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This paper considers the stability and 𝐻
∞
control problem of networked control systems with time delay. Taking into account the

influence of network with delay, unknown input disturbance, and uncertainties of the system modeling, meanwhile we establish
a precise, closed-loop model for networked control systems with time delay. By selecting a proper Lyapunov-Krasovskii function
and using Lyapunov theorem, a sufficient condition for stability of the system in the form of LMI is demonstrated, corresponding
controller parameters are acquired, and the convergence of the control algorithm is proved.The simulation example shows that the
construction of the network robust control system with time delay indeed improves the stability performance of the system, which
indicates the effectiveness of the design.

1. Introduction

With the continuous development of science and technology,
the structure of the control system is getting more and more
complex, and spatial distribution is becoming wider. In the
meanwhile, the requirements of system control performance
also increasingly have improved. Networked control system
arises at the historic moment. Networked control system is
a feedback control system composed of the sharing of com-
munication network, which consists of sensors, controllers,
and plants which are often connected over a networkmedium
[1]. Compared with traditional feedback control systems,
where these components are usually connected via point-
to-point cables, the introduction of communication network
media brings great advantages, such as low cost, reduced
weight and power requirements, simple installation and
maintenance, and higher reliability [2].Therefore, networked
control systems are widely applied to industrial system and
have received more and more attention. However, the inter-
vention of the network, because of connection interruption
and network congestion, makes the system produce time
delay. Considering the characteristics of networked control
system, time delay can be divided into input delay, output

delay, state time delay, and uncertain time delay. According
to inherent features of delay, it can be divided into inherent
delay, stochastic time delay, uncertainty time delay, and so
forth. These delays are time varying in nature, and their
presence in a system has an adverse impact not only on
system performance but also on its stability [3, 4]. Reducing
the influence of the system time delay to improve the
controlling precision of the system has high practical value.
Therefore, the problems of time delay have receivedmore and
more attention and have become more and more popular in
many practical applications in recent years. At the same time
the limitation of network bandwidth and the collision of date
transmission cause the phenomenon of packet dropout and
cause the data to be out of order [5].

At present, research issues of NCS are concentrated on
the influence of the control quality of network induced delay
and data packet dropout [6–9]. In the literature [10], the
method of setting a cache in the receiving end was raised
by Luck and Ray. On the assumption that the maximum
transmission delay in the network is known, all the uncertain
time delay was defined into the maximum transmission,
because of the artificial extending of the transmission time. In
1998, stochastic optimal control method was used to convert

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 189013, 8 pages
http://dx.doi.org/10.1155/2015/189013



2 Mathematical Problems in Engineering

the problem of the random network delay into linear
quadratic gauss problem by Nilsson, who considered that the
network time delay is less than the sampling period. In the
literature [11–13], by using random delay control method and
the theory of stochastic control. In the research on the perfor-
mance of networked control systems, the method can ensure
stability of statistical significance. But the precondition is
that the network delay must obey a certain distribution.
This is difficult to achieve in practical engineering. In the
literature [14], the 𝐻

∞
control problem was addressed for

a class of networked control systems with induced delays
and packet dropouts. The NCS was modeled as a switched
system with four subsystems via system states augmentation.
By using the notion of time-window packet dropout rate
and the average dwell time method, we have achieved
sufficient condition of system stability, applied the linear
matrix inequality technique and the cone complementarity
linearization algorithm, and completed the controller design.
At the same time, LMI and interior-point method used for
solving the convex optimization problem are proposed, to
provide an effective tool for analyzing and solving control
problems. Using LMImethod, the controller can be designed
without adjusting parameters, and can be obtained delay
related conclusion with less conservativeness. Compared
with the solution of the Riccati equation, LMI toolbox of
MATLAB can be used for all variables directly. It brings great
convenience for design [15–18]. On the other hand, in the
networked control system, consider network induced delay
generally and ignore the inherent delay in the system. Time
delay system is an infinite dimensional system. Processing
method for time delay at this stage includes Smith predictor
method. By establishing the model, by implementation of
compensating with the aid of the model, transfer the time
delay to the outside of the closed loop, to achieve the purpose
of treatment delays and improve the performance of system
[19]. Proportional integral controller and the first differential
control are a traditional control method. There are still many
missing, such as slow response speed, low control precision,
and cannot fully ensure meet the requirements of high
performance of complex system [20]. Internal model control,
its main idea is to make the dynamic type of inverse phase
approximation between controller and system model. The
main researchmethod is to transfer time delay control system
to a nondelay system by using the Lyapunov functional
analysis.

For networked control systems research, this study is
more focused on solving the problem of network induced
delay and data packet dropout, ignoring the inherent delay
of the system. However, the inherent time delay is also a
widespread phenomenon of networked control systems. In
this paper, being aimed at the networked control systemswith
time delay, considering the network induced delay, unknown
input disturbance, and uncertainties of the system modeling,
we establish a precise system model and research on robust
control method to design the controller for networked con-
trol system.

Network medium

Plant

SensorsActuator

Controller

𝜏ca 𝜏sc

Figure 1: Networked control system model.

2. System Description and Preliminaries

Consider a typical NCS, as shown in Figure 1, controller,
sensor, and actuator; these components are often connected
over network media. Define the transmission delays as 𝜏

𝑘
; 𝜏sc

is the delay from the sensor to the controller, 𝜏ca is the delay
from the controller to the actuator, and 𝜏

𝑐
is the delay for

calculation.
Consider the following networked control system with

time delay given by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴
𝑑
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷𝑢 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑥(𝑡 − 𝑑(𝑡)) ∈ 𝑅

𝑛, 𝑢(𝑡) ∈ 𝑅
𝑚, and

𝜔(𝑡) ∈ 𝑅
𝑙 are the system state vector, the system delay state

vector, control input vector, and disturbance input vector,
respectively; they belong to 𝐿

2
[0 ∞), 𝑧(𝑡) ∈ 𝑅

𝑝 is the output
vector control, and 𝜑(𝑡) is continuous-time initial function
defined on [−𝜏 0]. 𝐴 ∈ 𝑅

𝑛𝑛, 𝐵 ∈ 𝑅
𝑛𝑚, 𝐵
𝜔

∈ 𝑅
𝑛𝑙, 𝐶 ∈

𝑅
𝑝𝑛, and 𝐷 ∈ 𝑅

𝑝𝑚 are some constant matrix of appropriate
dimensions. The state delay of system is 𝑑(𝑡) that meets 0 ≤

𝑑(𝑡) ≤ 𝜏, ̇𝑑(𝑡) ≤ 𝜌 ≤ 1.
Consider the influence of uncertainties from modeling

inaccuracies and noise disturbance. A model for time delay
networked control systems is described by

�̇� (𝑡) = [𝐴 + Δ𝐴 (𝑡)] 𝑥 (𝑡) + [𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡)] 𝑥 (𝑡 − 𝑑 (𝑡))

+ [𝐵 + Δ𝐵 (𝑡)] 𝑢 (𝑡) + [𝐵
𝜔
+ Δ𝐵
𝜔
(𝑡)] 𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐶
𝑑
𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷𝑢 (𝑡) .

(2)

The problem of stability and 𝐻
∞

stabilization of systems
with time-varying delay using static state feedback control
law have received considerable attention in recent times [21–
23]. Suppose the control law for (1) is 𝑢(𝑡) = 𝐾𝑥(𝑡), and
when the network transmission delay is small, the actual
value transmitted from sensor to actuator decides that the
controller acts on this moment of the current value of
the object. When the network transmission delay is large,
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the controller acts on the current object value, depending on
the latest value of retainer. At the same time, considering the
influence of bounded uncertainties of time delay, in Figure 1,
the state feedback controller can be described as

𝑢 (𝑡) = 𝐾
1
(𝑡 − 𝑑 (𝑡)) + 𝐾

2
𝑥 (𝑡 − 𝜏) , (3)

where 𝜏 = 𝑑(𝑡) + 𝜏
𝑘
; put (3) into (2) as

�̇� (𝑡)

= [𝐴 + Δ𝐴 (𝑡)] 𝑥 (𝑡) + [𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡) + 𝐵𝐾

1
+ Δ𝐵𝐾

1
]

× 𝑥 (𝑡 − 𝑑 (𝑡)) + (𝐵 + Δ𝐵)𝐾
2
𝑥 (𝑡 − 𝜏)

+ [𝐵
𝜔
+ Δ𝐵
𝜔
(𝑡)] 𝜔 (𝑡) ,

𝑧 (𝑡)

= 𝐶𝑥 (𝑡) + (𝐶
𝑑
+ 𝐷𝐾

1
) 𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷𝐾

2
𝑥 (𝑡 − 𝜏) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(4)

where Δ𝐴(𝑡), Δ𝐴
𝑑
(𝑡), Δ𝐵(𝑡), and Δ𝐵

𝜔
(𝑡) are known, real

time-varying matrices of appropriate dimensions represent-
ing time-varying parametric perturbations; they are assumed
to have the following form:

[Δ𝐴 (𝑡) Δ𝐴
𝑑
(𝑡) Δ𝐵 (𝑡) Δ𝐵

𝜔
(𝑡)]

= 𝐸𝐹 (𝑡) [𝐷
𝑥

𝐷
𝑑

𝐷
𝑢

𝐷
𝜔
] ,

(5)

where 𝐸, 𝐷
𝑥
, 𝐷
𝑑
, 𝐷
𝑢
, and 𝐷

𝜔
are constant matrices of

appropriate dimensions and𝐹(𝑡) is an unknown time-varying
matrix, which is Lebesgue measurable in 𝑡 and satisfies
𝐹
𝑇

(𝑡)𝐹(𝑡) ≤ 𝐼, ∀ ≥ 0.

3. Performance Analysis and Robust
Controller Design

Theorem 1. For a given scalar 𝛾 > 0, there exist real symmetric
matrices 𝑃, 𝑄, 𝑅, matrices 𝐾

1
, 𝐾
2
, and scalars 𝜀

1
> 0, 𝜀

2
> 0,

𝜀
3
> 0, 𝜀
4
> 0, 𝜀
5
> 0 which satisfy the following inequality:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑆

∗

∗

∗

∗

∗

∗

∗

𝑃𝐴
𝑑
+ 𝑃𝐵𝐾

1

−𝑅 + 𝜀
−1

4
𝐾
𝑇

1
𝐷
𝑇

𝑢

∗

∗

∗

∗

∗

∗

𝑃𝐵𝐾
2

0

−𝑄

∗

∗

∗

∗

∗

𝑃𝐵
𝜔

0

0

−𝛾𝐼 + 𝜀
−1

5
𝐷
𝑇

𝜔
𝐷
𝜔

∗

∗

∗

∗

𝐶
𝑇

𝐶
𝑇

𝑑
+ 𝐾
𝑇

1
𝐷
𝑇

𝐾
𝑇

2
𝐷
𝑇

0

−𝐼

∗

∗

∗

𝐷
𝑇

𝑥

0

0

0

0

−𝜀
−1

1
𝐼

∗

∗

0

𝐷
𝑇

𝑑

0

0

0

0

−𝜀
−1

2
𝐼

∗

0

0

𝐾
𝑇

2
𝐷
𝑇

𝑢

0

0

0

0

−𝜀
−1

3
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (6)

where 𝑆 = 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜀
1
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
2
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
3
𝑃𝐸𝐸
𝑇

𝑃 +

𝜀
4
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
5
𝑃𝐸𝐸
𝑇

𝑃 + 𝑅 + 𝑄. Then the NCS like (4) marches
the control law shown in (3) and the system is asymptotically
stable with an 𝐻

∞
norm bound 𝛾. Obtained controller 𝐾

1
, 𝐾
2

is state feedback suboptimal𝐻
∞

controller.

Proof. Consider the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑥
𝑡
, 𝜔
𝑡
, 𝑡) = 𝑥

𝑇

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑅𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠,

(7)

where 𝑃, 𝑅, and 𝑄 are positive definite matrices. The time
derivative of the LK functional along the trajectory of (7) is
given by

�̇� (𝑥
𝑡
, 𝜔
𝑡
, 𝑡) = �̇�

𝑇

(𝑡) 𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃�̇� (𝑡) + 𝑥
𝑇

(𝑡) 𝑅𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝑑) 𝑅𝑥 (𝑡 − 𝑑) + 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏)𝑄𝑥 (𝑡 − 𝜏)

(8)

without considering the interference factors 𝜔(𝑡) = 0, so

�̇� (𝑥
𝑡
, 𝜔
𝑡
, 𝑡)

= 𝑥
𝑇

(𝑡) 𝐴
𝑇

𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃𝐴𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝐷
𝑇

𝑥
𝐹
𝑇

𝑥 (𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑅𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃𝐸𝐹 (𝑡)𝐷
𝑥
𝑥 (𝑡) + 𝑥

𝑇

(𝑡 − 𝑑)𝐴
𝑇

𝑑
𝑃𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃𝐴
𝑑
𝑥 (𝑡 − 𝑑) + 𝑥

𝑇

(𝑡 − 𝑑)𝐷
𝑇

𝑑
𝐹
𝑇

(𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃𝐸𝐹 (𝑡)𝐷
𝑑
𝑥 (𝑡 − 𝑑) + 𝑥

𝑇

(𝑡 − 𝜏)𝐾
𝑇

2
𝐵
𝑇

𝑃𝑥 (𝑡)
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+ 𝑥
𝑇

(𝑡) 𝑃𝐵𝐾
2
𝑥 (𝑡 − 𝜏) − 𝑥

𝑇

(𝑡 − 𝑑) 𝑅𝑥 (𝑡 − 𝑑)

+ 𝑥
𝑇

(𝑡) 𝑃𝐸𝐹 (𝑡)𝐷
𝑢
𝐾
2
𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇

(𝑡 − 𝜏)𝐾
𝑇

2
𝐷
𝑇

𝑢
𝐹
𝑇

(𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏)

× 𝑄𝑥 (𝑡 − 𝜏)

+ 𝑥
𝑇

(𝑡 − 𝑑)𝐾
𝑇

1
𝐵
𝑇

𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃𝐵𝐾
1
𝑥 (𝑡 − 𝑑)

+ 𝑥
𝑇

(𝑡) 𝑃𝐸𝐹 (𝑡)𝐷
𝑢
𝐾
1
𝑥 (𝑡 − 𝑑)

+ 𝑥
𝑇

(𝑡 − 𝑑)𝐾
𝑇

1
𝐷
𝑇

𝑢
𝐹
𝑇

(𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡) .

(9)

Change (9) to get (10) as follows:

�̇� (𝑥
𝑡
, 𝜔
𝑡
, 𝑡)

≤ 𝑥
𝑇

(𝑡) [𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜀
−1

1
𝐷
𝑇

𝑥
𝐷
𝑥
+ 𝜀
1
𝑃𝐸𝐸
𝑇

𝑃

+ 𝜀
2
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
−1

2
𝐾
𝑇

1
𝐷
𝑇

𝑢
𝐾
1
+ 𝜀
3
𝑃𝐸𝐸
𝑇

𝑃

+ 𝜀
4
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
5
𝑃𝐸𝐸
𝑇

𝑃 + 𝑅 + 𝑄]

× 𝑥 (𝑡) + 𝑥
𝑇

(𝑡) [𝑃𝐴
𝑑
+ 𝑃𝐵𝐾

1
] 𝑥 (𝑡 − 𝑑) + 𝑥

𝑇

(𝑡 − 𝑑)

× [𝜀
−1

2
𝐷
𝑇

𝑑
𝐷
𝑑
+ 𝜀
−1

5
𝐾
𝑇

1
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
1
− 𝑅] 𝑥 (𝑡 − 𝑑)

+ 𝑥
𝑇

(𝑡) 𝑃𝐵𝐾
2
𝑥 (𝑡 − 𝜏) + 𝑥

𝑇

(𝑡 − 𝑑) [𝐴
𝑇

𝑑
𝑃 + 𝐾

𝑇

1
𝐵
𝑇

𝑃]

× 𝑥 (𝑡) + 𝑥
𝑇

(𝑡 − 𝜏)𝐾
𝑇

2
𝐵
𝑇

𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡 − 𝜏)

× [𝜀
−1

3
𝐾
𝑇

2
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
2
− 𝑄] 𝑥 (𝑡 − 𝜏) .

(10)

Consider reduction for the following form:

�̇� (𝑥
𝑡
, 𝜔
𝑡
, 𝑡) = 𝜉

𝑇

(𝑡) Σ𝜉 (𝑡) . (11)

Define

𝜉 (𝑡) =
[
[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝜏)

]
]

]

, Σ =

[
[
[

[

𝑆
0

𝑃𝐴
𝑑
+ 𝑃𝐵𝐾

1
𝑃𝐵𝐾
2

𝐴
𝑇

𝑑
𝑃 + 𝐾

𝑇

1
𝐵
𝑇

𝑃 𝜀
−1

2
𝐷
𝑇

𝑑
𝐷
𝑑
+ 𝜀
−1

4
𝐾
𝑇

1
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
1
− 𝑅 0

𝐾
𝑇

2
𝐵
𝑇

𝑃 0 𝜀
−1

3
𝐾
𝑇

2
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
2
− 𝑄

]
]
]

]

, (12)

where 𝑆
0
= 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜀
1
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
2
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
3
𝑃𝐸𝐸
𝑇

𝑃 +

𝜀
5
𝑃𝐸𝐸
𝑇

𝑃 + 𝑅 + 𝑄.

When Σ < 0, we have �̇�(𝑥
𝑡
, 𝜔
𝑡
, 𝑡) < 0. The system

is robust quadratic stability at this time. Considering the
interference factors 𝜔(𝑡), we will have

𝜔
𝑇

(𝑡) 𝐵𝑃 (𝑥) + 𝑥
𝑇

(𝑡) 𝑃𝐵𝜔 (𝑡)

= 𝜔
𝑇

(𝑡) 𝐵
𝑇

𝜔
𝑃𝑥 (𝑡) + 𝜔

𝑇

(𝑡) 𝐷
𝑇

𝜔
𝐹
𝑇

𝐸𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃𝐵
𝜔
𝜔 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃𝐸𝐹 (𝑡)𝐷
𝜔
𝜔 (𝑡)

≤ 𝜔
𝑇

(𝑡) 𝐵
𝑇

𝜔
𝑃𝑥 (𝑡) + 𝑥

𝑇

(𝑡) 𝑃𝐵
𝜔
𝜔 (𝑡) + 𝑥

𝑇

(𝑡) 𝜀
5
𝑃𝐸𝐸
𝑇

𝑃𝑥 (𝑡)

+ 𝜔
𝑇

(𝑡) 𝜀
−1

5
𝐷
𝑇

𝜔
𝐷
𝜔
𝜔 (𝑡) .

(13)

Now, for a prescribed scalar 𝛾 > 0, we define a perform-
ance index 𝐽 as follows:

�̇� (𝑥
𝑡
, 𝜔
𝑡
, 𝑡) + 𝑧

𝑇

(𝑡) 𝑧 (𝑡) − 𝛾𝜔
𝑇

(𝑡) 𝜔 (𝑡) < 0. (14)

Then

𝜉
1

𝑇

(𝑡) Σ
1
𝜉
1
(𝑡) + 𝑧

𝑇

(𝑡) 𝑧 (𝑡) < 0. (15)

Define

𝜉
1
(𝑡) =

[
[
[
[
[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝜏)

𝜔 (𝑡)

]
]
]
]
]

]

,

Σ
1
=

[
[
[
[
[
[

[

𝑆
1

𝑃𝐴
𝑑
+ 𝑃𝐵𝐾

1
𝑃𝐵𝐾
2

𝑃𝐵
𝜔

𝐴
𝑇

𝑑
𝑃 + 𝐾

𝑇

1
𝐵
𝑇

𝑃 𝜀
−1

2
𝐷
𝑇

𝑑
𝐷
𝑑
+ 𝜀
−1

4
𝐾
𝑇

1
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
1
− 𝑅 0 0

𝐾
𝑇

2
𝐵
𝑇

𝑃 0 𝜀
−1

3
𝐾
𝑇

2
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
2
− 𝑄 0

𝐵
𝑇

𝜔
𝑃 0 0 −𝛾𝐼 + 𝜀

−1

5
𝐷
𝑇

𝜔
𝐷
𝜔

]
]
]
]
]
]

]

,

(16)



Mathematical Problems in Engineering 5

where 𝑆
1
= 𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜀
1
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
2
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
3
𝑃𝐸𝐸
𝑇

𝑃 +

𝜀
4
𝑃𝐸𝐸
𝑇

𝑃 + 𝜀
5
𝑃𝐸𝐸
𝑇

𝑃 + 𝑅 + 𝑄 as

𝜉
𝑇

1
(𝑡) Σ
1
𝜉
1
(𝑡)

+

[
[
[
[
[
[

[

𝐶
𝑇

𝐶
𝑇

𝑑
+ 𝐾
𝑇

1
𝐷
𝑇

𝐾
𝑇

2
𝐷
𝑇

0

]
]
]
]
]
]

]

[𝐶 𝐶
𝑑
+ 𝐷𝐾

1
𝐷𝐾
2

0] < 0.

(17)

Now, for any 𝑥(𝑡), 𝑥(𝑡−𝑑), 𝑥(𝑡−𝜏), and𝜔(𝑡) the following
holds good:

[
[
[
[
[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝜏)

𝜔 (𝑡)

]
]
]
]
]

]

𝑇

[
[
[
[
[
[

[

𝑆
1

𝑃𝐴
𝑑
+ 𝑃𝐵𝐾

1
𝑃𝐵𝐾
2

𝑃𝐵
𝜔

𝐴
𝑇

𝑑
𝑃 + 𝐾

𝑇

1
𝐵
𝑇

𝑃 𝜀
−1

2
𝐷
𝑇

𝑑
𝐷
𝑑
+ 𝜀
−1

4
𝐾
𝑇

1
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
1
− 𝑅 0 0

𝐾
𝑇

2
𝐵
𝑇

𝑃 0 𝜀
−1

3
𝐾
𝑇

2
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
2
− 𝑄 0

𝐵
𝑇

𝜔
𝑃 0 0 −𝛾𝐼 + 𝜀

−1

5
𝐷
𝑇

𝜔
𝐷
𝜔

]
]
]
]
]
]

]

[
[
[
[
[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝜏)

𝜔 (𝑡)

]
]
]
]
]

]

+

[
[
[
[
[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝜏)

𝜔 (𝑡)

]
]
]
]
]

]

𝑇

[
[
[
[
[
[

[

𝐶
𝑇

𝐶
𝑇

𝑑
+ 𝐾
𝑇

1
𝐷
𝑇

𝐾
𝑇

2
𝐷
𝑇

0

]
]
]
]
]
]

]

[𝐶 𝐶
𝑑
+ 𝐷𝐾

1
𝐷𝐾
2

0]

[
[
[
[
[

[

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑 (𝑡))

𝑥 (𝑡 − 𝜏)

𝜔 (𝑡)

]
]
]
]
]

]

< 0.

(18)

According to the Schur complement lemma, we have

Σ
2
=

[
[
[
[
[
[
[
[
[

[

𝑆
1

𝑃𝐴
𝑑
+ 𝑃𝐵𝐾

1
𝑃𝐵𝐾
2

𝑃𝐵
𝜔

𝐶
𝑇

𝐴
𝑇

𝑑
𝑃 + 𝐾

𝑇

1
𝐵
𝑇

𝑃 𝜀
−1

2
𝐷
𝑇

𝑑
𝐷
𝑑
+ 𝜀
−1

4
𝐾
𝑇

1
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
1
− 𝑅 0 0 𝐶

𝑇

𝑑
+ 𝐾
𝑇

1
𝐷
𝑇

𝐾
𝑇

2
𝐵
𝑇

𝑃 0 𝜀
−1

3
𝐾
𝑇

2
𝐷
𝑇

𝑢
𝐷
𝑢
𝐾
2
− 𝑄 0 𝐾

𝑇

2
𝐷
𝑇

𝐵
𝑇

𝜔
𝑃 0 0 −𝛾𝐼 + 𝜀

−1

5
𝐷
𝑇

𝜔
𝐷
𝜔

0

𝐶 𝐶
𝑑
+ 𝐷𝐾

1
𝐷𝐾
2

0 −𝐼

]
]
]
]
]
]
]
]
]

]

< 0.
(19)

Get (19) linear transformation into (6).
The system like (4) is robust asymptotically stable for any

𝑥(𝑡) ∈ 𝐿
2
[0 ∞), 𝜔(𝑡) ∈ 𝐿

2
[0 ∞), 𝑥(𝑡 − 𝑑(𝑡)) ∈ 𝐿

2
[0 ∞),

and the system state variables march lim
𝑡→∞

𝑥(𝑡) = 0,
lim
𝑡→∞

𝑥(𝑡 − 𝑑) = 0, and 𝑉(𝑥
0
, 𝜔
0
, 0) = 0, and to make 𝐽 =

∫
∞

0

[𝑧
𝑇

(𝑡)𝑧(𝑡) + 𝛾𝜔
𝑇

(𝑡)𝜔(𝑡)] 𝑑𝑡 for any 𝜔(𝑡) ∈ 𝐿
2
[0 ∞), we

will have

𝐽 ≤ ∫

∞

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾𝜔
𝑇

(𝑡) 𝜔 (𝑡) + �̇� (𝑥
𝑡
, 𝜔
𝑡
, 𝑡)] 𝑑𝑡 < 0.

(20)

From the formula, ‖𝑧(𝑡)‖
2

≤ 𝛾‖𝜔(𝑡)‖
2
can be obtained.

So, the system shown in (4) is asymptotically stable
with an 𝐻

∞
norm bound 𝛾. By applying successively

Schur complement to (19), we deduce the LMIs stated in
Theorem 1.

Theorem2. For a given scalar 𝛾 > 0, there exist real symmetric
matrices 𝑋, matrices 𝑌

1
, and scalars 𝜀

1
> 0, 𝜀

2
> 0, 𝜀

3
> 0,

which satisfy the following inequality:
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑆

∗

∗

∗

∗

∗

∗

∗

𝐴
𝑑
+ 𝐵𝑌
1

−𝑅 + 𝜀
−1

4
𝑌
𝑇

1
𝐷
𝑇

𝑢

∗

∗

∗

∗

∗

∗

𝐵𝐾
2

0

−𝑄

∗

∗

∗

∗

∗

𝐵
𝜔

0

0

−𝛾𝐼 + 𝜀
−1

5
𝐷
𝑇

𝜔
𝐷
𝜔

∗

∗

∗

∗

𝑋𝐶
𝑇

𝐶
𝑇

𝑑
+ 𝑌
𝑇

1
𝐷
𝑇

𝐾
𝑇

2
𝐷
𝑇

0

−𝐼

∗

∗

∗

𝑋𝐷
𝑇

𝑥

0

0

0

0

−𝜀
−1

1
𝐼

∗

∗

0

𝐷
𝑇

𝑑

0

0

0

0

−𝜀
−1

2
𝐼

∗

0

0

𝐾
𝑇

2
𝐷
𝑇

𝑢

0

0

0

0

−𝜀
−1

3
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (21)

where 𝑆 = 𝐴𝑋 + 𝑋𝐴
𝑇

+ 𝜀
1
𝐸𝐸
𝑇

+ 𝜀
2
𝐸𝐸
𝑇

+ 𝜀
3
𝐸𝐸
𝑇

+ 𝜀
4
𝐸𝐸
𝑇

+

𝜀
5
𝐸𝐸
𝑇

+𝑅+𝑄.The system like (4) under the action of the control
law 𝑢(𝑡) = 𝐾

1
𝑥(𝑡 − 𝑑(𝑡)) + 𝐾

2
𝑥(𝑡 − 𝜏) is asymptotically stable

with an𝐻
∞

norm bound 𝛾.

Proof. Put (6) the linear, at both sides, respectively, by 𝛿 =

diag{𝑃−1, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼}, and by 𝑋 = 𝑃
−1, 𝑌
1
= 𝐾
1
𝑋 we can

get

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑆

∗

∗

∗

∗

∗

∗

∗

𝐴
𝑑
+ 𝐵𝐾
1

−𝑅 + 𝜀
−1

4
𝐾
𝑇

1
𝐷
𝑇

𝑢

∗

∗

∗

∗

∗

∗

𝐵𝐾
2

0

−𝑄

∗

∗

∗

∗

∗

𝐵
𝜔

0

0

−𝛾𝐼 + 𝜀
−1

5
𝐷
𝑇

𝜔
𝐷
𝜔

∗

∗

∗

∗

𝑋𝐶
𝑇

𝐶
𝑇

𝑑
+ 𝐾
𝑇

1
𝐷
𝑇

𝐾
𝑇

2
𝐷
𝑇

0

−𝐼

∗

∗

∗

𝑋𝐷
𝑇

𝑥

0

0

0

0

−𝜀
−1

1
𝐼

∗

∗

0

𝐷
𝑇

𝑑

0

0

0

0

−𝜀
−1

2
𝐼

∗

0

0

𝐾
𝑇

2
𝐷
𝑇

𝑢

0

0

0

0

−𝜀
−1

3
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (22)

Based on linear matrix inequality can be obtained𝐾
1
,𝐾
2
.

Get the parameters of the corresponding memory state feed-
back controller. If considering state delay does not contain
uncertainties, order 𝐴

𝑑
= 0.

4. Numerical Example

Consider the actual system with the following parameters:

𝐴 = [
−0.9489 −0.2387

−0.238 −0.7536
] , 𝐴

𝑑
= [

−0.01 0.02

−0.03 −0.01
] ,

𝐵 = [
−0.3

0.1
] , 𝐵

𝜔
= [

−0.05

0.01
] ,

𝐶 = [1.63 0] , 𝐶𝑑 = [0.292 0] , 𝐷 = 1,

𝐼 = [
1 0

0 1
] , 𝐸 = [

0.004 −0.003

0 −0.004
] , 𝛾 = 1,

𝐷𝑥 = [
0.06 −0.02

0.05 −0.06
] , 𝐷𝑢 = [

0.01

0.02
] ,

𝐷𝜔 = [
0.01

−0.01
] , 𝐷𝑑 = [

0.04 0.1

0.05 −0.04
] .

(23)

Using LMI toolbox solving controller, we will have

𝐾
1
= [18.1515 14.5412] , 𝐾

2
= [−1.02653 0.0064] .

(24)

A general model for continuous system is �̇�(𝑡) = 𝐴𝑥(𝑡) +

𝐵𝑢(𝑡), 𝑧(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡). Taking step signal introducing
the system, the output curve of the system is shown in
Figure 2.

Considering the influence of bounded inherent time
delay in networked control system, the output curve is
shown in Figure 3. Further, network system existence of
bounded fixed time delay, network with delay, and outside
disturbance, obtaining output curve, is shown in Figure 4. In
order to improve the system performance index, overcome
the influence of system from time delay, external disturbance,
the modeling error, and the uncertainty factors. By adding a
control law of memory 𝑢(𝑡) = 𝐾

1
𝑥(𝑡 − 𝑑) + 𝐾

2
𝑥(𝑡 − 𝜏), the

output response curve is shown in Figure 5.
With reference to Figure 3, when the networked control

system with system delay and steady-state error increases,
the adjustment time increases. Description that the inherent
delay has a great impact on the system. In Figure 4, the system
is affected by the inherent timedelay, outside disturbance, and
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Figure 2: The ideal output response curve of the system.
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Figure 3: Output curve of the system with inherent time delay.

uncertainties. System performance is further deteriorated.
From Figure 5, the system output response curve is under the
action of the state feedback controller approaching the system
ideal output curve. The system can be restored to the stable
equilibriumpoint in a short time. Steady-state error decreases
obviously.

5. Conclusion

In the networked control system, delay is universal. In
this paper, the research object is the networked control
systems with bounded time delay. Considering the influence
of network induced delay, unknown input disturbance, and
uncertainty of the system modeling, we establish the appro-
priate system model. The convergence of control algorithm
has been proved via the selection of Lyapunov-Krasovskii
function. Sufficient conditions for the robust stability of the
system are given in the form of LMI. The design method of
the controller is given. The simulation example shows that
the designed networked control system with bounded time
delays reduces the system steady-state error and improves
the performance of the system. The problem of networked
control systems with bounded inherent time delay has been
solved. An effective solution has been proposed, which has
certain practical value.
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