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Numerical investigation of correlation between the fluid particle acceleration and the intensity of turbulence in swirling flows at a
large Reynolds number is carried out via direct numerical simulation. A weak power-law form correlation u”_ ~ C(a")? between
the Lagrangian acceleration and the Eulerian turbulence intensity is derived. It is found that the increase of the swirl level leads
to the increase of the exponent ¢ and the trajectory-conditioned correlation coefficient p(a®, u*) and results in a weak power-law
augmentation of the acceleration intermittency. The trajectory-conditioned convection of turbulence fluctuation in the Eulerian
viewpoint is generally linearly proportional to the fluctuation of Lagrangian accelerations, indicating a weak but clear relation

between the Lagrangian intermittency and Eulerian intermittency effects. Moreover, except the case with vortex breakdown, the

weak linear dependency is maintained when the swirl levels change, only with the coefficient of slope varied.

1. Introduction

As well known, the swirling flow, especially for the strongly
swirling jets at large Reynolds numbers to which few stud-
ies were devoted, is one type of anisotropic turbulence,
which is less understood than the homogenous and isotropic
turbulence [1, 2]. In the past decades, the swirling flows
have been studied extensively under the Eulerian framework,
including a variety of scientific research topics and indus-
trial applications, for example, swirling recirculating flow
field [3, 4], open Von Karmén swirling flow [5], gas-liquid
cylindrical cyclone [6], gas-liquid two-phase jet flow [7], gas
turbine combustor [8], and so on. However, the swirling
flows based on the Lagrangian framework have not been
well investigated. Referring to the recent investigations of
Lagrangian acceleration in highly turbulent flows [9, 10],
the turbulent anisotropic flows with either a swirling or a
rotating flow pattern are of specific interest. Unfortunately,

the characteristics of Lagrangian acceleration for highly
swirling flows are still not well known.

Moreover, due to the fundamental importance of the
Lagrangian characteristics of fluid particle motion to trans-
porting and mixing in turbulence and reacting systems
(11], the Lagrangian measurement/modeling method has
been well used recently as it is a powerful approach for
improving the understanding of turbulent flows [12, 13].
Therefore, a large number of excellent studies have been
carried out contributing to the Lagrangian characteristics of
fluid particle motion, especially on the acceleration structure
or Lagrangian velocity spectrum [14-18].

On the other hand, as the investigations of turbulence
under the Eulerian frame are better developed than those
under the Lagrangian frame, establishing the relationship
between the Lagrangian statistics and Eulerian statistics
should be helpful in determining the common intrinsic sta-
tistical features of turbulence. However, the joint Lagrangian



and Eulerian statistics of fluid particles are not well under-
stood yet. For example, the relationship between acceleration
intermittency (from the Lagrangian viewpoint) and turbu-
lence intensity (from the Eulerian viewpoint) is unknown.

Additionally, to carry out direct numerical simulation of
strongly swirling jets at alarger Reynolds number is a state-of-
the-art challenging work. Thus, direct numerical simulation
of the strongly swirling jet is very essential and important to
the scientific research of anisotropic turbulence.

In conclusion, a numerical study of direct numerical
simulation of the Lagrangian motion of fluid particles at
large Reynolds numbers is performed in present study,
where the Lagrangian statistics and Eulerian statistics are
combined together. The main aim of this study is to show the
dependence of correlation between fluid particle acceleration
and the intensity of turbulence on various levels of swirls and
show the correlation between the Lagrangian acceleration
and Eulerian convection of turbulence fluctuation in strongly
swirling jets at a large Reynolds number.

2. Numerical Description

2.1. Governing Equations. The Navier-Stokes equations for
incompressible fluids, based on the conservation laws of mass
and momentum, are formulated in dimensionless forms as
follows:

(1) continuum equation: ou;/dx; = 0,

(2) momentum equation: (du;/0t) + uj(au,-/axj) =

~(0p/0x;) + (1/Re)(0/9x;)(9/0x u.

To solve the governing equations, the finite difference method
is applied. The upwind compact schemes [19] are used to
discretize the convection term. The fourth-order compact
difference schemes [20] are applied for space derivatives and
the pressure-gradient terms. The third-order explicit schemes
are used to deal with the boundary points, keeping the global
fourth-order spatial accuracy. The fourth-order Runge-Kutta
schemes [21] are used for time integration. The pressure-
Poisson equation is solved to obtain the pressure via using the
fourth-order finite difference method [22]. The methods have
already been successfully applied in my recently published
literature [23].

2.2. Simulation Setup. The parameters used in the present
simulation are listed in Table 1. In the momentum equation,
the Reynolds number is defined as Rey = U, - A/v = 387.3,
where Uy, is the axial inlet velocity; A is the Taylor microscale;
and the kinematic viscosity v = 107 (m?/s) (water at 20.3°C).

The configurations of swirling flow are illustrated in
Figure 1(a), which are similar to those from an earlier study
[24]. A round jet of diameter d is imparted with a rotational
azimuthal velocity at the inlet and issued into a rectangular
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TABLE 1: Parameters used in simulation.

Characteristic diameter d* (mm) 1.0

5,8 and 10
13.3d x 10d x 10d
640 x 480 x 480

Characteristic inflow velocity U," (m/s)
Scales of the flow domain
Grid numbers, N, x N, X N, (-)

Spatial resolution & (ym) 20.8
Reynolds number, Re, 10000

Swirl number, S 0.49, 1.08 and 1.42
Density of fluid, p; (kg/m’) 1.0 x 10°
Kinematic viscosity of fluid, v (mz/s) 1.0x107°
Time step, At (us) 0.2

Total simulation time, T, (ms) 40

*The characteristic variable.

flow domain of 13.3d x 10d x 10d. The swirl level is

the ratio of the maximum azimuthal velocity U, ..., to the
streamwise velocity Uy; that is, S = 2U, .../U, [25]. The

axial and azimuthal inlet velocity profiles are the same as
those mentioned in earlier studies [24, 26, 27] (Figures 1(b)
and 1(c)). No inflow disturbance is introduced to keep the
intrinsic feature of the strongly swirling flow. Three swirl
numbers, that is, S = 0.49, 1.08, and 1.42, are simulated
in the present study by varying the azimuthal velocity. The
nonreflecting boundary condition is utilized for the outlet
condition [28], and the side walls are set to be nonslipping
wall boundaries.

The flow domain is discretized by 640 x 480 x 480 =
147456000 Cartesian mesh grids. With this spatial dis-
cretization (§ = 20.8 um), the jet inlet area (md?/4) is covered
by 1791 mesh grids. It is estimated that the Kolmogorovlength
scale is about # = 0.858, which is in the same order of
the finest mesh scale. According to [29], it is fine enough to
capture the smallest scale of turbulence. For time integration,
the time step is 0.2 us and the total simulated time is 40 ms,
about three convective periods.

The particles issued from the 1791 grid points inside the
jet inlet area are traced, and, for each grid point, one particle
is issued into the flow domain every 200 time steps. In this
way, a total number of 179,100 fluid particles are traced in
this study. The fluid particles originated from these 1791
points are designated as x(j,t), j = mod(n, 1791), where n
is the particle number and j designates the group number.
Then, all the particles can be divided into 1791 groups. Each
group has the same initial location and velocity. However, the
trajectories of fluid particles within each group are not the
same because the system of fluid flow dynamics is strongly
nonlinear. An ensemble average over each group of particles
is utilized to carry out the Lagrangian statistics. For each
group, the instantaneous acceleration for 100 particles is
traced and recorded at any time for analysis. Thus, each data
group includes ~O (10°) points. The ensemble average process
should be statistically reliable over such a large number of
data points.
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FIGURE 1: (a) Sketch of flow configuration and typical vorticity and the axial (b) and azimuthal (c) inlet velocity profiles.

3. Results and Discussions

3.1 Fluid Vortex Structures and Particle Trajectory. The typ-
ical vortex structure of S = 1.42 is visualized in Figure 1(a).
It is clearly seen that a bubble region is enclosed by the
nearly axisymmetric vortices, forming an open angle toward
downstream. It is so called the central recirculation zone
(CRZ) or vortex breakdown (VB). Moreover, strong small
vortices are observed due to the highly turbulent and swirling
fluid flow.

Corresponding to this type of vortex structure, the fluid
particles are transported from the initial locations to the
downstream. The trajectories of one typical group of fluid
particles originated from the same initial location at the inlet
of the flow are shown in Figure 2. It is found that the fluid

trajectories enclose a bubble region statistically too, which
are initiated from the location where the axial motion of
fluid particle is decreased to zero, that is, the stagnation
point. After that, an immediate expansion in the lateral
and spanwise directions is established. This feature of fluid
trajectory reflects the structural characteristics of swirling
flow under the Lagrangian viewpoint.

3.2. Joint Distribution of Acceleration and Turbulence Intensity.
In general, the velocity field depends on the location and
time, that is, uf(x,t), where “E” denotes the “Eulerian”
viewpoint. To average u® (x,t) in time, the velocity field can
be divided into a time averaged part ﬁE(x) and a fluctu-
ation part u'®(x,t), corresponding to the mean flow field



FIGURE 2: The trajectories of one group of particles for S = 1.42.

and the turbulent fluctuation field, respectively. Hence, the

root mean square (RMS) values of velocity ufm's(x) =
t+AT —p 2 17

((1/AT) [, [u®(x,7) - U (x)| dr)  can be used to eval-
uate the local intensity of turbulence at location x. On the
other hand, the motion of fluid particles can be traced under
the Lagrangian framework. The velocity and acceleration
of the traced particles are defined as ak( j,t) and uk( jst),
respectively, where j denotes the fluid particle and “L”
denotes the “Lagrangian” viewpoint. In this way, the statistical
characteristics of Lagrangian motion of fluid particles with
regard to the acceleration a”(j,t), velocity u®(j,t), and
trajectories are obtained for analysis.

Assuming a “steady” turbulence field is reached, the
turbulence intensity field can be quantified using the time-
averaging method. The fluid particle moves through the
“steady” turbulence field with temporally and spatially varied
Lagrangian acceleration of a“ = a’(j;r,t). Focusing on
ub and a" = a"(j;r,t) on the particle trajectories, a joint
distribution of (a*( 7 t)’ufm.s) can be obtained for analysis
via the Eulerian-Lagrangian joint statistics of turbulence. It is
termed as the trajectory conditioned joint distribution here.

As shown in Figure 3, the trajectory conditioned distribu-

tion of (a’( 7 1), uE ) for different levels of swirl is indicated.

Every point in Figure 3 illustrates the pair of (a"(j;t),u’, )
on the trajectories which the jth group particles go through.
Zonal distributions are observed for § = 0.49, 1.08, and 1.42,
with the widths being increased under larger swirling levels.
Thus, it is indicated that the ufm_s and a*( 7) are correlated in
some manner. Generally, this correlation may follow the form
of power-law y = a + x”. Note that the linear relationship
is also included in the power-law, provided b = 1. Based
on this assumption, the data are fitted by the near power-law
expression.

The log-log distribution of a"(j) and u” _for § = 1.42 is
illustrated in Figure 4. The trend of the log-log plot is approx-
imately linear, although the data points are scattered widely.
As the data points are corresponding to all fluid particles
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FIGURE 3: The distributions of Lagrangian acceleration a” and the
Eulerian turbulence intensity uf  for S =0.49,1.08, and 1.42.
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FIGURE 4: The fitting lines obtained by the linear regression of one
group of fluid particles.

within the flow, the distribution should be scattered due to the
stochastic and turbulent fluctuations of particles. Moreover,
it could indicate the intrinsic Lagrangian characteristics of
turbulent swirling flows, especially for the general trends of
distribution and the statistical relationships between al( )
and u”

r.m.s’
In addition, it is seen from Figure 4 that the slope of the
fitting line increases when the swirl level increases. The fitting
equations are listed in Table 2. By these fitted expressions,
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FIGURE 5: The correlation between the Eulerian convection term of turbulence fluctuations ' (a), v/ (b), and w' (c) and the Lagrangian
acceleration fluctuations in the x, y, and z directions, respectively, for S = 0.49.

the relationship between the Lagrangian acceleration and the
local Eulerian turbulence intensity is indicated to follow a
weak power-law form

ufms ~ C(aL)(P. (1)
Statistically, the turbulence intensity should be large where
the fluid particles always pass through with large acceleration
and vice versa. If the averaged turbulence intensity level is in
the same order as that with the same Reynolds number and no
extra disturbance, the effect of the swirl upon the Lagrangian
characteristics could be achieved through a change in the
exponent ¢ and coefficient C. Hence, the characteristics of

intermittency are closely related to swirl level and exponent
@. With the increase of swirl levels, the exponent ¢ becomes

larger. Consequently, the Lagrangian acceleration is nearly
power-exponentially increased, leading to the augmented
characteristics of intermittency.

In addition, Figure 4 shows that the scope of distribution
of (a"(j;t),u ) can be generally sketched by an inferior
line (L,) and a superior line (L,) (Table 3). The majority of
the data points are restricted inside the sketched scopes. The
superior and inferior limiting lines show the proper limiting
cases of the near power-law joint distribution; that is,

L @ E L o
a u a
1.0 ——— ) < =22 ) <15 —— ], 2
<<ar’.€m ) ( Uo ) <<ar’fn.s ) ©

where the limiting exponent is about & = 6.16**'7 x 107>,
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FIGURE 6: The correlation between the Eulerian convection term of turbulence fluctuations ' (a), v' (b), and w’ (c) and the Lagrangian
acceleration fluctuations in the x, y, and z directions, respectively, for S = 1.42.
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3.3. Turbulent Convective Effect versus Lagrangian Acceler-
ation. On the other hand, the Lagrangian acceleration is
formulated as Df = 0, + (uf - V). with u® = 0, the
Lagrangian acceleration is equivalent to the Eulerian accel-
eration. Thus, the nonlinear convective term u” - V plays
a dominant role in correlation as well as the difference
between the Eulerian statistics and the Lagrangian statistics
of turbulence. Moreover, from the Eulerian viewpoint, u® -
V=U-V+uf. V, where U” is the time-averaged
velocity and u'* is the fluctuation velocity. Based on the order

—E
analysis, it is assumed that the U™ - V term plays a leading
role in turbulence convection. Under this assumption, it is

appropriate to consider that the term T . vu'® represents
the effect of convection of turbulence fluctuations. Remember
that it is based on the Eulerian viewpoint. Then, moving
with a Lagrangian fluid particle, it is natural to calculate
the U - Vu'® along the particle trajectory. We call it the
. s =E IE £ IE
trajectory-conditioned U - Vu'™, namely, U -Vu™|;. In
this way, the joint Eulerian and Lagrangian statistics on
correlation between the convection of turbulence fluctuation
and the Lagrangian fluctuation of particle acceleration can be
performed.

Figure 5 shows the RMS values of U vt |; and acceler-

ation a” for S = 0.49 in the x, y, and z directions, respectively.
One point within Figure 5(a) represents the results for one
group of particles. It is seen that, for low swirl levels (S =
0.49), the RMS values are distributed nearly linearly. After
IE |j>r.m.s -

—E
linear regression, the fitted expression is (U - Vu

0.0556(a-)"™*. Moreover, it is observed from Figure 5(b) and
Figure 5(c) that this nearly linear correlation also exists in the

—E
other directions; that is, (U - Vv'E| j)r'm's = 0.0315(aJL,)r'm'S

and (ﬁE . Vu/EIj)r'm's = 0.0317(a§)r'm's. It indicates the
correlation between the convection of turbulence fluctuations
and the Lagrangian acceleration fluctuations along the par-
ticle trajectory; namely, the large fluctuation of Lagrangian
acceleration indicates the large fluctuation of Eulerian con-
vection of turbulence and vice versa. As a result, although
scattered widely, the trends of the scattering distributions
show the statistical correlation between the Lagrangian inter-
mittency effects, which corresponds to the extreme events of
the largely fluctuated Lagrangian acceleration, and the Eule-
rian intermittency effects of turbulence fluctuations, that is,
the extreme events of convection of turbulence fluctuations.
However, for large swirl levels (Figure6, S = 1.42),
this linear correlation in the axial direction seems to be
disturbed, since the data points are widely scattered within
alocal domain. In contrast, the nearly linear correlation also
occurs in the other directions. Remembering the occurrence
of recirculation phenomena in the axial direction within the
bubble-breakdown region, it is appropriate to explain that
the disturbance of linear correlation is due to the formation
of bubble vortex breakdown—a dramatic change of the large
scale flow structure. In this way, the correlation of Lagrangian
intermittency effects as well as the Eulerian intermittency

effects becomes complex. It is correlated in the lateral and
spanwise directions and attenuated in the axial direction.

4. Conclusion

The present study focuses on the effect of swirl levels on
the correlation between the Lagrangian and Eulerian eval-
uations of turbulence. The statistical correlations between
the Lagrangian and Eulerian evaluations of turbulence are
demonstrated. It is found that the Lagrangian acceleration
follows a weak power-exponential form of augmentation
by the increase of swirl levels, leading to the augmented
characteristics of intermittency. Moreover, the fluctuations
of a'(3,t) and uf(r,t) become increasingly correlated to
each other with the increase of the swirl levels. Additionally,
the Eulerian convection of turbulence fluctuations is weakly
proportional to the Lagrangian acceleration fluctuations,
indicating the proportionally close correlation between the
Eulerian and Lagrangian intermittency effects.
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