
Research Article
An Analysis and Application of Fast Nonnegative Orthogonal
Matching Pursuit for Image Categorization in Deep Networks

Bo Wang, Jichang Guo, and Yan Zhang

School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China

Correspondence should be addressed to Bo Wang; neuwb@tju.edu.cn

Received 25 March 2015; Revised 15 June 2015; Accepted 18 June 2015

Academic Editor: Oscar Reinoso

Copyright © 2015 Bo Wang et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nonnegative orthogonal matching pursuit (NOMP) has been proven to be a more stable encoder for unsupervised sparse
representation learning. However, previous research has shown that NOMP is suboptimal in terms of computational cost, as the
coefficients selection and refinement using nonnegative least squares (NNLS) have been divided into two separate steps. It is found
that this problem severely reduces the efficiency of encoding for large-scale image patches. In this work, we study fast nonnegative
OMP (FNOMP) as an efficient encoder which can be accelerated by the implementation of 𝑄𝑅 factorization and iterations of
coefficients in deep networks for full-size image categorization task. It is analyzed and demonstrated that using relatively simple
gain-shape vector quantization for training dictionary, FNOMP not only performs more efficiently than NOMP for encoding but
also significantly improves the classification accuracy compared to OMP based algorithm. In addition, FNOMP based algorithm
is superior to other state-of-the-art methods on several publicly available benchmarks, that is, Oxford Flowers, UIUC-Sports, and
Caltech101.

1. Introduction

In computer vision, image representation is a core topic for
image understanding and processing. Over the past decade,
sparsity has been implemented as one of the priors for a good
encoder which makes the corresponding representations
more useful when building classifiers [1]. In particular, it is
suitable for categorization tasks as sparse representations are
more likely to be separable in high dimensional spaces.

It is well known that the classical sparse coding with
imposing 𝑙1 norm regularization achieves impressive perfor-
mance for face recognition, text classification, and robotic
perception tasks [2–4], whereas orthogonal matching pursuit
(OMP), the canonical greedy algorithm for sparse approxi-
mation, can commonly replace the 𝑙1 relaxed algorithm due
to its high efficiency in large-scale problems. While OMP
as encoder shows simplicity and fast execution for many
tasks, in practice it is not optimal in terms of stability. In
other terms, such a greedy algorithm can augment small data
variations which give rise to large deviations in terms of
representations [5].

With the development of study on nonnegativity con-
straints in numerical analysis, nonnegative least squares
(NNLS) and nonnegative matrix factorization (NMF), which
are frequently used tools, have been applied in image pro-
cessing and computer vision where the experiments show
that enforcing a nonnegativity constraint can produce a
much more accurate approximate solution [6]. Therefore,
nonnegativity constraints can be employed to ameliorate the
aforementioned instability of OMP. Furthermore, it is shown
that nonnegative sparse coding is useful for modeling human
vision systems on natural images in visual neuroscience
[7]. More importantly, nonnegative sparse coding has also
appeared in various other applications, such as motion
extraction, text classification, and human action recognition
[8–11].

On the other hand, current research on sparse repre-
sentation learning falls into two groups which are depen-
dent on manually designed descriptors, that is, SIFT [12,
13], and derive from pixel level via hierarchical structure,
respectively [14, 15]. As a matter of fact, the latter is referred
to as layerwise unsupervised training which advocates to
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Figure 1: Hierarchical learning scheme adopted in this work.

build models from scratch instead of strong dependence on
descriptors. A considerable amount of work is dedicated
to learning this deep architecture. Specifically, deep belief
nets and convolutional deep belief networks make use of
stacked Restricted Boltzmann Machines (RBM) to learn
high-level image features from low-level ones for recognition
[16, 17]. Deconvolutional networks concentrating on high
quality latent representations take advantage of a decoder-
only model as opposed to the symmetric encoder-decoder of
the RBM [18]. Deep autoencoders investigate the feasibility
of building high-level features from only unlabeled data
and obtain neurons that function as detectors for faces,
human bodies, and cat faces [19]. Deep convolutional neural
networks are capable of achieving record-breaking results
on a highly challenging Imagenet dataset by using purely
supervised learning [20]. It is a remarkable fact that a
popular architecture based on multilayers matching pursuit
encoders has achieved great success over the last few years
[21, 22].

Intuitively, an unsupervised hierarchical trainingmanner
combined with nonnegative sparse coding should be taken
into account. According to the point of view proposed in [28],
it is desirable to obtain good image representations on top of
nonnegative sparsity. The 4-layer model is trained on a 24-
core CPU and an Nvidia Tesla M2075 GPU for fast comput-
ing. As a result, this trained model based on ISTA algorithm
layer-by-layer has shown slightly better performance with
high computational configuration on object classification. In
addition, the nonnegative OMP (NOMP) put forward by Lin
and Kung [5] can be regarded as a more stable encoder in
hierarchical architecture. However, NOMP is only applied
to small-size images in the first layer of model and several
complicated preprocessing steps are also needed for layer-1
as well as the sign-splitting technique. In spite of delivering
competitive accuracy to some best known encoders, NOMP
is actually not very efficient on account of separation of
selecting and NNLS steps, which is verified on synthetic data
in [30].

For this reason, by studying and analyzing efficient
orthogonal matching pursuit with nonnegativity constraints
called fast nonnegative OMP (FNOMP) in deep networks
for full-size image categorization, we demonstrate benefits
of the novel encoder. In this paper, firstly we compare
computational efficiency of FNOMP encoder with NOMP
encoder under different experiment conditions. Next, we

consider classification accuracy of FNOMP based algorithm
on three categories of object and event datasets in comparison
to OMP based deep learning models and other state-of-the-
art approaches.

Themain contribution of this paper is that we validate the
computational time of novel FNOMP, which is significantly
shorter than that of NOMP in encoding combined with
dictionaries of different sizes and various sparsity levels.
Then, it is shown that FNOMP based algorithm can obtain
meaningful image representations and therefore is appro-
priate for full-size image classification in deep networks.
Moreover, traditional preprocessing steps comprising mean
subtraction, whitening, and sign-splitting are not applied in
our method, which simplifies the whole process. Finally, it is
found that image size has a great influence on classification
accuracy.

The remainder of this paper falls into four sections. In
Section 2, the definition of the hierarchical framework for
categorization is given. In Section 3, the dictionary training
and efficient OMP with nonnegativity constraints are pre-
sented.Then, in Section 4, details of our experimental results
and analysis on several datasets are elaborated. Finally, in
Section 5, the conclusion is drawn.

2. Hierarchical Learning in Deep Networks

Recently, it is desirable to propose fully automatic approaches
which can replace those hand-designed descriptors. Mean-
while, a typical manner in machine learning has focused on
learning good representations from unlabeled input data for
higher-level tasks such as image categorization. More specif-
ically, the hierarchical structures learn multilayer features
by greedily training several layers, one layer at a time. For
example, a 2-layer deep model which computes sparse codes
with fast nonnegative OMP in each layer can be trained as
shown in Figure 1.

As can be seen from Figure 1, the densely sampled image
patches are computed with FNOMP for sparse codes in the
first layer, which are converted as input for the second layer.
Then, the higher image-level representations are provided by
similar steps from the first layer.

In practice, as discussed in [15, 21], the deep network
implementations are generally composed of four steps.

Given an image of 𝑛-by-𝑛 pixels with p channels, the
pipeline can be illustrated in Figure 2.
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Figure 2: Deep architecture of computing representation.

(i) 𝑚-by-𝑚 pixel receptive field with a step of one pixel
between them is used for the first layer of features.
After training the dictionary with 𝐷

1
filters for the

first layer, we find that the image takes on a (𝑛−𝑚+1)-
by-(𝑛 − 𝑚 + 1)-by-𝐷

1
representation based on fast

nonnegative OMP pattern.
(ii) Maxpooling strategy is employed over adjacent 𝑠-by-𝑠

spatial blocks; then, a [(𝑛−𝑚+1)/𝑠]-by-[(𝑛−𝑚+1)/𝑠]-
by-𝐷
1
pooled representation is generated.

(iii) 𝑗-by-𝑗 pixel receptive field with a step of one pixel
over the whole 𝐷

1
maps yields the second layer

which is featured by 𝑗-by-𝑗-by-𝐷
1
dimension and the

corresponding number of feature is [(𝑛 − 𝑚 + 1)/𝑠] −

𝑗+ 1-by-[(𝑛−𝑚+1)/𝑠] − 𝑗+ 1. Akin to the dictionary
training stage in the first step, the image finally obtains
a [(𝑛 − 𝑚 + 1)/𝑠] − 𝑗 + 1-by-[(𝑛 − 𝑚 + 1)/𝑠] − 𝑗 + 1-
by-𝐷
2
representation by means of efficient OMP with

nonnegativity constraints.
(iv) Pyramid max pooling and contrast normalization are

also applied to form final pooled representation.

3. Sparse Coding with Efficient
Nonnegative OMP

3.1. Dictionary Training. The gain-shape vector quantization
for training in deep networks will be implemented through-
out this work. Let 𝑆 be a set of𝑀-dimensional input signals;
that is, 𝑆 = [𝑠1, . . . , 𝑠𝑁] ∈ 𝑅

𝑀×𝑁. Specifically, the dictionary is
trained by using an alternating manner described as follows:

min
𝐷,𝑥𝑗

∑

𝑗


𝑠
𝑗
−𝐷𝑥
𝑗



2
2

s.t. 
𝑥
𝑗

0 ≤ 𝑇, ∀𝑗,
𝐷𝑖


2
2 = 1, ∀𝑖,

(1)

where 𝐷
𝑖
indicates each column of dictionary 𝐷, ‖𝐷

𝑖
‖
2
2 =

1 makes each dictionary element normalized, ‖𝑥
𝑗
‖0 is

the number of nonzero elements in 𝑥
𝑗
, and 𝑇 is a sparsity

constraint factor. For instance, OMP-1 will be used as a form
of gain-shape vector quantization, and then it begins with
𝑥
𝑗
= 0 and greedily selects an element of 𝑥

𝑗
to be nonzero to

minimize the residual reconstruction error at each iteration.

3.2. Efficient OMP with Nonnegativity Constraints. The stan-
dard nonnegative OMP (NOMP) can be applied to find an
approximate solution to the following problem:

min
𝑥

‖𝑠 −𝐷𝑥‖2

s.t. ‖𝑥‖0 ≤ 𝑇, 𝑥
𝑘
≥ 0, ∀𝑘,

(2)

where NOMP computes codes with at most 𝑇 nonzero
elements and all elements are nonnegative. Generally, the
pipeline of NOMP can be summarized as follows:

(i) Firstly, the residual vector V is initialized as V(0) = 𝑠

and iteration number 𝑙 is set to be 1. In order to
have the highest positive correlation with residual,
the algorithm needs to choose the atom 𝑑

𝑟𝑙
; that is

𝑟
𝑙
= argmax

𝑟
⟨𝑑
𝑟
, V(𝑙−1)⟩. When 𝑟

𝑙
≤ 0, the iteration

will be terminated.
(ii) Secondly, the nonnegative least squares (NNLS) will

be served as a tool to approximate the coefficients of
the selected atoms:

𝑥
(𝑙)
= argmin
𝑥



𝑠 −

𝑙

∑

ℎ=1
𝑑
𝑟ℎ
𝑥
𝑟ℎ

2

s.t. 𝑥
𝑟ℎ

≥ 0.

(3)

(iii) Finally, the new residual V(𝑙) = 𝑠 − 𝐷𝑥
(𝑙) will be com-

puted and the corresponding iteration number 𝑙 will
be incremented by 1.

However, the selection process and the NNLS are divided
into two relatively independent stages. Accordingly, we
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should take into account a more efficient algorithm which
aggregates these two steps. Inspired by analysis of comparison
of OMP based on matrix decomposition [31], we need to
choose𝑄𝑅 factorization,which provides the largest reduction
of computational complexity when problem size increases
and little numerical error will be accumulated in the inner
products or the solution. Therefore, we can address the issue
by computationally efficient decomposition fashion. In fact,
OMP attempts to find the orthogonal projection at each
iteration as follows:

𝑥
𝑝
:= arg min

𝑥𝑝


𝑠 −𝐷
𝑝
𝑥
𝑝

2 , (4)

where𝐷
𝑝
and 𝑥
𝑝
are the subdictionary and coefficient vector,

respectively, restricted to the support 𝑝.𝐷
𝑝

† denotes Moore-
Penrose pseudoinverse of𝐷

𝑝
and 𝑥

𝑝
= 𝐷
𝑝

†
𝑠.

Let ]
𝑡

:= 𝑠 − 𝐷𝑥
𝑡
be the 𝑡th signal residual. At

iteration 𝑡, inverting a 𝑡 × 𝑡 matrix for calculation has a
complexity of 𝑂(𝑡3) which is a heavy computing burden.
Thus, 𝑄𝑅 factorization is applied to incorporate a matrix
decomposition of the selected subdictionary.

The dictionary𝐷which chooses 𝑡 atoms can be factorized
following 𝐷

𝑡
= 𝑄
𝑡
𝑅
𝑡
. The columns of 𝐷

𝑡
are grouped based

on the iteration number 𝑡 and 𝑑
𝑤
signifies the 𝑤, the selected

atom. Actually, we can readily solve (4) which is replaced
by another problem �̂�

𝑡
:= argmin

𝑧𝑡
‖𝑠 − 𝑄

𝑡
𝑧
𝑡
‖2 because the

column span of 𝑄
𝑡
and 𝐷

𝑡
is the same. Thus, �̂�

𝑡
= 𝑄
𝑇

𝑡
𝑦

and 𝑄
𝑡
is orthonormal; we can quickly find the solution by

𝑥
𝑡
= 𝑅
−1

𝑡
�̂�
𝑡
. Therefore, the efficiency of the method will be

heavily dependent on the calculation speed of 𝑄, 𝑅, and 𝑅
−1.

According to Gram-Schmidt process which is a method
for orthonormalising a set of vectors in an inner product
space, we only need to keep Gram-Schmidt process to seek
the last column of𝑄

𝑡+1 after the first 𝑡 terms of𝐷
𝑡+1 have been

decomposed. Thus, 𝑄
𝑡+1 = [𝑄

𝑡
𝑞
𝑡+1]. In order to find 𝑄

𝑡+1,
firstly we need to find the orthogonal element to the span of
𝑄
𝑡
and then normalize the corresponding orthogonal ones as

follows:

𝑞
𝑡+1 =

𝑔
𝑡+1

𝑔𝑡+1
2
, (5)

where 𝑔
𝑡+1 = (𝐼 − 𝑄

𝑡
𝑄
𝑇

𝑡
)𝑑
𝑡+1.

Similarly, 𝑅
𝑡+1 and 𝑅

−1
𝑡+1 can be updated, respectively, as

follows:

𝑅
𝑡+1 = [

𝑅
𝑡
𝛼

0 𝛽
]

𝑅
−1
𝑡+1 =

[
[

[

𝑅
−1
𝑡

−
𝛼

𝛽
𝑅
−1
𝑡

0 1
𝛽

]
]

]

,

(6)

where 𝛼 = 𝑄
𝑇

𝑡
𝑑
𝑡+1 and 𝛽 = ‖𝑔

𝑡+1‖2. While fast OMP is
beneficial to 𝑄𝑅 factorization, this method may still be used
to choose negative elements in 𝑥

𝑡
. Accordingly, we need to

develop fast OMP with nonnegativity constraints.

As stated above in NOMP, the atom will be selected due
to the highest positive correlation with residual. At iteration
𝑡, the approximation of 𝑠 can be computed as follows:

𝑡

∑
𝑤=1

𝑥
𝑤
𝑑
𝑤
=

𝑡

∑
𝑤=1

𝑧
𝑤
𝑞
𝑤
. (7)

Then, according to (7), in the (𝑡 + 1)th iteration, we see

𝑡+1
∑
𝑤=1

𝑧
𝑤
𝑞
𝑤
=

𝑡

∑
𝑤=1

𝑧
𝑤
𝑞
𝑤
+ 𝑧
𝑡+1𝑞𝑡+1 =

𝑡

∑
𝑤=1

𝑥
𝑤
𝑑
𝑤
+ 𝑧
𝑡+1𝑞𝑡+1. (8)

For some unique 𝛾
𝜃
, 𝑞
𝑡+1 = ∑

𝑡+1
𝜃=1 𝛾𝜃𝑑𝜃. Thus, in the (𝑡 + 1)th

iteration, we see

𝑡+1
∑
𝑤=1

𝑧
𝑤
𝑞
𝑤
=

𝑡

∑
𝑤=1

𝑥
𝜃
𝑑
𝜃
+

𝑡+1
∑

𝜃=1
𝑧
𝑡+1𝛾𝜃𝑑𝜃

=

𝑡

∑
𝑤=1

(𝑥
𝑤
+ 𝑧
𝑡+1𝛾𝑤) 𝑑𝑤 + 𝑧

𝑡+1𝛾𝑡+1𝑑𝑡+1.

(9)

According to (9), as 𝑧
𝑡+1𝛾𝑡+1 keeps positive, we can assure that

all the 𝑥
𝑤
are nonnegative when 𝑧

𝑤
meets such condition as

follows:

𝑧
𝑡+1 ≤ 𝑧

𝑐
:=

{

{

{

min
𝑤,𝛾𝑤<0



𝑥
𝑤

𝛾
𝑤


∃𝑤, 𝛾
𝑤
< 0

+∞ Otherwise.
(10)

Then, we see 𝑥
𝑤
+ 𝑧
𝑡+1𝛾𝑤 ≥ 0.

Next, if the 𝑧
𝑡+1 of atom has the largest value or is shrunk

by (10), the corresponding atom will be selected. But if the
atom having the highest positive correlation does not comply
with (10), the most possible solution should be recorded.The
decisive criterion of the solution can be listed as follows:

𝑧 < 0 Terminate
𝑧
𝑚𝑝

< 𝑧
𝑐
< 𝑧 𝑧

𝑚𝑝
← 𝑧
𝑐
, 𝑏
𝑚𝑝

← 𝑏, Terminate
𝑧
𝑐
< 𝑧 ≤ 𝑧

𝑚𝑝
𝑧
𝑡+1 ← 𝑧

𝑚𝑝
, 𝑏 ← 𝑏

𝑚𝑝
, Terminate

𝑧
𝑐
≤ 𝑧
𝑚𝑝

< 𝑧 𝑏 ← 𝑏 + 1
0 < 𝑧 ≤ 𝑧

𝑐
, 𝑧 ≤ 𝑧

𝑚𝑝
𝑧
𝑡+1 ← 𝑧

𝑚𝑝
, 𝑏 ← 𝑏

𝑚𝑝
, Terminate

0 < 𝑧 ≤ 𝑧
𝑐
, 𝑧 > 𝑧

𝑚𝑝
𝑧
𝑡+1 ← 𝑧, Terminate,

(11)

where 𝑧
𝑚𝑝 signifies the most possible solution and 𝑧 is the

current possible one in the 𝑡th iteration for an internal loop.
We can define (𝛿, 𝜎) = sort

↓
(𝐷
𝑇V
𝑡
) where sort

↓
denotes

the sorting operator in a descent order. The initialization
of 𝑧 can be described as 𝛿(𝑏), 𝑏 = 1. Then, 𝜎(𝑏) will be
added to support 𝑝 and update 𝑄

𝑡
and 𝑅

−1
𝑡

after inner-loop
termination. Therefore, the whole process of FNOMP can be
summarized as follows in Algorithm 1.

As shown in Algorithm 1, more details about the dif-
ference between NOMP and FNOMP can be elaborated
from two aspects. Firstly, although both algorithms are
composed of two loops, that is, internal and external loops,
the decision and update steps based on (11) make a difference
to FNOMP which is implemented in the internal loop.
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FNOMP
Initialization: V0 = 𝑠, 𝑡 = 0, 𝑝 = 𝑧0 = ⌀

While 𝑡 < 𝐽 &max(𝐷𝑇V
𝑡
) > 0 do

Let (𝛿, 𝜎) ← sort
↓
(𝐷
𝑇V
𝑡
)

Let 𝑏 ← 1
Let 𝑏mp

← 1
Let 𝑧mp

← 0
While ∼ Terminate & 𝑏 < 𝐾 do

𝑧
𝑐 from (10)
Let 𝑧 ← 𝑞

𝑇

𝜎(𝑏)
V
𝑡
: 𝑞
𝜎(𝑏)

= 𝑔/‖𝑔‖2
𝑔 = (𝐼 − 𝑄

𝑡
𝑄
𝑇

𝑡
)𝑑
𝜎(𝑏)

Update based on (11)
End while
Let 𝑝 ← 𝑝 ∪ 𝜎(𝑏)

Update 𝑄 and 𝑅
−1

Let 𝑧
𝑡+1 ← [𝑧

𝑡
; 𝑧
𝑡+1]

Let V
𝑡+1 ← V

𝑡
− 𝑧
𝑡+1𝑞𝑡+1

Let 𝑡 ← 𝑡 + 1
End while
Output: 𝑥|

𝑠
← 𝑅
−1
𝑧
𝐽

Algorithm 1: The pipeline of fast OMP with nonnegativity con-
straints.

Comparatively, NOMP needs nonnegative least squares to
optimize the coefficients of the selected atoms, whereas both
algorithms terminate when 𝐽 is satisfied and the highest
positive correlation with residual is less than or equal to zero
in the external loop. Secondly, an analysis of time complexity
incorporates difference between these two algorithms. The
total computational cost of FNOMP mainly includes two
parts which are 𝑂(𝐿(3𝑀(𝐽 + 1) + 𝐽

2
) for internal loop and

𝑂(𝐽𝐾log(𝐵)) for sorting 𝐵 largest coefficients, respectively,
where 𝐽 is the sparsity level, 𝐿 indicates the iteration number
of inner loop, 𝑀 is the dimensionality of dictionary, and 𝐾

signifies the number of atoms. Compared with FNOMP, the
total computational cost of NOMP is 𝑂(𝑃𝑀𝐽

3
), where 𝑃 is

the iteration number of inner loop.

4. Experiments and Analysis

In this section, we apply FNOMP based method on three
widely used datasets, that is, Oxford Flowers, UIUC-Sports,
and Caltech101. Compared with standard NOMP with dif-
ferent dictionary sizes, computational costs of FNOMP will
be shown in the first part. Without traditional preprocessing
steps, the algorithm based on FNOMP will be used for
training 2-layer deep models and compared with several
state-of-the-artmethods in terms of classification accuracy in
the second part. The configurations of our PC are Intel Core
i5 quad core CPU and frequency is 3.1 GHZ, 16GB RAM,
Windows 7 64-bit operating system. All codes are written in
Matlab.

4.1. Comparison of Computation Costs. In this part, we run
the efficientNOMPencoder on 6×6 patch size over dense grid
with step size of one pixel and the corresponding dimension
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of atoms will be fixed at 108. The size of overcomplete
dictionary will be increasing from 200 to 400 and the sparsity
level is set to be at 5 in the first experiment. To study the
computation time for encoding in practice, we will resize the
test image to various ratios which are no larger than 80 × 80,
100×100, and 150×150, respectively. Figure 3 illustrates that
the running time of NOMP of three sets is consistently longer
than that of FNOMP algorithm.On average, the computation
cost of this novel method decreases by 42% which implies it
can be applied to the full-size datasets using medium size of
images.

In the second experiment, we will keep the sparsity level
ranging from 1 to 20 and the size of dictionary will be fixed
at 400, while the image size is fixed to be 150 × 150. A
comparison of computation costs of NOMP and FNOMP
is shown in Figure 4. As the sparsity level increases, the
execution time of standard NOMP apparently rises at a faster
rate than that of FNOMP. In particular, the computation time
will mount by more than 50% when sparsity is greater than 8
and will shoot up to 60 seconds when 20 nonzero elements
are in coefficient vectors.
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Figure 5: Sample images for the Oxford Flowers dataset.

4.2. Comparison of Classification Accuracy

4.2.1. Oxford Flowers Categorization. The Oxford Flowers
dataset contains 1360 images with 17 different categories of
flowers and each class has 80 images.The issue of similarity of
twodifferent classes is challenging and the intraclass variation
is sometimes greater than that of the interclass between two
species. According to [14], we follow the standard experi-
mental settings for evaluation, that is, 60 random images
are employed for training. Specifically, the receptive field
size for max pooling is set to be 4 and 4 × 4 patch size is
exploited for the second layer. Besides, the dictionary size
is fixed at 400 and 1600 for the first and second layers,
respectively. All images are kept as RGB type and resized to
be no larger than 100× 100 and 150× 150. We obtain average
classification accuracy over 10 trials. As shown in Table 1,
the classification accuracy of FNOMP based deep learning
method is far above the HSSL which leverages a hierarchical
model comprised of sparse coding, saliency pooling, and
local grouping. As a typical one, Ito’s method called color-
CoHOG and CoHD, respectively, developing heterogeneous
features based on cooccurrence is outperformed by FNOMP
based approach. More importantly, image size has a great
influence on final accuracy according to the results. Figure 5
shows some examples of this dataset.

4.2.2. UIUC-Sports Categorization. UIUC-Sports can be
regarded as a statistic event category dataset which consists
of 8 sport categories, for example, bocce, polo, rock climbing,
and snowboarding. The total number of images is 1579 and
137∼250 in each class. This dataset is quite challenging due to

Table 1: Classification accuracy (%) comparison on Oxford Flowers
dataset.

Algorithms Classification accuracy
HSSL [14] 76.2 ± 3.8
Color-CoHOG [23] 78.89 ± 1.19
CoHD [23] 84.24 ± 1.07
FNOMP (100 × 100) 83.1
FNOMP (150 × 150) 85.7

variations of poses and sizes across each category with clut-
tered backgrounds. According to the common experimental
setting, we choose 70 images for training and 60 for testing
at random per category. Figure 6 gives example images from
classes of UIUC-Sports.

As is mentioned above, the settings of the experiment are
the same as the previous one.The results fromTable 2 indicate
that FNOMP based method significantly outperforms the
object bank (OB) and SIFT-based single layer sparse coding
(SIFT + SC), respectively. Meanwhile, FNOMP based scheme
can achieve highly competitive performance compared with
the algorithm only using nonnegative sparse coding and
spatial pyramid matching (Sc + SPM), adapted Gaussian
models (AGM), and soft-assignment coding (SAC) approach.
Similarly, it is found that larger image size can enhance
performance by a large margin.

4.2.3. Caltech101 Categorization. This is a challenging dataset
for object recognition task, comprising 9144 images in 102
classes. The number of images per category varies from 31 to
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Figure 6: Sample images for the UIUC-Sports dataset.
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Figure 7: Sample images for the Caltech101 dataset.

Table 2: Classification accuracy (%) comparison on UIUC-Sports
dataset.

Algorithms Classification accuracy
OB [24] 76.3
SIFT+SC [21] 82.7
Sc+SPM [25] 83.77 ± 0.97
AGM [26] 84.4
SAC [27] 84.56 ± 1.5
FNOMP (100 × 100) 82.8
FNOMP (150 × 150) 84.9

800. In addition to the background class, the remaining class-
es are composed of vehicles, flowers, animals, and so forth.
Some sample images of Caltech101 are shown in Figure 7.
Following the common experiment setup for Caltech101, we
train on 30 images and test the rest. In the sameway, we repeat
the experiments 10 times with other experimental settings

identical to the previous one. As can be seen fromTable 3, the
performance of FNOMPbased algorithm ismarginally better
than ScSPM and LLC which are both SIFT-based algorithms.
As to other hierarchical models, FNOMP based pattern
outperforms deconvolutional networks (DN) by about 9%
and deconvolutional networks with both nonnegative spar-
sity and selectivity (DNNS) by about 3%. However, DNNS
employs the combined features of 1st and 4th layer from
the model trained with both properties which have more
complex deep architecture. Typically, hierarchical sparse
coding (HSC) jointly learns two codebooks which are more
complicated, while the algorithm combined with FNOMP
as encoder can outperform HSC by 1.9%. Interestingly, the
performance of low-rank nonnegative sparse coding (LR-Sc +
SPM) is extremely close to the FNOMP basedmethod, which
adopts different strategies of nonnegativity constraints.

Finally, we compare the performance of FNOMP as
encoder with OMP in deep networks with the same dictio-
nary training scheme. Specifically, the patch size over dense
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Table 3: Classification accuracy (%) comparison on Caltech101
dataset.

Algorithms Classification accuracy
DN [18] 66.9 ± 1.1
ScSPM [12] 73.20
DNNS [28] 73.3 ± 0.4
LLC [13] 73.44
HSC [29] 74.0
LR-Sc+SPM [25] 75.68 ± 0.89
FNOMP (100 × 100) 73.6
FNOMP (150 × 150) 75.9

Oxford Flowers UIUC-Sports Caltech101
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Test benchmarks
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gsvq + FNOMP(100 ∗ 100)

gsvq + FNOMP(150 ∗ 150)

Figure 8: Comparison of classification accuracy using gsvq for
dictionary training.

grid with step size of one pixel is still adopted and the
dimension of atoms remains unchanged. The dictionary size
is set to be at 400 and 1600 for the first and second layers,
respectively. We can see from Figure 8, in this trial, FNOMP
shows more powerful performance than OMP on three
different benchmarks. Using gsvq for dictionary training,
we find FNOMP based algorithm considerably increases
the classification accuracy by around 6%, 3.2%, and 3.1%,
respectively.

5. Conclusion

In this paper, we have studied fast nonnegative OMP as
an encoder in deep networks to obtain meaningful image
representations. Impressive research results are obtainedwith
FNOMP in terms of both computational efficiency and
classification accuracy. It is found that FNOMP performs
significantly faster than the standard NOMP with medium
size of images in practice. In particular, the computation
cost of NOMP becomes 2 times or more than that of
FNOMP as the sparsity level increases. In addition, we have
conducted further studies on three widely used benchmarks
for image classification tasks. The experimental results show
that FNOMP performs better than SIFT-based single layer

sparse coding, hierarchical feature learning, and other state-
of-the-art methods on Oxford Flowers, UIUC-Sports, and
Caltech101 datasets. Furthermore, with the same dictionary
training approach, we find that FNOMP is superior to OMP
in terms of classification accuracy.More importantly, it is also
found that image size has a great influence on classification
accuracy according to the results.
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