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The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of
radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local
support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel
interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer
equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual
function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium,
first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting
medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an
efficient, accurate, and stable method for the calculation of radiative transfer in participating media.

1. Introduction

Radiative heat transfer among absorbing, scattering, and
emitting medium plays an important role in many engineer-
ing application, that is, glass fabrication, laser pulse heating,
and diesel fuel droplets burners. As a useful tool, numerical
simulation is adopted widely in the study of radiative heat
transfer, in which some methods have been developed to
solve the radiative heat transfer in participating medium,
such as the Monte Carlo method, the zonal method, the
discrete-ordinatesmethod (DOM), the finite volumemethod
(FVM), and the finite element method (FEM). However,
these traditional methods severely depend on the predefined
mesh quality for complex geometry shape and remeshing is
needed while large deformation occurs. As a result, some
meshless methods are proposed to avoid the drawback.

Sadat [1] presented a moving least-squares colloca-
tion method to solve the radiative transfer equation, and
the results showed that, for small absorption coefficient,
the primitive variables formulation is unstable while the
even parity formulation is always stable and accurate.
Liu employed the meshless local Petrov-Galerkin (MLPG)

method [2–4] and the least-squares collocation meshless
(LSCM) method [5–7] to solve radiative heat transfer in
gradient refractive index medium and coupled heat transfer
in a participating medium. Wang et al. [8] presented a
moving least squares approximation meshless method to
solve the radiative transfer equation in complex 2D and 3D
geometries. Zhang et al. [9, 10] proposed the Nature Element
Method (NEM) to simulate the radiative heat transfer in
a two-dimensional enclosure with absorbing, emitting, and
isotropically scattering medium inside.

The reproducing kernel particlemethod (RKPM) [11] was
developed from the smoothed particle hydrodynamics (SPH)
method [12]. Both of the methods are Lagrangian meshless
methods. Compared with other meshless methods, where
the spatial node is only interpolated node, the Lagrangian
meshlessmethodhas itself advantage that the discrete particle
carries volume, density, and mass of material and can move
under effect of external force and inner interaction. The
discrete particle represents both the approximate node and
material characteristics at same time, and it makes the
Lagrangian meshless method more attractive. However, SPH
has a drawback, where the shape function does not satisfy
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normalization when the discrete particle distribution is
nonuniform, and this also happens on the boundarywhen the
discrete particle distribution is uniform. In RKPM, the shape
function was improved by introducing a continuous repro-
ducing kernel. So the RKPM can work well over the whole
domain. It has wide application in many engineering fields,
such as, rolling plane strain problem [13], bucking analysis
of thin plates [14], large deformation nonlinear elastic prob-
lems [15–18], metal forming problem [19–22], elastic-plastic
problems [23, 24], convection-diffusion problem [25–27],
heat conduction problems [28–30], and fragment-impact
problem [31, 32]. But up to now, to the best of our knowledge,
there is still lack of literature on the application of RKPM for
radiative heat transfer.

Theobjectives of this paper are to introduce theRKPMfor
solving the problem of radiative heat transfer in participating
medium, in which the RKPM is employed to construct
the interpolation function of the radiative intensity and its
derivative and the least-squares point collocation technique
(LSPCT) is employed to obtain the numerical solution
by minimizing the summation of residuals of all discrete
particles and determine the optimized scaling factor value
and number of discrete particles in calculated process. In
Section 2, the principle of RKPM is described briefly and the
discretization of radiative transfer equation is constructed. In
Section 3, five numerical examples are introduced to verify
the performance of the method. Finally, conclusions and
future work on the RKPM are given in Section 4.

2. Mathematical Formulations

2.1. Reproducing Kernel ParticleMethod (RKPM). TheRKPM
has a similar approximation formula with the SPH method;
therefore the integral physical field function 𝑓(𝑥󸀠) can be
written as follows [33]:

𝑓 (𝑥) = ∫
Ω

𝑤(ℎ, 𝑥 − 𝑥󸀠) 𝑓 (𝑥󸀠) d𝑥󸀠, (1)

where 𝑥, 𝑥󸀠 are the spatial coordinates; ℎ is the radius of
the support domains of the corrected kernel function, and
ℎ = 𝑘Δ𝑥, in which 𝑘 is a scaling factor and takes an empirical
value, where Δ𝑥 is the distance of two adjacent discrete
particles in the 𝑥-direction; 𝑓(𝑥) and 𝑓(𝑥󸀠) are the physical
field functions at spatial coordinates 𝑥 and 𝑥󸀠, respectively;Ω
is the supported domain of spatial coordinate 𝑥; 𝑤(ℎ, 𝑥 − 𝑥󸀠)
is the corrected kernel function and the product of correction
function 𝑃(𝑥, 𝑥󸀠) and kernel function 𝑤(ℎ, 𝑥 − 𝑥󸀠).

The corrected kernel function formulation can be written
as follows [33]:

𝑤(ℎ, 𝑥 − 𝑥󸀠) = 𝑃 (𝑥, 𝑥󸀠)𝑤 (ℎ, 𝑥 − 𝑥󸀠) , (2)

where correction function [33] and kernel function [34] are
written as follows:

𝑃 (𝑥, 𝑥󸀠) = 𝑝
0
(𝑥) + 𝑝

1
(𝑥) (𝑥 − 𝑥󸀠) + 𝑝

2
(𝑥) (𝑥 − 𝑥󸀠)

2

+ ⋅ ⋅ ⋅ ,

(3a)

𝑤(ℎ, 𝑥 − 𝑥󸀠) =
1

ℎ
×

{{{{{{
{{{{{{
{

2

3
− 𝑟2 +

1

2
𝑟3, 0 ≤ 𝑟 < 1;

1

6
(2 − 𝑟)3 , 1 ≤ 𝑟 < 2;

0, 2 ≤ 𝑟,

𝑟 =
(𝑥 − 𝑥󸀠)

ℎ
,

(3b)

where 𝑝
0
(𝑥), 𝑝

1
(𝑥), 𝑝

2
(𝑥) are coefficient of polynomial.

For the RKPM, the interpolation function is constructed
on the discrete particle (i.e., spatial node, which contains
partial volume of studied domain) in the whole domain, and
the discretization of (1) could be written as follows:

𝑓 (𝑥
𝑖
) =

𝑁𝑖𝑗

∑
𝑗=1

𝑤(ℎ, 𝑥
𝑖
− 𝑥
𝑗
) Δ𝑉
𝑗
𝑓 (𝑥
𝑗
) =

𝑁𝑖𝑗

∑
𝑗=1

𝜙
𝑗
𝑓 (𝑥
𝑗
) , (4a)

where 𝑥
𝑖
and 𝑥

𝑗
are spatial location of discrete particle and

discrete particle in the support domain of the 𝑖th discrete
particle, respectively; 𝑁

𝑖𝑗
is the total number of the discrete

particle 𝑗; Δ𝑉
𝑗
is the length for a one-dimensional problem,

or the area for a two-dimensional problem, or the volume for
a three-dimensional problem; 𝜙

𝑗
is the shape function of the

discrete particle.
The 𝑥-derivative of the approximation formula can be

written as

𝜕𝑓 (𝑥
𝑖
)

𝜕𝑥
=

𝑁𝑖𝑗

∑
𝑗=1

𝑤
𝑗,𝑥

(ℎ, 𝑥
𝑖
− 𝑥
𝑗
) Δ𝑉
𝑗
𝑓 (𝑥
𝑗
) =

𝑁𝑖𝑗

∑
𝑗=1

𝜙
𝑗,𝑥
𝑓 (𝑥
𝑗
) ,

(4b)

where 𝜙
𝑗,𝑥

is the derivative of the shape function for 𝑗th
discrete particle.

2.2. Discrete Ordinate Equation. Discrete ordinate formula of
one-dimensional radiative transfer equation is as follows [35]:

𝜇𝑚
𝜕𝐼𝑚

𝜕𝑥
= − (𝜅

𝛼
+ 𝜅
𝑠
) 𝐼𝑚 + 𝑛2𝜅

𝛼
𝐼
𝑏
+

𝜅
𝑠

4𝜋

𝑀

∑
𝑚
󸀠
=1

𝐼𝑚
󸀠

Φ𝑚
󸀠
𝑚𝜔𝑚

󸀠

,

𝑚 = 1, . . . ,𝑀,

(5)

where 𝑚 and 𝑀 are one discrete direction and total dis-
crete direction of radiation, respectively; 𝐼𝑚 is the radiative
intensity of the 𝑚th direction in medium; 𝐼

𝑏
is the black

body radiative intensity in medium; 𝜅
𝛼
and 𝜅

𝑠
are absorbing

coefficient and scattering coefficient inmedium, respectively;
𝜇𝑚 is the cosine value of 𝑚th direction on 𝑥-direction; 𝜔𝑚 is
the solid angle weight of𝑚th direction.Φ𝑚

󸀠
𝑚 is the scattering

phase function; 𝑛 is the refractive index of medium.
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The radiative boundaries are considered to be opaque and
diffuse as well as gray. The radiative intensity of the wall can
be written as follows:

𝐼𝑚
𝑤
= 𝑛2𝜀
𝑤
𝐼
𝑏𝑤

+
1 − 𝜀
𝑤

𝜋
∑

n𝑤 ⋅s𝑚
󸀠

<0

𝐼𝑚
󸀠

𝑤

󵄨󵄨󵄨󵄨󵄨󵄨
n
𝑤
⋅ s𝑚
󸀠 󵄨󵄨󵄨󵄨󵄨󵄨
𝜔𝑚
󸀠

, (6)

where 𝑤 represents the wall; 𝜀
𝑤
is the emissivity of the wall.

n
𝑤
is the outside unit normal vector of the wall. s𝑚

󸀠

is the unit
vector on𝑚󸀠 direction.

For (5), the forward scattering term is moved from the
right side to the left side. Equation (5) can be rewritten as

𝜇𝑚
𝜕𝐼𝑚

𝜕𝑥
+ (𝜅
𝛼
+ 𝜅
𝑠
−

𝜅
𝑠

4𝜋
Φ𝑚𝑚𝜔𝑚) 𝐼𝑚

= 𝑛2𝜅
𝛼
𝐼
𝑏
+

𝜅
𝑠

4𝜋

𝑀

∑
𝑚
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󸀠
̸=𝑚

𝐼𝑚
󸀠

Φ𝑚
󸀠
𝑚𝜔𝑚

󸀠

,

𝑚 = 1, . . . ,𝑀.

(7)

2.3. Discretization andNumerical Implementation. Theradia-
tive intensity and its derivatives are approximated by RKPM
and substituted into the radiative transfer equation to obtain
the residual function of the radiative transfer problem. The
least squares point collocation technique (LSPCT) is adopted
to solve the equations.Thebasic idea of LSPCT is to obtain the
numerical simulating solution byminimizing the summation
of residual functions in the whole domain. The numerical
implementation is described in the following section.

According to (4a) and (4b), the approximations of the
radiative intensity and its derivatives were constructed on the
𝑚th discrete direction at the 𝑖th discrete particle, shown as
follows:

𝐼𝑚 (𝑥
𝑖
) =

𝑁𝑖𝑗

∑
𝑗=1

𝜙
𝑗
(𝑥
𝑖
) 𝐼𝑚 (𝑥

𝑗
) , (8a)

𝜕𝐼𝑚 (𝑥
𝑖
)

𝜕𝑥
=

𝑁𝑖𝑗

∑
𝑗=1

𝜙
𝑗,𝑥

(𝑥
𝑖
) 𝐼𝑚 (𝑥

𝑗
) , (8b)

where 𝐼𝑚
𝑗
is the radiative intensity of the 𝑗th discrete particle

on the𝑚th discrete direction.
The residual function can be obtained by substituting (8a)

and (8b) into (7), thus

𝑅𝑚 (𝑥
𝑖
) =

𝑁𝑖𝑗

∑
𝑗=1

𝐴𝑚 (𝜙
𝑗
(𝑥
𝑖
)) 𝐼𝑚 (𝑥

𝑗
) − 𝐵𝑚 (𝑥

𝑖
) ,

𝑖 = 1, 2, . . . , 𝑁,

(9)

where 𝑅(𝑥
𝑖
) is the residual function of physical field function

for each discrete particle 𝑖.𝑁 are the total numbers of discrete
particles in the whole domain:

𝐴𝑚 (𝜙
𝑗
(𝑥
𝑖
))=𝜇𝑚𝜙

𝑗,𝑥
(𝑥
𝑖
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(10a)
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(10b)
Then, the summation of the residual function for all the

discrete particles can be obtained:

𝐽 (𝑅 (𝑥
𝑖
)) =
𝑁

∑
𝑖=1

(

𝑁𝑗𝑖

∑
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𝑖
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2

. (11)

Minimizing the function 𝐽(𝑅(𝑥
𝑖
)) with respect to the

radiative intensity 𝐼𝑚(𝑥
𝑘
), the derivative can be written as

𝜕𝐽𝑚

𝜕𝐼𝑚 (𝑥
𝑘
)
= 2
𝑁
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𝑖=1
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𝑁𝑘𝑗
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𝐴𝑚 (𝜙
𝑗
(𝑥
𝑖
)) 𝐼𝑚 (𝑥

𝑗
) − 𝐵𝑚 (𝑥

𝑖
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× 𝐴𝑚 (𝜙
𝑘
(𝑥
𝑖
)) ]

]

= 0,

𝑘 = 1, 2, . . . , 𝑁.

(12)
Moreover, the linear matrix equation can be expressed as

𝑁𝑖𝑗

∑
𝑗=1

𝐾𝑚
𝑘𝑗
𝐼𝑚
𝑗
= 𝑏𝑚
𝑘
, 𝑘 = 1, 2, . . . , 𝑁, (13)

where

𝐾𝑚
𝑘𝑗
=
𝑁

∑
𝑖=1

𝐴𝑚 (𝜙
𝑗
(𝑥
𝑖
))𝐴𝑚 (𝜙

𝑘
(𝑥
𝑖
)) , (14a)

𝑏𝑚
𝑘
=
𝑁

∑
𝑖=1

𝐵𝑚 (𝑥
𝑖
) 𝐴𝑚 (𝜙

𝑘
(𝑥
𝑖
)) . (14b)

For each discrete particle 𝑘 on the inflow boundary, the
radiative intensity is given by (6), and the boundary condition
can be directly imposed as follows:

𝐾𝑚
𝑘𝑗
= 𝛿
𝑘𝑗
, (15a)

𝑏𝑚
𝑘
= 𝐼𝑚
𝑘
, (15b)

where 𝛿
𝑘𝑗
is the Dirac delta function.

The calculation steps for radiative transfer are as follows:
firstly, the shape function of RKPM is calculated according
to the current distribution of discrete particle and substituted
into (10a) and (10b); secondly, the matrix coefficient of (13) is
obtained by substituting (10a) and (10b) into (14a) and (14b);
finally, the radiative intensity for all the discrete particles is
calculated and used to solve (13). Due to the scattering effect,
the radiative intensity would reiterate the process for all
directions until the convergence condition is satisfied.
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Figure 1: Effects of discrete particle number and optical thickness for relative error between the numerical results from this meshless method
and other different numerical methods in Case 1.

3. Results and Discussion

3.1. Radiative Transfer in Pure Scattering Medium. In this
section, a one-dimensional radiative transfer is considered
in pure scattering gray medium, for which the surfaces are
black body, and the temperature of the left and the right
surface is 1000K (𝑇

𝑤1
), 0 K (𝑇

𝑤2
), respectively. The incident

radiative heat flux 𝑞𝑟 of the right surface is defined as (16),
and the dimensionless reflection radiative heat flux is defined
as 𝑞 𝑟
𝑅
= 1 − 𝑞𝑟/(𝜎𝑇4

𝑤1
), which is analysed in the two differ-

ent scattering mediums. The scattering phase functions are
isotropic scattering phase function and first-order forward
scattering phase function, respectively. The relative error is
defined with (17) for the dimensionless reflection radiative
heat flux to compare the results from this method and the
reference:

𝑞𝑟 = ∫
4𝜋

𝜇𝑚𝐼𝑚dΩ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇𝑚 ⋅𝑛𝑤2<0

=
𝑀

∑
𝑚=1

𝜇𝑚𝐼𝑚𝜔𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇𝑚 ⋅𝑛𝑤2<0

, (16)

𝐸error =

󵄨󵄨󵄨󵄨𝑞
𝑟

RKPM − 𝑞𝑟Ref.
󵄨󵄨󵄨󵄨

𝑞𝑟Ref.
. (17)

Case 1 (isotropic scattering medium). The scattering phase
function expression is Φ𝑚

󸀠
𝑚 = 1.

The relative error of the dimensionless radiative heat flux
is defined as shown in (17), and 𝑞𝑟RKPM and 𝑞𝑟Ref. separately
represent the dimensionless radiative heat flux is in present
work and the corresponding data in [36, 37], and the
relative error is affected by the discrete particles number and
optical thickness as shown in Figures 1(a) and 1(b). Through
analyzing these two figures, we can know that the variational
trend of relative error is irregular when the discrete particles
number is 11. When the discrete particle number is larger

than 11, the relative error is decreasing with the increase of
discrete particles number. And the relative error remains at
the same value when the discrete particle number exceeds
81. Therefore, the optimal number of discrete particles is
recommended 81 in the following calculation.

Here, we can also find that the relative error is decreasing
with the increase of optical thickness as shown in Figures 1(a)
and 1(b). And the value of relative error is very small and
its maximum is only 0.537%. So this meshless method has a
high accuracy when computing the radiative transfer for the
optical thickness ranging from 1 to 10.

The dimensionless radiative heat flux varies with the
optical thickness and scaling factor is shown in Table 1.
Good agreement is observed for the results from the present
method, the theory solution from [36] and the numerical
solution from [37]. Since the impact on the flux is small while
changing the scaling factor from 1.01 to 1.10, the scaling factor
is recommended within this range to calculate the radiative
transfer in 1D isotropic scattering medium.

The time required for computation in Case 1 is shown
in Table 2. The computation is implemented on a personal
computer with an Intel Celeron Dual-Core 1.8 GHz Proces-
sor. Increasing scaling factor value does not increase the time
required for computation much more, and increasing the
number of discrete particle and optical thickness increases
the time required for computation much more.

Case 2 (first-order forward scattering medium). For the
first-order forward scattering medium, the scattering phase
function can be written as Φ𝑚

󸀠
𝑚 = 1 + cos 𝜃𝑚 cos 𝜃𝑚

󸀠

.

Figures 2(a), 2(b), and 2(c) show the relative error of the
dimensionless radiative heat flux, and the values in this func-
tion come from the present work and the corresponding data
in [38–40]. As the same to Case 1, from the three figures,
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Figure 2: Effects of discrete particle number and optical thickness for relative error between the numerical results from this meshless method
and other different numerical methods in Case 2.

Table 1: Effects of scaling factor value for dimensionless heat flow under discrete particle number 81 in Case 1.

𝜏
0

Reference [36] Reference [37] 1.01 1.025 1.05 1.075 1.10
1 0.4466 0.4440 0.4442 0.4442 0.4442 0.4442 0.4442
2 0.6069 0.6082 0.6087 0.6087 0.6087 0.6087 0.6087
3 0.6984 0.6971 0.6976 0.6976 0.6976 0.6976 0.6976
4 0.7540 0.7533 0.7535 0.7535 0.7535 0.7535 0.7535
5 0.7923 0.7920 0.7920 0.7920 0.7920 0.7920 0.7920
6 0.8203 0.8197 0.8201 0.8201 0.8201 0.8201 0.8201
7 0.8417 0.8413 0.8415 0.8515 0.8415 0.8515 0.8515
8 0.8585 0.8582 0.8583 0.8583 0.8583 0.8583 0.8583
9 0.8721 0.8717 0.8719 0.8719 0.8719 0.8719 0.8719
10 0.8833 0.8829 0.8831 0.8831 0.8831 0.8831 0.8831
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Table 2: Time required for computation in Case 1.

(a) 𝜏
𝐿
= 1.0,𝑁 = 81

𝑘 1.010 1.025 1.050 1.075 1.100
Time (s) 0.219 0.234 0.250 0.250 0.250

(b) 𝜏
𝐿
= 1.0, 𝑘 = 1.01

𝑁 11 21 41 81 161
Time (s) 0.094 0.094 0.125 0.219 0.875

(c) 𝑁 = 81, 𝑘 = 1.01

𝜏
𝐿

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Time (s) 0.219 0.438 0.625 0.828 1.093 1.375 1.671 2.000 2.359 2.672

Table 3: Effects of scaling factor value for dimensionless heat flow under discrete particle number 81 in Case 2.

𝜏
0

Reference [38] Reference [39] Reference [40] 1.01 1.025 1.05 1.075 1.10
1 0.3553 0.3576 0.3588 0.3545 0.3545 0.3545 0.3545 0.3545
2 0.5164 0.5153 0.5158 0.5135 0.5135 0.5135 0.5135 0.5135
3 0.6126 0.6103 0.6103 0.6089 0.6089 0.6089 0.6089 0.6089
4 0.6767 0.6744 0.6740 0.6729 0.6729 0.6729 0.6729 0.6729
5 0.7227 0.7192 0.7198 0.7189 0.7189 0.7189 0.7189 0.7189
6 0.7572 0.7504 0.7540 0.7535 0.7535 0.7535 0.7535 0.7536
7 0.7840 0.7812 0.7810 0.7806 0.7806 0.7806 0.7806 0.7806
8 0.8055 0.8030 0.8026 0.8023 0.8023 0.8023 0.8023 0.8023
9 0.8231 0.8204 0.8203 0.8201 0.8201 0.8201 0.8201 0.8201
10 0.8378 0.8354 0.8351 0.8349 0.8349 0.8349 0.8349 0.8349

the numerical results are not good when the discrete particles
number is 11.The relative error is decreasing with the increase
of discrete particles number, when the discrete particle
number is larger than 11. Then the error remains at the
constant value when the discrete particle number exceeds 81.
However, relative error has different variational trends in the
three figures. In Figure 2(a), the variational trend increases at
first and then decreases with the increase of optical thickness.
In Figures 2(b) and 2(c), the variational trend decreases with
the increase of optical thickness.The reason is that the results
are obtained from the numerical method and depended on
the feature of the algorithm. And the maximum value of
relative error is small (less than 0.923%). It shows that this
meshless method has good value to be applied in radiative
transfer region.

Table 3 shows the effects of the scaling factor and the
optical thickness. The results using the present method are
in good agreement with the data of [38–40]. Comparing
the results in the isotropic scattering medium and in the
first-order forward scattering medium, it is found that their
variation trends are very similar. That means there should be
the same principle for the two different kinds of scattering
medium in terms of selecting the number of discrete particle
and the value of the scaling factor.

The time required for computation in Case 2 is shown
in Table 4. The computation is implemented on the same
computer as Case 1. And the time required for computation
has the same trend with Case 1.

The results obtained from Cases 1 and 2 show that the
RKPM can simulate radiative transfer in pure scattering
medium, which contains isotropic and anisotropic medium.
In the two cases, when the optical thickness of media ranges
from 1 to 10, the simulative results are accurate comparing
with the data in the corresponding reference.This verifies that
the RKPM is applicative and accurate for solving radiative
transfer in pure scattering medium.

3.2. Radiative Heat Transfer in Absorbing Medium

Case 3 (radiative transfer in pure absorbing medium). The
radiative heat transfer in a one-dimensional pure absorbing
medium is considered in this section. Both boundary walls
are regarded as the black body, and the temperature of side
walls is 𝑇

𝑤1
(left side) and 𝑇

𝑤2
(right side), respectively. The

dimensionless temperature and dimensionless radiative heat
flux density are defined as follows:

Θ (𝜏) =
𝑇4 (𝜏) − 𝑇4

𝑤2

𝑇4
𝑤1

− 𝑇4
𝑤2

=
𝐼 (𝜏) − 𝐼

𝑤2

𝐼
𝑤1

− 𝐼
𝑤2

,

𝜓 =
𝑞

𝑛2𝜎 (𝑇4
𝑤1

− 𝑇4
𝑤2
)
=

𝑞

𝐸
𝑤1

− 𝐸
𝑤2

.

(18)

In this study, the optical thickness value is set as 100 to
replace the infinity. The discrete particles number, scaling
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Table 4: Time required for computation in Case 2.

(a) 𝜏
𝐿
= 1,𝑁 = 81

𝑘 1.010 1.025 1.050 1.075 1.100
Time (s) 0.234 0.234 0.265 0.344 0.400

(b) 𝜏
𝐿
= 1, 𝑘 = 1.01

𝑁 11 21 41 81 161
Time (s) 0.078 0.093 0.109 0.234 0.766

(c) 𝑁 = 81, 𝑘 = 1.01

𝜏
𝐿

1 2 3 4 5 6 7 8 9 10
Time (s) 0.234 0.406 0.562 0.703 0.875 1.093 1.297 1.563 1.812 2.094

Table 5: Dimensionless radiative heat flux density for different
optical thickness.

𝜏
𝐿

Reference [41] RKPM
0.0 1.0000 1.0000
0.1 0.9157 0.9289
0.2 0.8491 0.8587
0.3 0.7934 0.8006
0.4 0.7458 0.7513
0.5 0.7040 0.7086
0.6 0.6672 0.6711
0.8 0.6046 0.6077
1.0 0.5532 0.5558
1.5 0.4572 0.4591
2.0 0.3900 0.3917
2.5 0.3401 0.3412
3.0 0.3016 0.3025
5.0 0.2077 0.2081

Table 6: Time required for computation in Case 3 of 𝑘 = 1.01 and
𝑁 = 81.

𝜏
𝐿

0.1 0.5 1.0 2.0 10.0 100.0
Time (s) 0.125 0.188 0.312 0.750 4.406 277.812

factor of smooth kernel function, and iterative convergence
error are 81, 1.01, and 1 × 10−6, respectively.

Figure 3 shows that the dimensionless temperature dis-
tribution in the absorbing medium with different optical
thicknesses. By comparison, a good agreement was observed
between the data obtained by present method and the
corresponding data from [41]. Table 5 and Figure 4 show the
effect of optical thickness on the dimensionless radiative heat
flux and the relative error, in which it is clear that the relative
error decreases with the increasing optical thickness. The
maximum relative error is 1.4% when the optical thickness
is 0.1.

The time required for computation in Case 3 is shown
in Table 6. The computation is implemented on the same
computer as Case 1. Increasing optical thickness increases
the time required for computation much more, and the time
required is 277.812 s when the optical thickness is 100.0.

10 1001 20.5

RKPM
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0.0 0.2 0.4 0.6 0.8 1.0
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𝜏L = 0.1

Ref.41

Figure 3:Thedimensionless temperature distribution in the absorb-
ing medium under optical thicknesses 𝜏

𝐿
= 0.1, 𝜏

𝐿
= 0.5, 𝜏

𝐿
= 1,

𝜏
𝐿
= 2, 𝜏

𝐿
= 10, and 𝜏

𝐿
= 100.

In Case 3, the RKPM solves radiative transfer in pure
absorbing medium under different optical thickness. The
simulative results are accurate comparing with the data in
the reference [41]. This verifies that the RKPM is applicative
and accurate for solving radiative transfer in pure absorbing
medium.

3.3. Radiative Transfer in Absorbing, Scattering, and Emitting
Medium. The results obtained from Cases 1, 2, and 3 show
that 81 is taken as the number of discrete particles and 1.01
as the scaling factor value for the calculation of radiative
transfer, which are used for Cases 4 and 5.

Case 4 (radiative transfer in absorbing and isotropic scatter-
ing medium). In this case, the optical thickness of absorbing
and isotropic medium is 1, the Albedo’s value is 0.5, and the
initial temperature is 0 K. Both sides of the wall are black
body, and the temperature of left surface is 𝑇

𝑤1
, the right

surface 𝑇
𝑤2
. Both dimensionless incident radiation intensity

and dimensionless radiative heat flux density are calculated
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Figure 4: The relative error of dimensionless radiative heat flux density between the simulated results from this meshless method and the
data from [41] under different optical thickness.
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Figure 5: Distribution of dimensionless incident radiation intensity for one optical thickness 𝜏
𝐿
= 1 in Case 4 and three optical thicknesses

𝜏
𝐿
= 0.1, 𝜏

𝐿
= 1, and 𝜏

𝐿
= 10 in Case 5.

in the medium.The incident radiation intensity and radiative
heat flux density are written as follows:

𝐺 = ∫
4𝜋

𝐼𝑚dΩ =
𝑀

∑
𝑚=1

𝐼𝑚𝜔𝑚,

𝑞 = ∫
4𝜋

𝜇𝑚𝐼𝑚dΩ =
𝑀

∑
𝑚=1

𝜇𝑚𝐼𝑚𝜔𝑚.

(19)

Case 5 (radiative heat transfer in absorbing scattering and
emitting medium). In this case, the value of Albedo is
0.5, and the optical thickness is selected as 0.1, 1, and 10,
respectively. Both sides of the walls are the black body, and
the temperature of left surface is 𝑇

𝑤1
, the right surface 𝑇

𝑤2
.

Distribution of the dimensionless incident radiative intensity,
dimensionless radiation heat flux density, and dimensionless

temperature is calculated. The temperature is defined as
follows:

𝑇 = (
∑
𝑀

𝑚=1
𝐼𝑚𝜔𝑚

(4 ⋅ 𝜎)
)

0.25

. (20)

It is obvious from Figures 5, 6, and 7 that the dimension-
less incident radiative intensity, the dimensionless heat flux,
and the dimensionless temperature by this method agree well
with the corresponding data in [42] obtained byDOM,which
means that themeshlessmethod has good accuracy in solving
the radiative transfer problems in absorbing isotropic scat-
tering medium and absorbing isotropic scattering emitting
medium. For Case 5, the distributions of dimensionless tem-
perature change are calculated at three optical thicknesses,
𝜏
𝐿
= 0.1, 𝜏

𝐿
= 1, and 𝜏

𝐿
= 10 with this method, as shown in

Figure 7. The gradient of dimensionless temperature curves
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Figure 6: Distribution of dimensionless radiative heat flux for one optical thickness 𝜏
𝐿
= 1 in Case 4 and three optical thicknesses 𝜏

𝐿
= 0.1,

𝜏
𝐿
= 1, and 𝜏

𝐿
= 10 in Case 5.

Table 7: Time required for computation in Cases 4 and 5.

Case 4 Case 5
𝜏
𝐿

1.0 0.1 1.0 10.0
RKPM Time (s) 0.301 0.132 0.318 4.510
DOM Time (s) — 0.00703 0.0211 0.266
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0.4
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Figure 7: Distribution of dimensionless temperature for three
optical thicknesses 𝜏

𝐿
= 0.1, 𝜏

𝐿
= 1, and 𝜏

𝐿
= 10 in Case 5.

increases as the optical thicknesses become larger, which has
same increasing trend for the data from RKPM and DOM. It
means the radiation energy, coming from high temperature
boundary, is not allowed to penetrate deeply into themedium
when the optical thickness is large enough. And for a certain
optical thickness, the curve in low temperature zone changes

more steeply than it does in high temperature zone, especially
for the large optical thickness.

In Cases 4 and 5, the RKPM simulates the radiative
transfer in absorbing, scattering, and emittingmediumunder
different optical thickness.The results are accurate comparing
with the data in the corresponding reference.This verifies that
the RKPM is applicative and accurate for solving radiative
transfer in absorbing, scattering, and emitting medium.

The time required for computation in Cases 4 and 5 is
shown in Table 7 by RKPM and DOM. The computation is
implemented on the same computer as Case 1. Generally, the
computation process of meshless method needs more time.
The reason is that the meshless method spends more time
to search adjacent particle and calculate the coefficient of
polynomial. This is shown in Table 7.

From the above five cases, the simulative results are
stable and accurate, which verify the application of RKPM
for solving radiative transfer in participating medium under
different optical thickness.

4. Conclusion

A reproducing kernel particle method based on the discrete-
ordinate equation is extended to solve the radiative transfer
problem in participating medium. The reproducing kernel
interpolation function is used to construct the approximation
formula of radiation and its derivative. For each discrete
particle, the residual function is obtained by substituting
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approximation formula into radiative transfer equation. The
least-squares point collocation technique is adopted to obtain
the solution of the problem by minimizing the summation
of residuals of all discrete particles. In the present work, the
RKPM is a successful implementation to simulate radiative
transfer in pure scattering and absorbing medium and in
absorbing, scattering, and emittingmedium.The results show
that the RKPM is efficient, accurate, and stable and can
be used for solving radiative heat transfer in participating
medium. And the optimized scaling factor value and number
of discrete particle are obtained in calculated process, which
are between 1.01 and 1.10 and no less than 81, respectively.

Therefore, it can be achieved to simulate high temperature
phase change of semitransparent material with RKPM. Based
on the present work, the application of RKPM will be
explored further to the radiative heat transfer in 2D and 3D
semitransparent media and the combining conduction-
radiation heat transfer in high temperature semitransparent
media with phase change.
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