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This paper presents a geometric least square framework for deriving [0, 1]-valued interval weights from interval fuzzy preference
relations. By analyzing the relationship among [0, 1]-valued interval weights, multiplicatively consistent interval judgments, and
planes, a geometric least squaremodel is developed to derive a normalized [0, 1]-valued interval weight vector froman interval fuzzy
preference relation. Based on the difference ratio between two interval fuzzy preference relations, a geometric average difference
ratio between one interval fuzzy preference relation and the others is defined and employed to determine the relative importance
weights for individual interval fuzzy preference relations. A geometric least square based approach is further put forward for
solving group decision making problems. An individual decision numerical example and a group decision making problem with
the selection of enterprise resource planning software products are furnished to illustrate the effectiveness and applicability of the
proposed models.

1. Introduction

The preference relation is a common framework for express-
ing decision-makers’ (DMs’) pairwise comparison results in
multicriteria decision making (MCDM). One widely used
preference relation takes the form of the multiplicative
preference relation, which was introduced by Saaty [1] to
structure DMs’ pairwise comparison ratios in the analytic
hierarchy process (AHP). Another popularly used preference
relation takes the form of a fuzzy preference relation (also
called a reciprocal preference relation [2, 3]) 𝑅 = (𝑟

𝑖𝑗
)
𝑛×𝑛

whose element 𝑟
𝑖𝑗
denotes the fuzzy preference degree of

the object 𝑖 over 𝑗 and satisfies 0 ≤ 𝑟
𝑖𝑗
≤ 1, 𝑟

𝑖𝑖
= 0.5,

and the additive reciprocal property of 𝑟
𝑖𝑗
+ 𝑟
𝑗𝑖
= 1. Over

the last three decades, fuzzy preference relations have been
extensively studied [4] and the fuzzy AHP has been widely

applied to various MCDM problems such as the green port
evaluation [5] and the location selection [6], to name a few.

All of judgments in a fuzzy preference relation are
characterized by crisp values. However, in many real-world
situations, DMs’ subjective judgments may be bounded
between lower and upper bounds due to complexity and
indeterminacy of decision problems. Therefore, the concept
of interval fuzzy preference relations (IFPRs) is introduced
by Xu [7] to describe imprecise and uncertain judgment
information, and an increasing research interest has been
concentrating on employing IFPRs to help DMs make their
decision analyses.

An important research topic for MCDM with preference
information is to derive priority weight vectors from prefer-
ence relations. As preference information contains two kinds
of uncertainty, that is, DM’s judgments and inconsistency
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among comparisons, the derived priority weights should be
[0, 1]-valued interval weights (or called interval probabilities
[8–10]). Different methods have been developed to derive
[0, 1]-valued interval weights from IFPRs. Xu and Chen
[11] define additively consistent IFPRs and multiplicatively
consistent IFPRs from the viewpoint of the feasible regions
and develop two linear-programming-based approaches for
obtaining [0, 1]-valued interval weights. Based on Xu and
Chen’s multiplicative consistency, Genç et al. [12] propose a
formula to determine a [0, 1]-valued interval weight vector
of an IFPR, in which the original IFPR is converted into the
one with multiplicative consistency. They also show that the
derived [0, 1]-valued interval weight vector is the same as the
result obtained by the approach given in Xu and Chen [11].
Lan et al. [13] put forward an exchangemethod between addi-
tively consistent IFPRs and multiplicatively consistent IFPRs
and devise a parametric algorithm to obtain [0, 1]-valued
interval weights by converting a multiplicatively consistent
IFPR into an additively consistent IFPR. Xia and Xu [14]
establish two parametric programming models to generate
[0, 1]-valued interval weights of an IFPR. From the viewpoint
of interval arithmetic,Wang and Li [15] define additively con-
sistent IFPRs, multiplicatively consistent IFPRs, and weakly
transitive IFPRs and design two goal programs to generate
[0, 1]-valued interval weights for individual and collective
decisions.

The literature review indicates that among the priority
methods mentioned above for IFPRs, most of them are
developed according to the feasible-region-based consistency
definitions and are only applicable to one IFPR. Although
Wang and Li’s approach [15] may be used to derive a group
[0, 1]-valued interval weight vector directly from individual
IFPRs, it requires the importance weights of DMs or the
relative weights of individual IFPRs to be known. It is
very hard to assign the subjective weights to DMs in some
group decision situations, such as the group decision making
problem with a hierarchical structure in Section 5. On the
other hand, so far little research has been found on employing
the idea of geometric least squares to generate priority
weights from IFPRs and determining the relative weights
of individual IFPRs in group decision situations. In this
paper, we develop a geometric least square model to derive
[0, 1]-valued interval weights from an IFPR. To measure the
relative importance of individual IFPRs, the difference ratio
between any two IFPRs is introduced to define the geometric
average difference ratio between one IFPR and the others. A
geometric least square based approach is further developed
for solving group decision making problems with unknown
DMs’ weights.

The rest of the paper is set out as follows. Section 2 reviews
some basic notions related to fuzzy preference relations and
multiplicatively consistent IFPRs. A geometric least square
model is established for deriving a [0, 1]-valued interval
weight vector from an IFPR in Section 3. Section 4 puts
forward a method for determining the relative importance
weights of individual IFPRs and develops a geometric least
square based approach for deriving a group priority weigh
vector directly from individual IFPRs. Section 5 provides

a case study on the enterprise resource planning software
product selection problem. Section 6 draws the main conclu-
sions.

2. Preliminaries

For an MCDM problem, let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be an

alternative set and let 𝑅 = (𝑟
𝑖𝑗
)
𝑛×𝑛

be a pairwise comparison
matrix on𝑋; if 𝑅 satisfies

0 ≤ 𝑟
𝑖𝑗
≤ 1,

𝑟
𝑖𝑗
+ 𝑟
𝑗𝑖
= 1,

𝑟
𝑖𝑖
= 0.5,

∀𝑖, 𝑗 = 1, 2, . . . , 𝑛,

(1)

then 𝑅 is called a fuzzy preference relation.
The element 𝑟

𝑖𝑗
in 𝑅 gives a [0, 1]-valued importance

or fuzzy preference degree of 𝑥
𝑖
over 𝑥

𝑗
. As the additive

reciprocal property of 𝑟
𝑖𝑗
+ 𝑟
𝑗𝑖
= 1, the larger the value of

𝑟
𝑖𝑗
, the stronger the preference ratio 𝑟

𝑖𝑗
/𝑟
𝑗𝑖
of 𝑥
𝑖
over 𝑥

𝑗
. If

𝑟
𝑖𝑗
> 0.5, then 𝑟

𝑖𝑗
/𝑟
𝑗𝑖
> 1 and𝑥

𝑖
is preferred to𝑥

𝑗
with the ratio

𝑟
𝑖𝑗
/𝑟
𝑗𝑖
. If 𝑟
𝑖𝑗
< 0.5, then 𝑟

𝑖𝑗
/𝑟
𝑗𝑖
< 1 and 𝑥

𝑖
is nonpreferred to 𝑥

𝑗

with the ratio 𝑟
𝑖𝑗
/𝑟
𝑗𝑖
. In particular, if 𝑟

𝑖𝑗
= 0.5, then 𝑟

𝑖𝑗
/𝑟
𝑗𝑖
= 1,

indicating that 𝑥
𝑖
and 𝑥

𝑗
are indifferent.

Definition 1 (see [16]). Let 𝑅 = (𝑟
𝑖𝑗
)
𝑛×𝑛

be a fuzzy preference
relation with 0 < 𝑟

𝑖𝑗
< 1, ∀𝑖, 𝑗 = 1, 2, . . . , 𝑛. 𝑅 is said to have

multiplicative consistency, if it satisfies transitivity condition:

𝑟
𝑖𝑘

𝑟
𝑘𝑖

=
𝑟
𝑖𝑗

𝑟
𝑗𝑖

𝑟
𝑗𝑘

𝑟
𝑘𝑗

, ∀𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛. (2)

It is obvious that (2) is equivalent to any of the following
equations:

𝑟
𝑖𝑗
𝑟
𝑗𝑘
𝑟
𝑘𝑖
= 𝑟
𝑖𝑘
𝑟
𝑘𝑗
𝑟
𝑗𝑖
, ∀𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛.

𝑟
𝑖𝑗

𝑟
𝑗𝑖

𝑟
𝑗𝑘

𝑟
𝑘𝑗

𝑟
𝑘𝑖

𝑟
𝑖𝑘

=
𝑟
𝑖𝑘

𝑟
𝑘𝑖

𝑟
𝑘𝑗

𝑟
𝑗𝑘

𝑟
𝑗𝑖

𝑟
𝑖𝑗

, ∀𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛.
(3)

With increasing complexity and indeterminacy in many
decision problems, it is often difficult for a DM to furnish
crisp preference degrees. To better model vague and uncer-
tain DM’s judgments, Xu [7] introduces the concept of IFPRs.

Definition 2 (see [7]). An IFPR 𝑅 on 𝑋 is characterized by
an interval-valued pairwise comparison matrix 𝑅 = (𝑟

𝑖𝑗
)
𝑛×𝑛

satisfying the following condition:

𝑟
𝑖𝑗
= [𝑟
−

𝑖𝑗
, 𝑟
+

𝑖𝑗
] ,

0 ≤ 𝑟−
𝑖𝑗
≤ 𝑟
+

𝑖𝑗
≤ 1,

𝑟
−

𝑖𝑗
+ 𝑟
+

𝑗𝑖
= 1,

𝑟
−

𝑖𝑖
= 𝑟
+

𝑖𝑖
= 0.5,

∀𝑖, 𝑗 = 1, 2, . . . , 𝑛,

(4)
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where 𝑟
𝑖𝑗
denotes an interval importance or preference degree

of 𝑥
𝑖
over 𝑥

𝑗
.

Given two interval numbers 𝑎
1
= [𝑎
−

1
, 𝑎
+

1
] and 𝑎

2
=

[𝑎
−

2
, 𝑎
+

2
], their arithmetic operation laws are summarized as

follows.

(1) Addition: 𝑎
1
⊕ 𝑎
2
= [𝑎
−

1
+ 𝑎
−

2
, 𝑎
+

1
+ 𝑎
+

2
].

(2) Subtraction: 𝑎
1
− 𝑎
2
= [𝑎
−

1
− 𝑎
+

2
, 𝑎
+

1
− 𝑎
−

2
].

(3) Multiplication: 𝑎
1
⊗ 𝑎
2
= [𝑎
−

1
𝑎
−

2
, 𝑎
+

1
𝑎
+

2
], where 𝑎−

1
>

0, 𝑎
−

2
> 0.

(4) Division: 𝑎
1
/𝑎
2
= [𝑎
−

1
/𝑎
+

2
, 𝑎
+

1
/𝑎
−

2
], where 𝑎−

1
> 0, 𝑎−

2
>

0.

Based on interval arithmetic, Wang and Li [15] introduce
the multiplicative transitivity to define consistent IFPRs.

Definition 3 (see [15]). Let 𝑅 = (𝑟
𝑖𝑗
)
𝑛×𝑛

= ([𝑟
−

𝑖𝑗
, 𝑟
+

𝑖𝑗
])
𝑛×𝑛

be an
IFPR with 0 < 𝑟−

𝑖𝑗
≤ 𝑟
+

𝑖𝑗
< 1 (𝑖, 𝑗 = 1, 2, . . . , 𝑛). 𝑅 is said to

have multiplicative consistency, if 𝑅 satisfies

𝑟
𝑖𝑗

𝑟
𝑗𝑖

⊗
𝑟
𝑗𝑘

𝑟
𝑘𝑗

⊗
𝑟
𝑘𝑖

𝑟
𝑖𝑘

=
𝑟
𝑖𝑘

𝑟
𝑘𝑖

⊗
𝑟
𝑘𝑗

𝑟
𝑗𝑘

⊗
𝑟
𝑗𝑖

𝑟
𝑖𝑗

,

∀𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛.

(5)

Let 𝜔
𝑖
= [𝜔
−

𝑖
, 𝜔
+

𝑖
] be the priority weight of the alternative

𝑥
𝑖
for 𝑖 = 1, 2, . . . , 𝑛; then the ratio-based interval preference

intensity of the alternative 𝑥
𝑖
over 𝑥

𝑗
can be determined as

𝜔
𝑖
/𝜔
𝑗
. As per interval arithmetic, one can obtain 𝜔

𝑖
/𝜔
𝑗
=

[𝜔
−

𝑖
/𝜔
+

𝑗
, 𝜔
+

𝑖
/𝜔
−

𝑗
]. The ratio-based preference intensities are

based on the positive real line with the neutral value 1
denoting the indifference between two alternatives. On the
other hand, [0, 1]-valued interval judgments in IFPRs are
based on the bipolar unit interval scale having the neutral
element 0.5. There exists a relation between ratio-based
judgment 𝑎 and [0, 1]-valued judgment 𝑟; that is, 𝑟 = 𝑎/(1+𝑎),
implying that [(𝜔−

𝑖
/𝜔
+

𝑗
)/(1+𝜔

−

𝑖
/𝜔
+

𝑗
), (𝜔
+

𝑖
/𝜔
−

𝑗
)/(1+𝜔

+

𝑖
/𝜔
−

𝑗
)] =

[𝜔
−

𝑖
/(𝜔
−

𝑖
+ 𝜔
+

𝑗
), 𝜔
+

𝑖
/(𝜔
+

𝑖
+ 𝜔
−

𝑗
)] is the [0, 1]-valued interval

preference intensity of the alternative 𝑥
𝑖
over 𝑥

𝑗
. Based on

this idea, the following transformation formula is proposed
by Wang and Li [15] to convert [0, 1]-valued interval weight
vector 𝜔 into multiplicatively consistent IFPR 𝑅 = (𝑟

𝑖𝑗
)
𝑛×𝑛

,
where

𝑟
𝑖𝑗
= [𝑟
−

𝑖𝑗
, 𝑟
+

𝑖𝑗
] =

{{{{

{{{{

{

[0.5, 0.5] 𝑖 = 𝑗

[
𝜔
−

𝑖

𝜔−
𝑖
+ 𝜔+
𝑗

,
𝜔
+

𝑖

𝜔+
𝑖
+ 𝜔−
𝑗

] 𝑖 ̸= 𝑗

∀𝑖, 𝑗 = 1, 2, . . . , 𝑛

(6)

and 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇
= ([𝜔

−

1
, 𝜔
+

1
], [𝜔
−

2
, 𝜔
+

2
], . . . , [𝜔

−

𝑛
,

𝜔
+

𝑛
])
𝑇 is a normalized [0, 1]-valued interval weight vector

such that

0 < 𝜔−
𝑖
≤ 𝜔
+

𝑖
≤ 1,

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
−

𝑗
+𝜔
+

𝑖
≤ 1,

𝜔
−

𝑖
+

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
+

𝑗
≥ 1

𝑖 = 1, 2, . . . , 𝑛.

(7)

Let 𝜔
𝑖
= [𝜔
−

𝑖
, 𝜔
+

𝑖
] and 𝜔

𝑗
= [𝜔
−

𝑗
, 𝜔
+

𝑗
] be any two [0, 1]-

valued interval weights; then, the following possibility degree
formula is defined [11] and employed to compare them:

𝑃 (𝜔
𝑖
≥𝜔
𝑗
)

= max{1−max(
𝜔
+

𝑗
− 𝜔
−

𝑖

𝜔+
𝑖
− 𝜔−
𝑖
+ 𝜔+
𝑗
− 𝜔−
𝑗

, 0) , 0} .
(8)

3. A Geometric Least Square
Model for an IFPR

This section develops a geometric least squaremodel to derive
normalized [0, 1]-valued interval weights from an IFPR.

As per (6), for IFPR 𝑅 = (𝑟
𝑖𝑗
)
𝑛×𝑛

= ([𝑟
−

𝑖𝑗
, 𝑟
+

𝑖𝑗
])
𝑛×𝑛

with 0 <
𝑟
−

𝑖𝑗
≤ 𝑟
+

𝑖𝑗
< 1 (𝑖, 𝑗 = 1, 2, . . . , 𝑛), if there exists normalized

[0, 1]-valued interval weight vector 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇
=

([𝜔
−

1
, 𝜔
+

1
], [𝜔
−

2
, 𝜔
+

2
], . . . , [𝜔

−

𝑛
, 𝜔
+

𝑛
])
𝑇 satisfying

𝑟
−

𝑖𝑗
=

𝜔
−

𝑖

𝜔−
𝑖
+ 𝜔+
𝑗

,

𝑟
+

𝑖𝑗
=

𝜔
+

𝑖

𝜔−
𝑗
+ 𝜔+
𝑖

,

∀𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛,

(9)

then 𝑅 has multiplicative consistency.
As 𝑟−
𝑖𝑗
+ 𝑟
+

𝑗𝑖
= 1 for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛, it follows from (9)

that

𝑟
−

𝑖𝑗

𝑟+
𝑗𝑖

=
𝜔
−

𝑖

𝜔+
𝑗

,

𝑟
+

𝑖𝑗

𝑟−
𝑗𝑖

=
𝜔
+

𝑖

𝜔−
𝑗

,

∀𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛.

(10)
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Clearly, (10) can be equivalently converted into

𝑟
−

𝑖𝑗
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖
𝜔
−

𝑖
= 0,

𝑟
+

𝑖𝑗
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖
𝜔
+

𝑖
= 0,

∀𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛.

(11)

According to the theory of analytical geometry, we can
view 𝑟

−

𝑖𝑗
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖
𝜔
−

𝑖
= 0 and 𝑟+

𝑖𝑗
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖
𝜔
+

𝑖
= 0 (𝑖 ̸= 𝑗 =

1, 2, . . . , 𝑛) as a number of planes. Thus, the corresponding
normalized [0, 1]-valued interval weight vector 𝜔 = (𝜔

1
, 𝜔
2
,

. . . , 𝜔
𝑛
)
𝑇
= ([𝜔
−

1
, 𝜔
+

1
], [𝜔
−

2
, 𝜔
+

2
], . . . , [𝜔

−

𝑛
, 𝜔
+

𝑛
])
𝑇 can be seen as

an intersection point of these planes.
On the other hand, (11) holds for multiplicatively con-

sistent IFPRs. In the real-life decision situations, IFPRs
furnished by DMs are often inconsistent and may not be
denoted by (11). In other words, the planes 𝑟−

𝑖𝑗
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖
𝜔
−

𝑖
= 0

and 𝑟+
𝑖𝑗
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖
𝜔
+

𝑖
= 0 (𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛) have no unified

intersection point. In this case, one has to seek 2𝑛-space point
(𝜔
−

1
, 𝜔
+

1
, 𝜔
−

2
, 𝜔
+

2
, . . . , 𝜔

−

𝑛
, 𝜔
+

𝑛
)
𝑇 satisfying (7) as close to each

plane as possible.
Let

𝑑
(1)
𝑖𝑗
=


𝑟
−

𝑖𝑗
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖
𝜔
−

𝑖



√(𝑟−
𝑖𝑗
)
2
+ (𝑟+
𝑗𝑖
)
2
,

𝑑
(2)
𝑖𝑗
=


𝑟
+

𝑖𝑗
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖
𝜔
+

𝑖



√(𝑟+
𝑖𝑗
)
2
+ (𝑟−
𝑗𝑖
)
2

∀𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛,

(12)

where 𝑑(1)
𝑖𝑗

and 𝑑(2)
𝑖𝑗

denote the distances from the point (𝜔−
1
,

𝜔
+

1
, 𝜔
−

2
, 𝜔
+

2
, . . . , 𝜔

−

𝑛
, 𝜔
+

𝑛
)
𝑇 to the planes 𝑟−

𝑖𝑗
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖
𝜔
−

𝑖
= 0 and

𝑟
+

𝑖𝑗
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖
𝜔
+

𝑖
= 0, respectively.

Obviously, the smaller the sum of the values of the
distances 𝑑(1)

𝑖𝑗
and 𝑑(2)

𝑖𝑗
is, the closer the 𝑅 is to a mul-

tiplicatively consistent IFPR. Therefore, reasonable point
(𝜔
−

1
, 𝜔
+

1
, 𝜔
−

2
, 𝜔
+

2
, . . . , 𝜔

−

𝑛
, 𝜔
+

𝑛
)
𝑇 can be determined by solving

the following geometric least square optimization model:

min 𝐽 =

𝑛

∑
𝑖=1

𝑛

∑
𝑗 ̸=𝑖,𝑗=1

(
(𝑟
−

𝑖𝑗
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖
𝜔
−

𝑖
)
2

(𝑟−
𝑖𝑗
)
2
+ (𝑟+
𝑗𝑖
)
2 +

(𝑟
+

𝑖𝑗
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖
𝜔
+

𝑖
)
2

(𝑟+
𝑖𝑗
)
2
+ (𝑟−
𝑗𝑖
)
2 )

s.t.

{{{{{{{

{{{{{{{

{

𝜔
+

𝑖
+

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
−

𝑗
≤ 1, 𝑖 = 1, 2, . . . , 𝑛

𝜔
−

𝑖
+

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
+

𝑗
≥ 1, 𝑖 = 1, 2, . . . , 𝑛

0 < 𝜔−
𝑖
≤ 𝜔
+

𝑖
≤ 1 𝑖 = 1, 2, . . . , 𝑛,

(13)

where the constraints are the normalization conditions of the
[0, 1]-valued interval weight vector 𝜔 corresponding to (7),
and 𝜔−

𝑖
(𝑖 = 1, 2, . . . , 𝑛) and 𝜔+

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are decision

variables.
Since 𝑟−

𝑖𝑗
+ 𝑟
+

𝑗𝑖
= 1 and 𝑟+

𝑖𝑗
+ 𝑟
−

𝑗𝑖
= 1 for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

one can obtain

(𝑟
−

𝑗𝑖
𝜔
+

𝑖
− 𝑟
+

𝑖𝑗
𝜔
−

𝑗
)
2

(𝑟−
𝑗𝑖
)
2
+ (𝑟+
𝑖𝑗
)
2 =

(𝑟
+

𝑖𝑗
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖
𝜔
+

𝑖
)
2

(𝑟+
𝑖𝑗
)
2
+ (𝑟−
𝑗𝑖
)
2 , 𝑖 ̸= 𝑗

(𝑟
+

𝑗𝑖
𝜔
−

𝑖
− 𝑟
−

𝑖𝑗
𝜔
+

𝑗
)
2

(𝑟+
𝑗𝑖
)
2
+ (𝑟−
𝑖𝑗
)
2 =

(𝑟
−

𝑖𝑗
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖
𝜔
−

𝑖
)
2

(𝑟−
𝑖𝑗
)
2
+ (𝑟+
𝑗𝑖
)
2 , 𝑖 ̸= 𝑗

(𝑟
−

𝑖𝑗
)
2
+ (𝑟
+

𝑗𝑖
)
2
= 2 (𝑟−

𝑖𝑗
)
2
− 2𝑟−
𝑖𝑗
+ 1,

(𝑟
+

𝑖𝑗
)
2
+ (𝑟
−

𝑗𝑖
)
2
= 2 (𝑟+

𝑖𝑗
)
2
− 2𝑟+
𝑖𝑗
+ 1.

(14)

Therefore, solutions to model (13) are found by solving the
following optimization model:

min 𝐽 =

𝑛−1
∑
𝑖=1

𝑛

∑
𝑗=𝑖+1

(
(𝑟
−

𝑖𝑗
𝜔
+

𝑗
− (1 − 𝑟−

𝑖𝑗
) 𝜔
−

𝑖
)
2

2 (𝑟−
𝑖𝑗
)
2
− 2𝑟−
𝑖𝑗
+ 1

+
(𝑟
+

𝑖𝑗
𝜔
−

𝑗
− (1 − 𝑟+

𝑖𝑗
) 𝜔
+

𝑖
)
2

2 (𝑟+
𝑖𝑗
)
2
− 2𝑟+
𝑖𝑗
+ 1

)

s.t.

{{{{{{{{{{

{{{{{{{{{{

{

𝜔
+

𝑖
+

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
−

𝑗
≤ 1,

𝜔
−

𝑖
+

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
+

𝑗
≥ 1,

𝑖 = 1, 2, . . . , 𝑛

0 < 𝜔−
𝑖
≤ 𝜔
+

𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑛.

(15)

Solving (15), one gets a normalized [0, 1]-valued interval
weight vector expressed as 𝜔∗ = (𝜔∗

1
, 𝜔
∗

2
, . . . , 𝜔

∗

𝑛
)
𝑇
= ([𝜔

−∗

1
,

𝜔
+∗

1
], [𝜔
−∗

2
, 𝜔
+∗

2
], . . . , [𝜔

−∗

𝑛
, 𝜔
+∗

𝑛
])
𝑇.

Substituting 𝜔∗ into (6), we obtain a multiplicatively
consistent IFPR as

𝑅
∗

= (𝑟
∗

𝑖𝑗
)
𝑛×𝑛

= ([𝑟
−∗

𝑖𝑗
, 𝑟
+∗

𝑖𝑗
])
𝑛×𝑛
, (16)
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Table 1: A comparative study for the IFPR 𝑅.

Model Reference Priority weight vector (𝜔
1
, 𝜔
2
, 𝜔
3
, 𝜔
4
)
𝑇 Ranking

(M-8) and
(M-9)

Xu and Chen
[11]

([0.1568, 0.3138], [0.1760, 0.3592],
[0.2927, 0.4934], [0.0847, 0.1822])𝑇 𝑥

3

82.68%
≻ 𝑥
2

59.49%
≻ 𝑥
1

90.02%
≻ 𝑥
4

Equations (22)
and (23) Genç et al. [12] ([0.1568, 0.3138], [0.1760, 0.3592],

[0.2927, 0.4934], [0.0847, 0.1822])𝑇 𝑥
3

82.68%
≻ 𝑥
2

59.49%
≻ 𝑥
1

90.02%
≻ 𝑥
4

Algorithm 3

𝛼 = 𝛽 = 25

𝜀 = 0.001

Lan et al. [13] ([0.1575, 0.3138], [0.1760, 0.3580],
[0.2927, 0.4934], [0.0847, 0.1822])𝑇 𝑥

3

82.93%
≻ 𝑥
2

59.26%
≻ 𝑥
1

90.26%
≻ 𝑥
4

(MOD5)
𝑝 = 1, 2, 3, 5

Xia and Xu [14]

(0.2157, 0.1989, 0.4227, 0.1627)
𝑇, 𝑝 = 1

(0.2310, 0.2495, 0.3848, 0.1346)
𝑇, 𝑝 = 2

(0.2316, 0.2496, 0.3828, 0.1360)
𝑇, 𝑝 = 3

(0.2329, 0.2468, 0.3791, 0.1412)
𝑇, 𝑝 = 5

𝑥
3

100%
≻ 𝑥
1

100%
≻ 𝑥
2

100%
≻ 𝑥
4
, 𝑝 = 1

𝑥
3

100%
≻ 𝑥
2

100%
≻ 𝑥
1

100%
≻ 𝑥
4
, 𝑝 = 2, 3, 5

Equation (15) This paper ([0.1662, 0.2677], [0.1706, 0.3158],
[0.3012, 0.4192], [0.0945, 0.1425])𝑇 𝑥

3

94.45%
≻ 𝑥
2

60.64%
≻ 𝑥
1

100%
≻ 𝑥
4

where

[𝑟
−∗

𝑖𝑗
, 𝑟
+∗

𝑖𝑗
] =

{{{

{{{

{

[0.5, 0.5] 𝑖 = 𝑗

[
𝜔
−∗

𝑖

𝜔−∗
𝑖
+ 𝜔+∗
𝑗

,
𝜔
+∗

𝑖

𝜔−∗
𝑗
+ 𝜔+∗
𝑖

] 𝑖 ̸= 𝑗.
(17)

If 𝐽∗ = 0, where 𝐽∗ is the optimal objective value of (15),
then all of the DM’s pairwise judgments in 𝑅 are expressed
as (17). It follows that 𝑅 is the same as 𝑅∗. Thus, 𝑅 is a
multiplicatively consistent IFPR.

Example 4. We discuss an MCDM problem concerning four
decision alternatives 𝑥

1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
. Denote the alternative

set by 𝑋 = {𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
}. A DM compares each pair of

alternatives on 𝑋 and yields the following IFPR, which has
been examined by Lan et al. [13]:

𝑅 = (𝑟
𝑖𝑗
)4×4 = ([𝑟

−

𝑖𝑗
, 𝑟
+

𝑖𝑗
])

4×4

=

[
[
[
[
[

[

[0.5, 0.5] [0.36, 0.66] [0.26, 0.45] [0.57, 0.72]
[0.34, 0.63] [0.5, 0.5] [0.32, 0.52] [0.55, 0.77]
[0.55, 0.74] [0.48, 0.68] [0.5, 0.5] [0.66, 0.83]
[0.28, 0.43] [0.23, 0.45] [0.17, 0.34] [0.5, 0.5]

]
]
]
]
]

]

.

(18)

Solving model (15) by the Optimization Modelling Soft-
ware Lingo 11, one can obtain the following optimal [0, 1]-
valued interval weight vector:

𝜔
∗
= (𝜔
∗

1 , 𝜔
∗

2 , 𝜔
∗

3 , 𝜔
∗

4 )
𝑇
= ([0.1662, 0.2677] ,

[0.1706, 0.3158] , [0.3012, 0.4192] ,

[0.0945, 0.1425])𝑇 .

(19)

By (8), the matrix of the possibility degree is determined
as

𝑃 =

[
[
[
[
[

[

0.5 0.3936 0 1
0.6064 0.5 0.0555 1

1 0.9445 0.5 1
0 0 0 0.5

]
]
]
]
]

]

. (20)

Summing all of elements in each line of 𝑃, we obtain 𝜌1 =
1.8936, 𝜌2 = 2.1619, 𝜌3 = 3.4445, and 𝜌4 = 0.5. As 𝜌3 > 𝜌2 >
𝜌1 > 𝜌4, the four alternatives are ranked as 𝑥

3

94.45%
≻ 𝑥
2

60.64%
≻

𝑥
1

100%
≻ 𝑥
4
.

By (17), the corresponding multiplicatively consistent
IFPR is determined as

𝑅
∗

=

[
[
[
[
[

[

[0.5, 0.5] [0.3448, 0.6108] [0.2839, 0.4706] [0.5384, 0.7391]
[0.3892, 0.6552] [0.5, 0.5] [0.2893, 0.5118] [0.5449, 0.7697]
[0.5294, 0.7161] [0.4882, 0.7107] [0.5, 0.5] [0.6788, 0.8160]
[0.2609, 0.4616] [0.2303, 0.4551] [0.1840, 0.3212] [0.5, 0.5]

]
]
]
]
]

]

. (21)

Next, four different approaches proposed by Xu andChen
[11], Genç et al. [12], Lan et al. [13], and Xia and Xu [14] are
applied to the same IFPR 𝑅 to derive priority weights that are
summarized in Table 1.

Table 1 demonstrates that the ranking orders are nearly
consistent based on the five different models. However, the
values of the possibility degree of the obtained [0, 1]-valued
interval weights in this paper differ from the results derived
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from the other methods, which is due to the fact that the
approaches adopt different consistency constraints for IFPRs.
The transitivity conditions in [11–14] are all based on the
feasible-region method; thus, 𝑅 is judged to be a consistent
IFPR. One can verify that 𝑅 is not multiplicatively consistent
under Definition 3. On the other hand, Xia and Xu’s method
[14] can only generate crisp priority weight vectors and
yields distinct rankings under different parameter values for
this particular IFPR. Lan et al.’s method [13] has to select
appropriate parameters 𝛼 and 𝛽, which seems difficult and
complex.

4. Geometric Least Square Models for Group
Decision Making with IFPRs

4.1. Derivation of Interval Weights Based on Individual IFPRs
with Known Importance Weights. In the real-world situa-
tions, a decision is often made by a group of DMs. Suppose
that an individual IFPR 𝑅

𝑘
= (𝑟
𝑖𝑗𝑘
)
𝑛×𝑛

= ([𝑟
−

𝑖𝑗𝑘
, 𝑟
+

𝑖𝑗𝑘
])
𝑛×𝑛

is
furnished by the DM 𝑑

𝑘
(𝑘 = 1, 2, . . . , 𝑚) to express his/her

preferences on the alternative set 𝑋. Let 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑚}
be a set of 𝑚 DMs, and let 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑚)

𝑇 be an
importance weight vector of 𝑚 DMs or a relative weight
vector of IFPRs 𝑅

𝑘
(𝑘 = 1, 2, . . . , 𝑚), which is known and

satisfies ∑𝑚
𝑘=1 𝜆𝑘 = 1 and 𝜆

𝑘
≥ 0 for all 𝑘 = 1, 2, . . . , 𝑚.

As different DMs generally have different subjective pref-
erences or pair-wise judgments, it is nearly impossible to seek
a common intersection point for planes 𝑟−

𝑖𝑗𝑘
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖𝑘
𝜔
−

𝑖
= 0

and 𝑟+
𝑖𝑗𝑘
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖𝑘
𝜔
+

𝑖
= 0 (𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚).

In order to generate a unified [0, 1]-valued interval weight
vector for all individual IFPRs, the distances from a point to
the planes are introduced as follows:

𝑑
(1)
𝑖𝑗𝑘
=


𝑟
−

𝑖𝑗𝑘
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖𝑘
𝜔
−

𝑖



√(𝑟−
𝑖𝑗𝑘
)
2
+ (𝑟+
𝑗𝑖𝑘
)
2
,

𝑑
(2)
𝑖𝑗𝑘
=


𝑟
+

𝑖𝑗𝑘
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖𝑘
𝜔
+

𝑖



√(𝑟+
𝑖𝑗𝑘
)
2
+ (𝑟−
𝑗𝑖𝑘
)
2

∀𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚,

(22)

where 𝑑(1)
𝑖𝑗𝑘

and 𝑑(2)
𝑖𝑗𝑘

denote the distances from the 2𝑛-space
point (𝜔−

1
, 𝜔
+

1
, 𝜔
−

2
, 𝜔
+

2
, . . . , 𝜔

−

𝑛
, 𝜔
+

𝑛
)
𝑇 to the planes 𝑟−

𝑖𝑗𝑘
𝜔
+

𝑗
−

𝑟
+

𝑗𝑖𝑘
𝜔
−

𝑖
= 0 and 𝑟+

𝑖𝑗𝑘
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖𝑘
𝜔
+

𝑖
= 0, respectively.

Once again, the smaller the sum of the values of the dis-
tances𝑑(1)

𝑖𝑗𝑘
and𝑑(2)
𝑖𝑗𝑘
, the better the IFPR𝑅

𝑘
from the viewpoint

of the multiplicative consistency. As different IFPRs 𝑅
𝑘
(𝑘 =

1, 2, . . . , 𝑚) have different importance weights, a reasonable
priority weight vector will be obtained by minimizing the
weighted sum of these distances. Therefore, the following
geometric least square model is established to derive a group
[0, 1]-valued interval weight vector directly from individual
IFPRs:

min 𝐽 =

𝑚

∑
𝑘=1

𝑛

∑
𝑖=1

𝑛

∑
𝑗 ̸=𝑖,𝑗=1

𝜆
𝑘
(
(𝑟
−

𝑖𝑗𝑘
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖𝑘
𝜔
−

𝑖
)
2

(𝑟−
𝑖𝑗𝑘
)
2
+ (𝑟+
𝑗𝑖𝑘
)
2 +

(𝑟
+

𝑖𝑗𝑘
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖𝑘
𝜔
+

𝑖
)
2

(𝑟+
𝑖𝑗𝑘
)
2
+ (𝑟−
𝑗𝑖𝑘
)
2 )

s.t.

{{{{{{{

{{{{{{{

{

𝜔
+

𝑖
+

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
−

𝑗
≤ 1, 𝑖 = 1, 2, . . . , 𝑛

𝜔
−

𝑖
+

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
+

𝑗
≥ 1, 𝑖 = 1, 2, . . . , 𝑛

0 < 𝜔−
𝑖
≤ 𝜔
+

𝑖
≤ 1 𝑖 = 1, 2, . . . , 𝑛.

(23)

As 𝑟−
𝑖𝑗𝑘
+ 𝑟
+

𝑗𝑖𝑘
= 1 and 𝑟+

𝑖𝑗𝑘
+ 𝑟
−

𝑗𝑖𝑘
= 1 for all 𝑖, 𝑗 =

1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚, we have

(𝑟
−

𝑗𝑖𝑘
𝜔
+

𝑖
− 𝑟
+

𝑖𝑗𝑘
𝜔
−

𝑗
)
2

(𝑟−
𝑗𝑖𝑘
)
2
+ (𝑟+
𝑖𝑗𝑘
)
2 =

(𝑟
+

𝑖𝑗𝑘
𝜔
−

𝑗
− 𝑟
−

𝑗𝑖𝑘
𝜔
+

𝑖
)
2

(𝑟+
𝑖𝑗𝑘
)
2
+ (𝑟−
𝑗𝑖𝑘
)
2 ,

𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚,

(𝑟
+

𝑗𝑖𝑘
𝜔
−

𝑖
− 𝑟
−

𝑖𝑗𝑘
𝜔
+

𝑗
)
2

(𝑟+
𝑗𝑖𝑘
)
2
+ (𝑟−
𝑖𝑗𝑘
)
2 =

(𝑟
−

𝑖𝑗𝑘
𝜔
+

𝑗
− 𝑟
+

𝑗𝑖𝑘
𝜔
−

𝑖
)
2

(𝑟−
𝑖𝑗𝑘
)
2
+ (𝑟+
𝑗𝑖𝑘
)
2 ,

𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚,

(𝑟
−

𝑖𝑗𝑘
)
2
+ (𝑟
+

𝑗𝑖𝑘
)
2
= 2 (𝑟−

𝑖𝑗𝑘
)
2
− 2𝑟−
𝑖𝑗𝑘
+ 1,

𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚,

(𝑟
+

𝑖𝑗𝑘
)
2
+ (𝑟
−

𝑗𝑖𝑘
)
2
= 2 (𝑟+

𝑖𝑗𝑘
)
2
− 2𝑟+
𝑖𝑗𝑘
+ 1,

𝑖 ̸= 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚.
(24)
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Thus, solutions to model (23) are determined by solving the
following geometric least square model:

min 𝐽 =

𝑚

∑
𝑘=1

𝑛−1
∑
𝑖=1

𝑛

∑
𝑗=𝑖+1

𝜆
𝑘
(
(𝑟
−

𝑖𝑗𝑘
𝜔
+

𝑗
− (1 − 𝑟−

𝑖𝑗𝑘
) 𝜔
−

𝑖
)
2

2 (𝑟−
𝑖𝑗𝑘
)
2
− 2𝑟−
𝑖𝑗𝑘
+ 1

+
(𝑟
+

𝑖𝑗𝑘
𝜔
−

𝑗
− (1 − 𝑟+

𝑖𝑗𝑘
) 𝜔
+

𝑖
)
2

2 (𝑟+
𝑖𝑗𝑘
)
2
− 2𝑟+
𝑖𝑗𝑘
+ 1

)

s.t.

{{{{{{{{{

{{{{{{{{{

{

𝜔
+

𝑖
+

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
−

𝑗
≤ 1, 𝑖 = 1, 2, . . . , 𝑛

𝜔
−

𝑖
+

𝑛

∑
𝑗=1,𝑗 ̸=𝑖

𝜔
+

𝑗
≥ 1, 𝑖 = 1, 2, . . . , 𝑛

0 < 𝜔−
𝑖
≤ 𝜔
+

𝑖
≤ 1 𝑖 = 1, 2, . . . , 𝑛.

(25)

Solving this model, a group [0, 1]-valued interval weight
vector is determined as

𝜔
∗𝐺
= (𝜔
∗𝐺

1 , 𝜔
∗𝐺

2 , . . . , 𝜔
∗𝐺

𝑛
)
𝑇

= ([𝜔
−∗𝐺

1 , 𝜔
+∗𝐺

1 ] ,

[𝜔
−∗𝐺

2 , 𝜔
+∗𝐺

2 ] , . . . , [𝜔
−∗𝐺

𝑛
, 𝜔
+∗𝐺

𝑛
])
𝑇

.

(26)

4.2. Determination of ImportanceWeights of Individual IFPRs.
Models (23) and (25) are developed by assuming the impor-
tance weights of DMs (or experts) or the relative weights
of 𝑚 IFPRs to be known. However, in many real-world
situations, it is difficult to directly assign importance weights
to DMs or IFPRs because their importance depends onmany
factors such as expert’s assessment level, DM’s knowledge,
and expertise related to the decision problem domain. In
other words, the importance weights of DMs or the relative
weights of𝑚 IFPRs will have to be determined.

In group decision analysis, if 𝑚 IFPRs are the same, it
is logical to assign their importance the same weights; that
is, 𝜆
𝑘
= 1/𝑚 for all = 1, 2, . . . , 𝑚. In this case, model (25)

is reduced to (15). If the IFPR 𝑅
𝑘
is much different from

the others, its importance weight should be small and the
geometric mean of the difference ratios between 𝑅

𝑘
and the

others is large. Conversely, if 𝑅
𝑘
is very similar to the others,

its importance should be high and the geometric mean of
the difference ratios between 𝑅

𝑘
and the others is small. In

order to determine the relative weights of individual IFPRs,
a geometric mean based difference ratio between any two
IFPRs is introduced as follows.

Definition 5. Let 𝑅
𝑘
= (𝑟
𝑖𝑗𝑘
)
𝑛×𝑛

= ([𝑟
−

𝑖𝑗𝑘
, 𝑟
+

𝑖𝑗𝑘
])
𝑛×𝑛

and 𝑅
𝑙
=

(𝑟
𝑖𝑗𝑙
)
𝑛×𝑛

= ([𝑟
−

𝑖𝑗𝑙
, 𝑟
+

𝑖𝑗𝑙
])
𝑛×𝑛

be any two IFPRs; then, the difference
ratio between 𝑅

𝑘
and 𝑅

𝑙
is defined as

GMBDR (𝑅
𝑘
, 𝑅
𝑙
) = (∏

𝑖 ̸=𝑗

(
max {𝑟−

𝑖𝑗𝑘
, 𝑟
−

𝑖𝑗𝑙
}

min {𝑟−
𝑖𝑗𝑘
, 𝑟−
𝑖𝑗𝑙
}
)

⋅(
max {𝑟+

𝑖𝑗𝑘
, 𝑟
+

𝑖𝑗𝑙
}

min {𝑟+
𝑖𝑗𝑘
, 𝑟+
𝑖𝑗𝑙
}
))

1/2(𝑛2−𝑛)

.

(27)

Obviously, GMBDR(𝑅
𝑘
, 𝑅
𝑙
) ≥ 1 and GMBDR(𝑅

𝑘
, 𝑅
𝑙
) =

GMBDR(𝑅
𝑙
, 𝑅
𝑘
). If GMBDR(𝑅

𝑘
, 𝑅
𝑙
) = 1, one has 𝑅

𝑘
= 𝑅
𝑙
.

The larger the difference ratio GMBDR(𝑅
𝑘
, 𝑅
𝑙
) is, the less

similar the 𝑅
𝑘
is to 𝑅

𝑙
.

In order to derive the relative weights of individual IFPRs,
the geometric average difference ratio between one IFPR and
the others is introduced as follows.

Definition 6. Let 𝑅
𝑘
= (𝑟
𝑖𝑗𝑘
)
𝑛×𝑛

= ([𝑟
−

𝑖𝑗𝑘
, 𝑟
+

𝑖𝑗𝑘
])
𝑛×𝑛

(𝑘 = 1,
2, . . . , 𝑚) be individual IFPRs; then, the geometric average
difference ratio between 𝑅

𝑘
and the others is defined as

GMDR (𝑅
𝑘
) = (

𝑚

∏
𝑙=1,𝑙 ̸=𝑘

GMBDR (𝑅
𝑘
, 𝑅
𝑙
))

1/(𝑚−1)

. (28)

It is obvious that GMDR(𝑅
𝑘
) ≥ 1. The smaller the

GMDR(𝑅
𝑘
), the more important the 𝑅

𝑘
among individual

IFPRs. In particular, if GMDR(𝑅
𝑘
) = 1, one can obtain

GMDR(𝑅
𝑙
) = 1 for all 𝑙 = 1, 2, . . . , 𝑚; that is, 𝑚 IFPRs are

completely the same.Therefore, the following formula can be
employed to determine the relative weight of 𝑅

𝑘
:

𝜆
𝑘
=

1/GMDR (𝑅
𝑘
)

∑
𝑚

𝑘=1 (1/GMDR (𝑅
𝑘
))
, 𝑘 = 1, 2, . . . , 𝑚. (29)

Clearly, we have ∑𝑚
𝑘=1 𝜆𝑘 = 1 and 0 < 𝜆

𝑘
≤ 1 for all 𝑘 =

1, 2, . . . , 𝑚.
Based on the above analyses, we nowdevelop an approach

for deriving a group [0, 1]-valued interval weight vector
directly from individual IFPRs with unknown importance
weights. The approach is described in the following steps.

Step 1. For a group decision making problem with an alter-
native set 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}, let 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑚} be

the set of 𝑚 DMs. The DMs 𝑑
𝑘
(𝑘 = 1, 2, . . . , 𝑚) furnish

their preferences by means of IFPRs 𝑅
𝑘
= (𝑟
𝑖𝑗𝑘
)
𝑛×𝑛

= ([𝑟
−

𝑖𝑗𝑘
,

𝑟
+

𝑖𝑗𝑘
])
𝑛×𝑛

(𝑘 = 1, 2, . . . , 𝑚), where the relative importance
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weights of 𝑅
𝑘
(𝑘 = 1, 2, . . . , 𝑚) are unknown, and 0 < 𝑟−

𝑖𝑗𝑘
≤

𝑟
+

𝑖𝑗𝑘
< 1 for all 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚.

Step 2. Calculate the difference ratios between𝑅
𝑘
and𝑅

𝑙
(𝑘 ̸=

𝑙 = 1, 2, . . . , 𝑚) as per (27).

Step 3. Utilize (28) to calculate the difference ratio between
𝑅
𝑘
and the others for all 𝑘 = 1, 2, . . . , 𝑚.

Step 4. Utilize (29) to obtain the relative weight of 𝑅
𝑘
for all

𝑘 = 1, 2, . . . , 𝑚.

Step 5. Determine a group [0, 1]-valued interval weight
vector 𝜔∗𝐺 = (𝜔∗𝐺

1
, 𝜔
∗𝐺

2
, . . . , 𝜔

∗𝐺

𝑛
)
𝑇 by solving model (25).

Step 6. Calculate the possibility degree 𝑃(𝜔∗𝐺
𝑖
≥ 𝜔
∗𝐺

𝑗
) (𝑖, 𝑗 =

1, 2, . . . , 𝑛) as per (8).

Step 7. Construct the possibility degree matrix 𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

,
where 𝑝

𝑖𝑗
= 𝑃(𝜔

∗𝐺

𝑖
≥ 𝜔
∗𝐺

𝑗
).

Step 8. Adding all values in each row of 𝑃, we obtain 𝜌
𝑖
=

∑
𝑛

𝑗=1 𝑝𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑛).

Step 9. As per the decreasing order of 𝜌
𝑖
, a ranking order for

all decision alternatives is derived, and “𝑥
𝑖
being preferred to

𝑥
𝑗
” is expressed as 𝑥

𝑖

𝑃(𝜔
∗𝐺

𝑖
≥𝜔
∗𝐺

𝑗
)

≻ 𝑥
𝑗
.

5. An Application to the Enterprise
Resource Planning Software Product
Selection Problem

This section applies the proposed approach in Section 4
to an enterprise resource planning (ERP) software product
selection problem that concerns group decision making with
a hierarchical structure.

The ERP system has an important impact on improving
the productivity of the organizations. However, the imple-
mentation of an ERP system is often very expensive and
complex. Therefore, selecting the best suitable ERP software
product is a vital decision making problem of the organi-
zations when they aim to buy a ready ERP system in the
market. Many factors or criteria impact the ERP software
product selection [17]. In this case study, the ERP software
product selection is made by the following five critical
evaluation criteria: functionality (𝑐

1
), cost and customization

(𝑐
2
), reliability (𝑐

3
), compatibility (𝑐

4
), and market position

and reputation (𝑐
5
).

Although there aremany potential ERP software products
in themarket, only five of them, denoted by 𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
, and

𝑥
5
, are identified as candidates. A committee consisting of

three experts (𝑑
1
, 𝑑
2
, and 𝑑

3
) is set up to evaluate the five ERP

software products, and its objective is to select the best one
based on the above criterion scheme. The hierarchy of this
ERP software product selection problem is shown in Figure 1.

As the importance weights of the five criteria are to be
determined, each expert 𝑑

𝑘
(𝑘 = 1, 2, 3) compares each pair

of the criteria and provides his/her judgments by means of an
IFPR 𝑅𝐶

𝑘
= (𝑟
𝐶

𝑖𝑗𝑘
)
5×5
= ([𝑟
−𝐶

𝑖𝑗𝑘
, 𝑟
+𝐶

𝑖𝑗𝑘
])
5×5

. Consider

𝑅
𝐶

1 =

[
[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.70, 0.80] [0.65, 0.75] [0.45, 0.60] [0.60, 0.75]

[0.20, 0.30] [0.50, 0.50] [0.55, 0.60] [0.55, 0.65] [0.70, 0.80]

[0.25, 0.35] [0.40, 0.45] [0.50, 0.50] [0.70, 0.80] [0.55, 0.65]

[0.40, 0.55] [0.35, 0.45] [0.20, 0.30] [0.50, 0.50] [0.60, 0.65]

[0.25, 0.40] [0.20, 0.30] [0.35, 0.45] [0.35, 0.40] [0.50, 0.50]

]
]
]
]
]
]
]
]
]

]

,

𝑅
𝐶

2
=

[
[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.60, 0.75] [0.75, 0.85] [0.60, 0.70] [0.70, 0.80]

[0.25, 0.40] [0.50, 0.50] [0.55, 0.75] [0.60, 0.70] [0.65, 0.75]

[0.15, 0.25] [0.25, 0.45] [0.50, 0.50] [0.55, 0.60] [0.60, 0.70]

[0.30, 0.40] [0.30, 0.40] [0.40, 0.45] [0.50, 0.50] [0.55, 0.75]

[0.20, 0.30] [0.25, 0.35] [0.30, 0.40] [0.25, 0.45] [0.50, 0.50]

]
]
]
]
]
]
]
]
]

]

,

𝑅
𝐶

3
=

[
[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.50, 0.70] [0.55, 0.65] [0.60, 0.70] [0.55, 0.70]

[0.30, 0.50] [0.50, 0.50] [0.50, 0.70] [0.65, 0.80] [0.60, 0.70]

[0.35, 0.45] [0.30, 0.50] [0.50, 0.50] [0.60, 0.70] [0.60, 0.70]

[0.30, 0.40] [0.20, 0.35] [0.30, 0.40] [0.50, 0.50] [0.55, 0.65]

[0.30, 0.45] [0.30, 0.40] [0.30, 0.40] [0.35, 0.45] [0.50, 0.50]

]
]
]
]
]
]
]
]
]

]

.

(30)
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Product Product Product
x
1

x
2

x
n

· · ·

· · ·

ERP software product selection

c2 : cost and
customization

c3 :
reliability

c4 :
compatibility

c5 : market
position and
reputation

c1:
functionality

Figure 1: Decision hierarchy of an ERP software product selection problem.

On the other hand, the importance of the three experts
is also unknown. Therefore, we need firstly to determine the
relative weights of 𝑅𝐶

𝑘
(𝑘 = 1, 2, 3).

By (27), one can obtain the difference ratios between 𝑅𝐶
𝑘

and 𝑅𝐶
𝑙
(𝑘 ̸= 𝑙 = 1, 2, 3) as follows:

GMBDR (𝑅𝐶1 , 𝑅
𝐶

2 ) = GMBDR (𝑅𝐶2 , 𝑅
𝐶

1 ) = 1.2217,

GMBDR (𝑅𝐶1 , 𝑅
𝐶

3 ) = GMBDR (𝑅𝐶3 , 𝑅
𝐶

1 ) = 1.2280,

GMBDR (𝑅𝐶2 , 𝑅
𝐶

3 ) = GMBDR (𝑅𝐶3 , 𝑅
𝐶

2 ) = 1.1809.

(31)

As per (28), the difference ratios GMDR(𝑅𝐶
𝑘
) (𝑘 = 1, 2, 3)

are calculated as GMDR(𝑅𝐶1 ) = 1.2248, GMDR(𝑅𝐶2 ) =

1.2011, and GMDR(𝑅𝐶3 ) = 1.4501.
According to (29), the relative weights of 𝑅𝐶

𝑘
(𝑘 = 1, 2, 3)

are obtained as 𝜆
1
= 0.3491, 𝜆

2
= 0.3560, and 𝜆

3
= 0.2949.

Next, substituting 𝜆
𝑘
and 𝑅𝐶

𝑘
(𝑘 = 1, 2, 3) into (25) and

solving this model, one gets normalized criterion weight
vector 𝜔𝐶 = ([𝜔

−𝐶

1
, 𝜔
+𝐶

1
], [𝜔
−𝐶

2
, 𝜔
+𝐶

2
], . . . , [𝜔

−𝐶

5
, 𝜔
+𝐶

5
])
𝑇
=

([0.2789, 0.3424], [0.1783, 0.2418], [0.1380, 0.1883], [0.1228,
0.1613], [0.0887, 0.1297])

𝑇.
Based on the criterion scheme, each expert 𝑑

𝑘
(𝑘 =

1, 2, 3) compares each pair of the five ERP software products
with respect to each criterion 𝑐

𝑗
(𝑗 = 1, 2, . . . , 5) and

furnishes his/her judgments by an IFPR 𝑅𝑐𝑗
𝑘
= (𝑟
𝑐
𝑗

𝑖𝑗𝑘
)
5×5

=

([𝑟
−𝑐
𝑗

𝑖𝑗𝑘
, 𝑟
+𝑐
𝑗

𝑖𝑗𝑘
])
5×5

. Consider

𝑅
𝑐1
1 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.55, 0.65] [0.40, 0.55] [0.45, 0.60] [0.35, 0.45]
[0.35, 0.45] [0.50, 0.50] [0.35, 0.45] [0.30, 0.40] [0.25, 0.35]
[0.45, 0.60] [0.55, 0.65] [0.50, 0.50] [0.45, 0.60] [0.40, 0.55]
[0.40, 0.55] [0.60, 0.70] [0.40, 0.55] [0.50, 0.50] [0.35, 0.50]
[0.55, 0.65] [0.65, 0.75] [0.45, 0.60] [0.50, 0.65] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

,

𝑅
𝑐1
2 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.65, 0.75] [0.55, 0.65] [0.60, 0.70] [0.40, 0.55]
[0.25, 0.35] [0.50, 0.50] [0.25, 0.40] [0.65, 0.75] [0.30, 0.45]
[0.35, 0.45] [0.60, 0.75] [0.50, 0.50] [0.55, 0.70] [0.35, 0.45]
[0.30, 0.40] [0.25, 0.35] [0.30, 0.45] [0.50, 0.50] [0.30, 0.40]
[0.45, 0.60] [0.55, 0.70] [0.55, 0.65] [0.60, 0.70] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

,

𝑅
𝑐1
3 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.35, 0.45] [0.30, 0.55] [0.25, 0.45] [0.35, 0.60]
[0.55, 0.65] [0.50, 0.50] [0.65, 0.75] [0.30, 0.40] [0.10, 0.30]
[0.45, 0.70] [0.25, 0.35] [0.50, 0.50] [0.35, 0.65] [0.25, 0.45]
[0.55, 0.75] [0.60, 0.70] [0.35, 0.65] [0.50, 0.50] [0.45, 0.75]
[0.40, 0.65] [0.70, 0.90] [0.55, 0.75] [0.25, 0.55] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

,
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𝑅
𝑐2
1 = 𝑅

𝑐2
2 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.35, 0.55] [0.30, 0.45] [0.15, 0.30] [0.30, 0.40]
[0.45, 0.65] [0.50, 0.50] [0.35, 0.50] [0.45, 0.65] [0.20, 0.30]
[0.55, 0.70] [0.50, 0.65] [0.50, 0.50] [0.45, 0.65] [0.30, 0.45]
[0.70, 0.85] [0.35, 0.55] [0.35, 0.55] [0.50, 0.50] [0.25, 0.45]
[0.60, 0.70] [0.70, 0.80] [0.55, 0.70] [0.55, 0.75] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

,

𝑅
𝑐2
3 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.30, 0.40] [0.60, 0.75] [0.35, 0.65] [0.20, 0.60]
[0.60, 0.70] [0.50, 0.50] [0.45, 0.60] [0.15, 0.35] [0.40, 0.60]
[0.25, 0.40] [0.40, 0.55] [0.50, 0.50] [0.70, 0.80] [0.20, 0.35]
[0.35, 0.65] [0.65, 0.85] [0.20, 0.30] [0.50, 0.50] [0.45, 0.75]
[0.40, 0.80] [0.40, 0.60] [0.65, 0.80] [0.25, 0.55] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

,

𝑅
𝑐3
1 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.35, 0.45] [0.10, 0.25] [0.45, 0.55] [0.20, 0.25]
[0.55, 0.65] [0.50, 0.50] [0.25, 0.50] [0.20, 0.35] [0.10, 0.35]
[0.75, 0.90] [0.50, 0.75] [0.50, 0.50] [0.55, 0.75] [0.65, 0.75]
[0.45, 0.55] [0.65, 0.80] [0.25, 0.45] [0.50, 0.50] [0.45, 0.55]
[0.75, 0.80] [0.65, 0.90] [0.25, 0.35] [0.45, 0.55] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

,

𝑅
𝑐3
2 = 𝑅

𝑐3
3 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.65, 0.75] [0.10, 0.30] [0.35, 0.45] [0.35, 0.55]
[0.25, 0.35] [0.50, 0.50] [0.25, 0.30] [0.25, 0.45] [0.30, 0.45]
[0.70, 0.90] [0.70, 0.75] [0.50, 0.50] [0.50, 0.55] [0.45, 0.65]
[0.55, 0.65] [0.55, 0.75] [0.45, 0.50] [0.50, 0.50] [0.35, 0.45]
[0.45, 0.65] [0.55, 0.70] [0.35, 0.55] [0.55, 0.65] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

,

𝑅
𝑐4
1 = 𝑅

𝑐4
3 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.65, 0.75] [0.20, 0.35] [0.70, 0.85] [0.10, 0.30]
[0.25, 0.35] [0.50, 0.50] [0.55, 0.80] [0.40, 0.55] [0.35, 0.45]
[0.65, 0.80] [0.20, 0.45] [0.50, 0.50] [0.35, 0.45] [0.45, 0.55]
[0.15, 0.30] [0.45, 0.60] [0.55, 0.65] [0.50, 0.50] [0.30, 0.40]
[0.70, 0.90] [0.55, 0.65] [0.45, 0.55] [0.60, 0.70] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

,

𝑅
𝑐4
2 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.35, 0.65] [0.45, 0.70] [0.40, 0.65] [0.30, 0.40]
[0.35, 0.65] [0.50, 0.50] [0.35, 0.45] [0.45, 0.65] [0.45, 0.60]
[0.30, 0.55] [0.55, 0.65] [0.50, 0.50] [0.60, 0.70] [0.30, 0.50]
[0.35, 0.60] [0.35, 0.55] [0.30, 0.40] [0.50, 0.50] [0.45, 0.60]
[0.60, 0.70] [0.40, 0.55] [0.50, 0.80] [0.40, 0.55] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

,

𝑅
𝑐5
1 = 𝑅

𝑐5
2 = 𝑅

𝑐5
3 =

[
[
[
[
[
[
[
[

[

[0.50, 0.50] [0.60, 0.70] [0.40, 0.45] [0.55, 0.65] [0.50, 0.60]
[0.30, 0.40] [0.50, 0.50] [0.35, 0.45] [0.55, 0.60] [0.45, 0.50]
[0.55, 0.60] [0.55, 0.65] [0.50, 0.50] [0.75, 0.85] [0.60, 0.70]
[0.35, 0.45] [0.40, 0.45] [0.15, 0.25] [0.50, 0.50] [0.35, 0.45]
[0.40, 0.50] [0.50, 0.55] [0.30, 0.40] [0.55, 0.65] [0.50, 0.50]

]
]
]
]
]
]
]
]

]

.

(32)

For each criterion 𝑐
𝑗
(𝑗 = 1, 2, . . . , 5), by using (27), (28),

and (29), the difference ratios GMDR(𝑅𝑐𝑗
𝑘
) and the relative

weights of 𝑅𝑐𝑗
𝑘
(𝑘 = 1, 2, 3) are determined as shown in

Table 2.
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Table 2: Difference ratios and relative weights for individual IFPRs.

𝑘
𝑅
𝑐1
𝑘

𝑅
𝑐2
𝑘

𝑅
𝑐3
𝑘

𝑅
𝑐4
𝑘

𝑅
𝑐5
𝑘

GMDR Weight GMDR Weight GMDR Weight GMDR Weight GMDR Weight
1 1.3051 0.3961 1.2542 0.3575 1.3571 0.3004 1.2362 0.3560 1 1/3
2 1.4341 0.3605 1.2542 0.3575 1.1649 0.3498 1.5281 0.2880 1 1/3
3 2.1244 0.2434 1.5729 0.2850 1.1649 0.3498 1.2362 0.3560 1 1/3

Table 3: Local [0, 1]-valued interval weights and the aggregated interval weights.

Candidate 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 Aggregated interval weights
[0.2789, 0.3424] [0.1783, 0.2418] [0.1380, 0.1883] [0.1228, 0.1613] [0.0887, 0.1297]

𝑥1 [0.1601, 0.2272] [0.0949, 0.1552] [0.0949, 0.1436] [0.1174, 0.1790] [0.2003, 0.2384] [0.1287, 0.2608]
𝑥2 [0.1099, 0.1456] [0.1232, 0.1828] [0.0818, 0.1298] [0.1376, 0.1992] [0.1419, 0.1709] [0.1145, 0.1643]

𝑥3 [0.1525, 0.2196] [0.1444, 0.2192] [0.2553, 0.3247] [0.1485, 0.2101] [0.2760, 0.3141] [0.1779, 0.2504]

𝑥4 [0.1344, 0.1907] [0.1318, 0.2078] [0.1719, 0.2209] [0.1222, 0.1838] [0.0970, 0.1243] [0.1321, 0.1937]

𝑥5 [0.2170, 0.2840] [0.2348, 0.3108] [0.1810, 0.2504] [0.2277, 0.2893] [0.1523, 0.1905] [0.2067, 0.2775]

For each criterion 𝑐
𝑗
(𝑗 = 1, 2, . . . , 5), plugging 𝑅𝑐𝑗

𝑘
(𝑘 =

1, 2, 3) and their relative weights into (25) and solving this
model, one can obtain a normalized [0, 1]-valued interval
weight vector for 𝑥

𝑖
(𝑖 = 1, 2, . . . , 5) with respect to the

criterion 𝑐
𝑗
, denoted by ([𝜔−

1𝑗
, 𝜔
+

1𝑗
], [𝜔
−

2𝑗
, 𝜔
+

2𝑗
], . . . , [𝜔

−

5𝑗
, 𝜔
+

5𝑗
])
𝑇,

as listed in columns 1–5 in Table 3, where the first row gives
the criterion weights 𝜔∗𝐶

𝑗
(𝑗 = 1, 2, . . . , 5) derived earlier.

Similar to the treatment inWang andLi [15], the following
linear programs given by Bryson and Mobolurin [18] are
applied to aggregate local [0, 1]-valued interval weights into
the aggregated interval weights for 𝑥

𝑖
(𝑖 = 1, 2, . . . , 5).

Consider

min 𝜔
−

𝑥
𝑖

=

5
∑
𝑗=1
𝜔
−

𝑖𝑗
𝜔
𝑗

s.t.
{{{

{{{

{

𝜔
−𝐶

𝑗
≤ 𝜔
𝑗
≤ 𝜔
+𝐶

𝑗
, 𝑗 = 1, 2, . . . , 5

5
∑
𝑗=1
𝜔
𝑗
= 1,

max 𝜔
+

𝑥
𝑖

=

5
∑
𝑗=1
𝜔
+

𝑖𝑗
𝜔
𝑗

s.t.
{{{

{{{

{

𝜔
−𝐶

𝑗
≤ 𝜔
𝑗
≤ 𝜔
+𝐶

𝑗
, 𝑗 = 1, 2, . . . , 5

5
∑
𝑗=1
𝜔
𝑗
= 1,

(33)

where 𝜔
𝑗
(for 𝑗 = 1, 2, . . . , 5) are decision variables.

In (33), [𝜔−𝐶
𝑗
, 𝜔
+𝐶

𝑗
] (for 𝑗 = 1, 2, . . . , 5) are the normalized

[0, 1]-valued interval weights of the five criteria, and [𝜔−
𝑖𝑗
, 𝜔
+

𝑖𝑗
]

(for 𝑖 = 1, 2, . . . , 5) are the normalized [0, 1]-valued interval
weights for the five alternatives over the criterion 𝑐

𝑗
(𝑗 =

1, 2, . . . , 5). They are determined and shown in Table 3.
Solving (33) yields the aggregated [0, 1]-valued interval

weight 𝜔
𝑥
𝑖

= [𝜔
−

𝑥
𝑖

, 𝜔
+

𝑥
𝑖

] for 𝑥
𝑖
(𝑖 = 1, 2, . . . , 5) as listed in the

last column in Table 3.

By (8), we obtain the possibility degree matrix as follows:

𝑃 =

[
[
[
[
[
[
[
[

[

0.5 0.8043 0.4052 0.6644 0.2666
0.1957 0.5 0 0.2890 0
0.5948 1 0.5 0.8822 0.3050
0.3356 0.7110 0.1178 0.5 0
0.7234 1 0.6950 1 0.5

]
]
]
]
]
]
]
]

]

. (34)

Adding up all of elements in each row of 𝑃, we have 𝜌1 =
2.6405, 𝜌2 = 0.9847, 𝜌3 = 3.2820, 𝜌4 = 1.6644, and 𝜌5 =
3.9184. As 𝜌5 > 𝜌3 > 𝜌1 > 𝜌4 > 𝜌2, the five ERP software
products are ranked as 𝑥

5

69.5%
≻ 𝑥
3

59.48%
≻ 𝑥
1

66.44%
≻ 𝑥
4

71.1%
≻ 𝑥
2
.

6. Conclusions

Derivation of priority weights from IFPRs plays an important
role for MCDM with interval fuzzy preference information.
In this paper, we have analyzed the relationship among the
normalized [0, 1]-valued interval weights, multiplicatively
consistent interval judgments, and planes. A geometric least
square model has been developed for deriving [0, 1]-valued
interval weights from any IFPR and extended to generate
a group [0, 1]-valued interval weight vector directly from
individual IFPRs, whose relative weights are assumed to be
known. We have introduced the notion of the geometric
average difference ratio between one IFPR and the others and
applied it to determine the relative importance weights of
individual IFPRs. A geometric least squares based approach
has been put forward for group decision making with IFPRs.
We have provided a numerical example and comparative
analyses to illustrate the validity of the proposed models and
presented a case study to show that the proposed framework
is operational in practice.

In the future, we will focus on the ratio-based geometric
similarity measure on IFPRs and its application to consensus
models of group decision making.
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