness for each

New generation

End criteria 

Return elite individual chromosome (combination of variables) 

Selection Crossover Mutation

individual chromosome in the evolvement 

Figure 2: Flowchart of genetic algorithm.

0 1 1 0 1 1 0 1 0

m variables included of all
potential variables

· · ·

Figure 3: An individual chromosome.

constraint (𝑃 value). Hence the elite chromosome can be
justified as the optimal (or subprime) solution.

4. Results and Main Findings

4.1. General. The proposed GA approach was applied to the
HC pollutant for different driving modes, namely, accelera-
tion, cruising, and deceleration. The models for the emission
rate, 𝑌, from the ultimate chromosome are presented in
(4), (5), and (6), respectively. All the predicting variables

selected are statistically significant at 𝑃 < 0.05. Both the
instantaneous traffic emissions model (see (1)) and the newly
modified equation parameters were calibrated by least-square
regression on the same test-bed dataset that was used to
develop the newmodel. To conduct meaningful comparisons
of modelling-induced error, the goodness of fit, 𝑅2, for the
three driving modes, between the newly modified model
and model (1) is shown in Table 5. The proposed new
approach significantly improved the modelling results for
HC, although the prediction accuracy for the deceleration
component was relatively low. The deceleration component
accounts for 42% of total driving cycle duration, but the
summation ofHCdeceleration component only takes up 25%
of total cycle measurements. As a result, the deceleration
component does not play an important role as a percentage
of total emissions. Due to the multidimensionality of the
solution search space, the GA method is not certain to lead
to a global optimum when formulated as an optimization
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Figure 4: (a) Averaged fitness over generations. (b) Maximum averaged fitness over generations.

problem.GAhas a tendency to converge towards local optima
or even arbitrary points rather than the global optimum
of the problem. This means that it is not wise to sacrifice
short-term fitness to gain longer-term fitness. To tackle this
issue, the proposed GA methodology relies on the fitness
function, which enables quantification of individual solution
appropriateness in terms of the statistical significance of both
model accuracy and shortlisted variables. To test the fitness
function, the size of the population was increased to 2,000
in order to enable more potential solutions to search in the
multidimensional space, the results being similar to those
previously presented. Moreover, taking the HC acceleration
component as an example, the new proposed equation 𝑅2 is
slightly lower than the theoretical maximum value by which
an individual chromosome includes all candidature variables.
Hence, the new equation selected by the new algorithm is a
close approximation to the global optimum.
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where 𝑌 is emission rate (g/s) for each vehicle and pollutant
type; 𝑉

𝑖
is velocity at time 𝑖; 𝐴

𝑖
is acceleration at time 𝑖;

Table 5: Results of model development: goodness of fit, 𝑅2.

Driving mode Overall Acceleration Cruising Deceleration
𝑅
2

GA-based model 0.80 0.65 0.75 0.15
Equation (1) model 0.69 0.47 0.60 0.08
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Rate CO
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is CO
2
emission rate at time 𝑖.𝐵

1
to𝐵
𝑛
are emission

coefficients for each vehicle and pollutant type.
The same experimental dataset was used to test the pre-

diction accuracy of the model. Figure 5 shows the correlation
between modelling predictions and HC measurements, and
Figure 6 illustrates the corresponding residuals plots.

4.2. Modelling Results and Validations. The proposed new
models were validated on different sets of data with various
vehicle size and make for different age ranges, namely, new
vehicles with mileages from 1,000 to 11,000 km; middle-aged
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vehicles with mileages from 75,000 to 95,000 km; and older
vehicles with mileages from 130,000 to 140,000 km.

Comparisons of the goodness of fit, 𝑅2, of the overall
modelling results for the three vehicle age ranges, between
the proposed new models (summation of (4) to (6)) and the
instantaneous traffic emissions model (1) are shown in Tables
6(a) to 6(c), respectively. Overall, the emission prediction
results prove that the proposednewmodels provide improved
results.The newmodels are more robust and accurate for HC
prediction.

Similarly, this methodology is applied to other pollutants
including CO and NOx. The new CO emission prediction
equations for acceleration, cruising, and deceleration compo-
nents are shown in (7), (8), and (9), respectively. The overall
𝑅
2 for whole test-bed dataset is 0.70.

Acceleration

𝑌 = 𝐵
0
+ 𝐵
1
𝑉
2

𝑖
+ 𝐵
2
𝑉
3

𝑖
+ 𝐵
3
𝑉
𝑖
𝐴
2

𝑖
+ 𝐵
4
𝑉
2

𝑖
𝐴
𝑖
+ 𝐵
5
𝑉
𝑖−2

+ 𝐵
6
Rate CO

2𝑖
+ 𝐵
7
Rate CO

2𝑖−4
.

(7)

Cruising

𝑌 = 𝐵
0
+ 𝐵
1
𝐴
𝑖
+ 𝐵
2
𝑉
2

𝑖
+ 𝐵
3
𝑉
𝑖
𝐴
𝑖
+ 𝐵
4
𝑉
3

𝑖
+ 𝐵
5
𝑉
2

𝑖
𝐴
𝑖

+ 𝐵
6
𝑉
𝑖−1
+ 𝐵
7
𝐴
𝑖−2
+ 𝐵
8
Rate CO

2𝑖

+ 𝐵
9
Rate CO

2𝑖−1
+ 𝐵
10
Rate CO

2𝑖−3
.

(8)

Deceleration

𝑌 = 𝐵
0
+ 𝐵
1
𝑉
2

𝑖
𝐴
𝑖
+ 𝐵
2
Rate CO

2𝑖−4
. (9)

New NOx emission prediction equations for acceleration,
cruising, and deceleration components are shown in (10),

(11), and (12), respectively. The overall 𝑅2 for whole test-bed
dataset is 0.82:

𝑌 = 𝐵
0
+ 𝐵
1
𝑉
2

𝑖
+ 𝐵
2
𝑉
3

𝑖
+ 𝐵
3
𝐴
3

𝑖
+ 𝐵
4
𝑉
𝑖
𝐴
2

𝑖
+ 𝐵
5
𝑉
2

𝑖
𝐴
𝑖

+ 𝐵
6
𝐴
𝑖−2
+ 𝐵
7
Rate CO

2𝑖
+ 𝐵
8
Rate CO

2𝑖−2

+ 𝐵
9
Rate CO

2𝑖−3

(10)

𝑌 = 𝐵
0
+ 𝐵
1
𝑉
𝑖
+ 𝐵
2
𝐴
𝑖
+ 𝐵
3
𝐴
2

𝑖
+ 𝐵
4
𝑉
𝑖
𝐴
𝑖
+ 𝐵
5
𝐴
3

𝑖

+ 𝐵
6
𝑉
𝑖
𝐴
2

𝑖
+ 𝐵
7
𝑉
2

𝑖
𝐴
𝑖
+ 𝐵
8
𝑉
𝑖−4
+ 𝐵
9
𝐴
𝑖−4

+ 𝐵
10
Rate CO

2𝑖
+ 𝐵
11
Rate CO

2𝑖−1

+ 𝐵
12
Rate CO

2𝑖−2
+ 𝐵
13
Rate CO

2𝑖−3

(11)

𝑌 = 𝐵
0
+ 𝐵
1
𝑉
𝑖
𝐴
𝑖
+ 𝐵
2
𝐴
𝑖−4
+ 𝐵
3
Rate CO

2𝑖−4
. (12)

5. Paralleled Genetic Algorithm

Cantú-Paz [26] classified parallel GAs into three main types:

(i) Global single-population master-slave GA.
(ii) Single-population fine-grained GA.
(iii) Multiple-population coarse grained GA.

Single-population fine-grained GA and multiple-population
coarse grained GAs are suitable to tackle dynamic function
optimization problems [27]. It has an important role in
optimizing complex functions whose optima vary in time
(learning-like process). In a master-slave GA there is a single
population, but the evaluation of fitness is distributed among
several processors. Matlab 8.4 enables the full functionality
of the parallel language features by creating a special job on a
pool of workers and connecting the pool to the Matlab client
[28]. Distributed synchronous GA is based on distribution
of workload among processors during the fitness function
evaluation phase followed by single central population regen-
eration. Hence, themassive fitness computations are assigned
to workers in order to improve the computation efficiency.
When testing on a workstation with i7 CPU (3.6GHz) and
32Gmemory, one generation of genetic algorithm consumes
44.0 seconds without paralleled configuration and 11.8 sec-
onds with 4-worker paralleled configuration.

6. Conclusions

Past research on modelling vehicle emissions other than
CO
2
reveals relatively weak predicting results. The current

paper proposes a GA based methodology to determine the
contributing variables for predicting vehicle emissions. This
method provides a new approach to the selection of a
combination of variables among a large potential set. The
applications of the new models show enhanced results for
modelling vehicle emissions, supporting the new variable
selection methodology using GA. The modified fitness func-
tion for the proposedGAdemonstrates the ability to establish
a balancedmultivariate model. In addition, the improvedHC
prediction results, obtained by introducing “historical” CO

2
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Table 6: (a) Model validation, 𝑅2 (new vehicles). (b) Model validation, 𝑅2 (middle-aged vehicles). (c) Model validation, 𝑅2 (older vehicles).

(a)

Vehicles
323 Echo Vectra 323 Camry Tarago Pulsar Commodore

GA-based model 0.68 0.59 0.84 0.51 0.82 0.80 0.41 0.84
Equation (1) model 0.61 0.55 0.79 0.44 0.80 0.72 0.38 0.80

(b)

Vehicles
323 Echo Vectra 323 Camry Tarago Pulsar Commodore

GA-based model 0.68 0.59 0.84 0.51 0.82 0.80 0.41 0.84
Equation (1) model 0.61 0.55 0.79 0.44 0.80 0.72 0.38 0.80

(c)

Vehicles
Festiva Lancer Astra Civic Astra Lancer Pulsar

GA-based model 0.69 0.74 0.61 0.23 0.79 0.85 0.62
Equation (1) model 0.56 0.69 0.53 0.16 0.67 0.82 0.27

emission rates, support the time-lag effect hypothesis. The
proposed GA methodology provides a solution for a com-
binatorial optimization problem, providing high modelling
accuracy with statistically significant relationships between
the selected predicting variables and the dependant variable.

Future research focus should extend the evaluation of
models to include the full set of particles matter (PM). In
addition, the accuracy of new models may be compromised
when driving with loading or in hilly terrain. Moreover, the
developedmodels produce relatively low accuracy in predict-
ing emissions in deceleration mode. According to Heywood
[19], HC, CO, and NOx emissions depend on the fuel-air
equivalence and injection timing. The sharp deceleration
(with 𝑎

𝑛
(𝑡) < −0.5m/s2) results in the misbalance of fuel-air

equivalence and variance of injection timing.
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