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The paper deals with the model-based estimation of hormone concentrations that are inaccessible for direct measurement in the
blood stream. Previous research demonstrated that the dynamics of nonbasal endocrine regulation can be closely captured by linear
continuousmodels with time delays under a pulse-modulated feedback.The presence of continuous time delays is inevitable in such
a model due to transport phenomena and the time necessary for an endocrine gland to produce a certain hormone quantity. Yet,
thanks to the finite-dimensional reducibility of the linear time-delay part of the system, a finite-dimensional model can be used to
reconstruct both the continuous and discrete states of the hybrid time-delay plant. A hybrid observer exploiting this possibility is
suggested and analyzed by means of a discrete impulse-to-impulse mapping.

1. Introduction

Hormones mediate communication between organs and
tissues through the bloodstream carrying chemical messages
that regulate many aspects in the human body, that is,
metabolism, growth as well as the sexual function and the
reproductive processes. Hormones are secreted by endocrine
glands directly into the bloodstream in continuous (basal) or
pulsatile (nonbasal) manner. Endocrine glands, interacting
via hormone concentrations in blood, build up dynamical
control loops characterized by self-sustained oscillations of
the involved physiological quantities [1].

The endocrine system of testosterone regulation in
the male essentially consists of three hormones, namely,
gonadotropin-releasing hormone (GnRH), luteinizing hor-
mone (LH), and testosterone (Te). GnRH is produced in
the hypothalamus of the brain and released in short pulses.
Reaching the pituitary gland, GnRH stimulates production
of LH, which in turn stimulates production of Te in the
testes. Finally, both the GnRH outflow and the LH secretion
are subject to feedback inhibition by Te [2]. However, the
inhibition of LH has a relatively small effect on the dynamics

of the closed-loop system and therefore not considered in this
paper.

An impulsive mathematical model of testosterone regu-
lation was proposed in [3] and is shown to comport with
experimental data in [4]. It constitutes an impulsive version of
Goodwin oscillator, a mathematical model that is well known
in mathematical biology (see, e.g., [5–9]). The impulsive
Goodwin oscillator consists of a continuous and an impulsive
part [10], thus possessing hybrid dynamics and presenting
a special version of an impulsive differential system [10–14].
It mathematically portrays the concept of pulsatile hormone
regulation described in medical literature (see, e.g., [15]).

More recently, the impulsive Goodwin oscillator was aug-
mented with a time delay in the continuous part of the system
[16, 17], making it more aligned with the biological nature,
as transport phenomena and biosynthesis are omnipresent
in endocrine and metabolic systems [18–25]. With the time
delay taken into account, the pulse-modulated model of
endocrine regulation acquires an infinite-dimensional con-
tinuous part. The closed-loop dynamics become therefore
both hybrid and infinite-dimensional, and this combination
is mathematically challenging and so far rarely treated.
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However, the cascade structure of the continuous part,
together with the impulsive feedback, allow application of the
concept of finite-dimensional reducibility (FD-reducibility),
[16, 17]. In particular, it was shown [17] that the dynamics
of an impulsive time-delay system with an FD-reducible
continuous part coincide on certain time intervals with the
dynamics of a delay-free impulsive system. This idea plays a
key role in the present study.

Concentrations of the hormones secreted in human
hypothalamus that is located in the lower central part of
the brain are not available for direct measurement due
to ethical reasons and need to be estimated. It poses an
unusual observation problem. A considerable number of
papers is devoted to the observability of hybrid systems, for
example, [26–28]. The discrete states of a system are usually
assumed known, while observers for hybrid systems that
are able to reconstruct discrete states from only continuous
measurements are not so well covered in the literature.

In endocrine systems with pulsatile secretion, the high-
est degree of uncertainty is associated with the discrete
(impulsive) part whose states have to be reconstructed from
hormone concentration measurements. Two model-based
estimation approaches are currently known. The first one
is based on batch deconvolution techniques (blind system
identification) [29, 30], while the relatively recent second one
employs a state observer, whose estimates are corrected by
output estimation error feedback [31, 32]. An extension of the
observer scheme proposed in [31] to impulsive systems with
time delay in continuous part was considered in [33]. Unlike
the case treated in [33], the observer proposed here does
not explicitly involve a delay but is rather based on a finite-
dimensional plant model. Hence, the main contribution of
the paper is in the novel structure and subsequent analysis
of a hybrid observer exploiting a finite-dimensional model to
reconstruct the states of the time-delay system.

Notice that impulsive feedback in the observer treated
below is not contributed by design to achieve a performance
objective but rather constitutes an integral and unmeasurable
part of the plant model. On the contrary, in the impul-
sive observers for state estimation of linear and nonlinear
continuous systems proposed in [34–37], the observer state
is updated in an impulsive fashion in order to achieve,
for example, faster convergence. This distinction results in
a major complication in observer design for plants with
intrinsic impulsive feedback as the timing and weights of
the impulses are unknown and have to be estimated by the
observer.

A preliminary version of the present material without
proofs of the main statements was presented in [38].

The paper is organized as follows. First, an impulsive
time-delay model is summarized and reduced to an equiv-
alent delay-free one.Then, making use of the reduced model,
a hybrid observer is proposed and a pointwise (impulse-to-
impulse) mapping describing its dynamics is derived. Fur-
ther, the properties of themapping pertaining to the observer
performance are investigated. Then the impulsive time-delay
model of testosterone regulation is described. Numerical
simulations and calculations illustrating the observer design
performance are also provided.

2. System Equations

Consider an impulsive time-delay model [16] given by the
equations

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝐴
0
𝑥 (𝑡) + 𝐴

1
𝑥 (𝑡 − 𝜏) ,

�̃� (𝑡) = 𝐶𝑥 (𝑡) ,

𝑦 (𝑡) = 𝐿𝑥 (𝑡) ,

�̃�
0
= 0,

�̃�
𝑛+1
= �̃�
𝑛
+ �̃�
𝑛
,

𝑥 (�̃�
+

𝑛
) = 𝑥 (�̃�

−

𝑛
) + �̃�
𝑛
𝐵,

�̃�
𝑛
= Φ (�̃� (�̃�

𝑛
)) ,

�̃�
𝑛
= 𝐹 (�̃� (�̃�

𝑛
)) ,

(1)

where 𝐴
0
∈ R𝑛𝑥×𝑛𝑥 , 𝐴

1
∈ R𝑛𝑥×𝑛𝑥 , 𝐵 ∈ R𝑛𝑥×1, 𝐶 ∈ R1×𝑛𝑥 ,

𝐿 ∈ R𝑛𝑦×𝑛𝑥 are constant matrices and 𝐶𝐵 = 0.
In (1), �̃� is the scalar controlled output,𝑦 is themeasurable

output vector, 𝑥 is the state vector, and 𝜏 is a constant time
delay.The amplitudemodulation function𝐹(⋅) and frequency
modulation function Φ(⋅) are continuous and bounded: 𝐹(⋅)
is nonincreasing and Φ(⋅) is nondecreasing.

System (1) is considered for 𝑡 ⩾ 0 subject to the initial
condition 𝑥(𝑡) = 𝜑(𝑡), −𝜏 ⩽ 𝑡 < 0, where 𝜑(𝑡) is a continuous
initial vector function. The state vector 𝑥(𝑡) of system (1)
experiences jumps at the times 𝑡 = 𝑡

𝑛
, 𝑛 = 0, 1, . . .. The

condition 𝐶𝐵 = 0 ensures that the modulating signal �̃�(𝑡) is
continuous in time.

Only the time-delay values that are less than the minimal
distance between two consecutive impulses are considered:

inf
𝜉

Φ (𝜉) > 𝜏, (2)

so that �̃�
𝑛
> 𝜏 for all 𝑛. This condition implies that only

one firing of the pulse-modulated feedback in (1) is possible
within a time interval whose length is equal to the time-delay
value.

Suppose that the linear part of the system possesses
the property of finite dimensional (FD) reducibility [16, 17],
implying that

𝐴
1
𝐴
𝑘

0
𝐴
1
= 0 for 𝑘 = 0, 1, . . . , 𝑛

𝑥
. (3)

The notion of FD-reducibility is a formalization of the so-
called “linear chain trick” originating from [39, 40] for the
system in question.
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3. Reduction to a Delay-Free Impulsive System

Define the matrices 𝐴 = 𝐴
0
+ 𝐴
1
e−𝐴0𝜏, 𝐵 = e−𝐴𝜏e𝐴0𝜏𝐵.

Introduce a delay-free impulsive system:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝐴𝑥 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑦 (𝑡) = 𝐿𝑥 (𝑡) ,

𝑡
𝑛+1
= 𝑡
𝑛
+ 𝑇
𝑛
,

𝑥 (𝑡
+

𝑛
) = 𝑥 (𝑡

−

𝑛
) + 𝜆
𝑛
𝐵,

𝑇
𝑛
= Φ (𝑧 (𝑡

𝑛
)) ,

𝜆
𝑛
= 𝐹 (𝑧 (𝑡

𝑛
)) .

(4)

The following lemma obtained in [17] reveals the relation-
ship between the solutions of system (1) and those of system
(4).

Lemma 1. Consider solutions 𝑥(𝑡), 𝑥(𝑡) of systems (1), (4),
respectively. Assume that 𝑡

1
= �̃�
1
and 𝑥(𝑡−

1
) = 𝑥(�̃�

−

1
). Then it

holds that 𝑡
𝑛
= �̃�
𝑛
, 𝜆
𝑛
= �̃�
𝑛
and 𝑥(𝑡−

𝑛
) = 𝑥(�̃�

−

𝑛
) for all 𝑛 ⩾ 1.

Moreover,

𝑥 (𝑡) = 𝑥 (𝑡) ,

�̃�
𝑛
+ 𝜏 ⩽ 𝑡 < �̃�

𝑛+1
,

𝑛 = 0, 1, . . . .

(5)

At the same time, generally, the solutions do not coincide
entirely

𝑥 (𝑡) ̸= 𝑥 (𝑡) ,

�̃�
𝑛
⩽ 𝑡 < �̃�

𝑛
+ 𝜏.

(6)

The result above will be exploited further in the paper
to design a finite-dimensional observer for the infinite-
dimensional hybrid system in (1). Note that the value of the
time delay in the delay-free impulsive system still influences
the system dynamics as 𝜏 affects the matrix coefficients 𝐴, 𝐵
of (4).

4. A Hybrid Observer

The purpose of state observation in hybrid closed-loop
system (1) is to produce estimates (�̂�

𝑛
, �̂�
𝑛
) of the impulse

parameters (�̃�
𝑛
, �̃�
𝑛
). Notice that, unlike in the conventionally

treated hybrid state estimation problem formulations, the
jump times �̃�

𝑛
are considered to be unmeasurable in (1)

and require estimation. In fact, the problem solved by the
proposed observer is synchronization of the firings in the
feedback of the plant representing its discrete state and those
of the observer.

From Lemma 1, it follows that one can produce estimates
(�̂�
𝑛
, �̂�
𝑛
) of the impulse parameters (�̃�

𝑛
, �̃�
𝑛
) of (1) by exploiting

the delay-free model in (4). To evaluate (�̂�
𝑛
, �̂�
𝑛
), an estimate

of the continuous state vector of (4), that is, 𝑥(𝑡) is produced
by the hybrid observer:

𝑑𝑥 (𝑡)

𝑑�̂�
= 𝐴𝑥 (𝑡) +K (𝑡) (𝑦 (𝑡) − 𝑦 (𝑡)) ,

𝑦 (𝑡) = 𝐿𝑥 (𝑡) ,

�̂� (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (�̂�
+

𝑛
) = 𝑥 (�̂�

−

𝑛
) + �̂�
𝑛
𝐵,

�̂�
𝑛+1
= �̂�
𝑛
+ �̂�
𝑛
,

�̂�
𝑛
= Φ (�̂� (�̂�

𝑛
)) ,

�̂�
𝑛
= 𝐹 (�̂� (�̂�

𝑛
)) ,

K (𝑡) =
{

{

{

0, �̂�
𝑛
< 𝑡 < �̂�

𝑛
+ 𝜏,

𝐾 = const, �̂�
𝑛
+ 𝜏 ⩽ 𝑡 ⩽ �̂�

𝑛+1
.

(7)

Notice that �̂�(𝑡), 𝑦(𝑡) are generally discontinuous in time.
The switched feedback gainK is zero in the time intervals

where the solutions of system (1) and those of system (2) do
not coincide, while the static feedback gain 𝐾 ∈ R𝑛𝑥×𝑛𝑦 is
chosen to satisfy the stability conditions derived in Section 8.

5. Synchronous Mode

Keeping in mind that the purpose of the hybrid estima-
tion here is essentially synchronization, and following [31],
introduce the notion of a synchronous mode for the plant-
observer system (4), (7). Let (𝑥(𝑡), 𝑡

𝑛
) be a solution of plant

equations (4) with the parameters 𝜆
𝑛
, 𝑇
𝑛
, and 𝑥

𝑛
= 𝑥(𝑡

−

𝑛
).

Suppose that the plant is already running at the moment
when the observer is initiated, that is, 𝑡

𝑎
⩽ �̂�
0
< 𝑡
𝑎+1

, for some
integer 𝑎 ⩾ 1.

Consider the solution (𝑥(𝑡), �̂�
𝑛
) of observer equations (7)

subject to the initial conditions �̂�
0
= 𝑡
𝑎
, 𝑥(�̂�−
0
) = 𝑥(𝑡

−

𝑎
), that

yields 𝑥
𝑛
= 𝑥
𝑛+𝑎

, �̂�
𝑛
= 𝑡
𝑛+𝑎

, �̂�
𝑛
= 𝜆
𝑛+𝑎

, 𝑛 = 0, 1, 2, . . .,
and 𝑥(𝑡) = 𝑥(𝑡) for 𝑡 ⩾ 𝑡

𝑎
. Such a solution (𝑥(𝑡), �̂�

𝑛
) will be

called a synchronous mode with respect to (𝑥(𝑡), 𝑡
𝑛
). Thus, a

synchronous mode is a null solution of the state estimation
error dynamics of hybrid observer (7) on 𝑡 ∈ [0,∞).

Following [31], a synchronous mode will be called locally
asymptotically stable if, for any solution (𝑥(𝑡), �̂�

𝑛
) of (7) such

that the initial estimation errors |̂𝑡
0
− 𝑡
𝑎
| and ‖𝑥(�̂�−

0
) − 𝑥(𝑡

−

𝑎
)‖

are sufficiently small, it follows that �̂�
𝑛
−𝑡
𝑛+𝑎

→ 0 and ‖𝑥(�̂�−
𝑛
)−

𝑥(𝑡
−

𝑛+𝑎
)‖ → 0 as 𝑛 → ∞. The latter implies �̂�

𝑛
− 𝜆
𝑛+𝑎

→ 0

as 𝑛 → ∞. In the definition above, the operator ‖ ⋅ ‖ stands
for any vector norm.

To ensure practical usefulness of the observer, stability
properties of the synchronous mode have to be investigated.
By choice of 𝐾, the synchronous mode has to be rendered
asymptotically stable with a suitable convergence rate and
domain of attraction.
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6. Pointwise Mapping and Its Properties

Consider the pointwise mapping describing the evolution of
the observer hybrid state fromone firing of the impulsive part
in (7) to the next one:

[
𝑥 (�̂�
−

𝑛
)

�̂�
𝑛

] → [
𝑥 (�̂�
−

𝑛+1
)

�̂�
𝑛+1

] . (8)

For any integer numbers 𝑘 and 𝑠, 0 ⩽ 𝑘 ⩽ 𝑠, define the
sets

𝑆
𝑘,𝑠
= {(𝜁, 𝜃) : 𝜃 ∈R, 𝜁 ∈R

𝑛
𝑥 , 𝑡
𝑘
⩽ 𝜃 < 𝑡

𝑘+1
, 𝑡
𝑠
⩽ 𝜃

+ Φ (𝐶𝜁) < 𝑡
𝑠+1
} .

(9)

Hence, each point (𝑥
𝑛
, �̂�
𝑛
) of the observer hybrid state

belongs to one of the sets 𝑆
𝑘,𝑠
, that is, to each (𝑥

𝑛
, �̂�
𝑛
) one

can uniquely match two points (𝑥
𝑘
, 𝑡
𝑘
) and (𝑥

𝑠
, 𝑡
𝑠
) of the

observed system (if 𝑘 = 𝑠, these points coincide) such that
𝑡
𝑘
⩽ �̂�
𝑛
< 𝑡
𝑘
+ Φ(𝐶𝑥

𝑘
), 𝑡
𝑠
⩽ �̂�
𝑛
+ Φ(𝐶𝑥

𝑛
) < 𝑡
𝑠
+ Φ(𝐶𝑥

𝑠
).

Introduce

𝐺
𝑘
(𝜁, 𝜃) =

{

{

{

e𝐷(𝜃+Φ(𝐶𝜁)−𝑡𝑘+1), if 𝜃 ⩽ 𝑡
𝑘+1
− 𝜏,

e𝐷(Φ(𝐶𝜁)−𝜏)𝑒𝐴(𝜃+𝜏−𝑡𝑘+1), if 𝑡
𝑘+1
− 𝜏 < 𝜃,

(10)

where 𝐷 = 𝐴 − 𝐾𝐿. Note that the functions 𝐺
𝑘
(𝜁, 𝜃) are

piecewise continuous due to the definition ofK.
Define 𝑃(𝜁, 𝜃) = 𝑃

𝑘,𝑠
(𝜁, 𝜃) at (𝜁, 𝜃) ∈ 𝑆

𝑘,𝑠
with

𝑃
𝑘,𝑠
(𝜁, 𝜃)

= e𝐴(𝜃+Φ(𝐶𝜁)−𝑡𝑠)𝑥 (𝑡+
𝑠
)

− e𝐷(Φ(𝐶𝜁)−𝜏)e𝐴𝜏 (e𝐴(𝜃−𝑡𝑘)𝑥 (𝑡+
𝑘
) − 𝜁 − 𝐹 (𝐶𝜁) 𝐵)

−

𝑠

∑

𝑗=𝑘+1

𝜆
𝑗
𝐺
𝑗−1
(𝜁, 𝜃) 𝐵.

(11)

For brevity sake, denote 𝑥
𝑛
= 𝑥(�̂�
−

𝑛
).

Theorem 2. Pointwise mapping (8) is given by the equations

𝑥
𝑛+1
= 𝑃 (𝑥

𝑛
, �̂�
𝑛
) ,

�̂�
𝑛+1
= �̂�
𝑛
+ Φ (𝐶𝑥

𝑛
) .

(12)

Proof. See Appendix A.

Theorem 3. The mapping 𝑃(𝜁, 𝜃) is continuous.

Proof. See Appendix B.

It will be shown in the next section that the mapping
𝑃(𝜁, 𝜃) is not continuously differentiable in the whole state
space. However, due to its local differentiability, local stability
properties ofmapping (12) characterizing the dynamics of the
observer state can be investigated via linearization.

7. Linearization of the Discrete-Time Map

The behaviors of pointwise mapping (12) in vicinity of the
points (𝑥

𝑘
, 𝑡
𝑘
) will be studied with respect to local stability

of a synchronous mode.
To show the smoothness of the mapping 𝑃(𝜁, 𝜃) intro-

duced below at the points (𝑥
𝑘
, 𝑡
𝑘
), divide each set 𝑆

𝑖,𝑗
for all

𝑖 ̸= 𝑗 into two subsets 𝑆left
𝑖,𝑗

and 𝑆right
𝑖,𝑗

by the hyperplanes
𝜃 = 𝑡
𝑖+1
− 𝜏, that is, 𝑆

𝑖,𝑗
= 𝑆

left
𝑖,𝑗
∪ 𝑆

right
𝑖,𝑗

, where

𝑆
left
𝑖,𝑗
= {(𝜁, 𝜃) : 𝜃 ∈R, 𝜁 ∈R

𝑛
𝑥 , 𝑡
𝑖
⩽ 𝜃 ⩽ 𝑡

𝑖+1
− 𝜏, 𝑡

𝑗

⩽ 𝜃 + Φ (𝐶𝜁) < 𝑡
𝑗+1
} ,

𝑆
right
𝑖,𝑗

= {(𝜁, 𝜃) : 𝜃 ∈R, 𝜁 ∈R
𝑛
𝑥 , 𝑡
𝑖+1
− 𝜏 < 𝜃 < 𝑡

𝑖+1
, 𝑡
𝑗

⩽ 𝜃 + Φ (𝐶𝜁) < 𝑡
𝑗+1
} .

(13)

Note that the set 𝑆
𝑖,𝑖
(𝑖 = 𝑗) is not divided into subsets

𝑆
left
𝑖,𝑖

and 𝑆right
𝑖,𝑖

due to the assumption on delay in (2) and thus
implying 𝑆right

𝑖,𝑖
= ⌀ and 𝑆left

𝑖,𝑖
= 𝑆
𝑖,𝑖
.

Consider a point (𝑥
𝑘
, 𝑡
𝑘
) for some 𝑘 ⩾ 1. It can be seen

that the closures of the four sets 𝑆
𝑘,𝑘
, 𝑆
𝑘−1,𝑘+1

, 𝑆
𝑘−1,𝑘

, 𝑆
𝑘,𝑘+1

intersect at the point (𝑥
𝑘
, 𝑡
𝑘
). Moreover, (𝑥

𝑘
, 𝑡
𝑘
) ∈ 𝑆
𝑘,𝑘+1

. For
a sufficiently small neighborhood of the point (𝑥

𝑘
, 𝑡
𝑘
), the

mapping 𝑃(𝜁, 𝜃) can only take the values 𝑃(𝜁, 𝜃) = 𝑃
𝑖,𝑗
(𝜁, 𝜃),

where (𝜁, 𝜃) ∈ 𝑆
𝑖,𝑗
and 𝑆
𝑖,𝑗
is one of the four sets 𝑆

𝑘,𝑘
, 𝑆right
𝑘−1,𝑘+1

,
𝑆
right
𝑘−1,𝑘

, 𝑆left
𝑘,𝑘+1

; see Figure 1.
Denote for brevityΦ

𝑘
= Φ

(𝐶𝑥
𝑘
), 𝐹
𝑘
= 𝐹

(𝐶𝑥
𝑘
).

Theorem 4. If 𝐿𝐵 = 0 and the scalar functions 𝐹(⋅), Φ(⋅) have
continuous derivatives, then the partial derivatives of 𝑃(𝜁, 𝜃)
are continuous at the points (𝑥

𝑘
, 𝑡
𝑘
), 𝑘 ⩾ 1 and given by the

following expression:

𝜕

𝜕𝜁
𝑃 (𝑥
𝑘
, 𝑡
𝑘
) = Φ



𝑘
𝐴𝑥
𝑘+1
𝐶 + e𝐷(𝑇𝑘−𝜏)e𝐴𝜏 [𝐼 + 𝐹

𝑘
𝐵𝐶] ,

𝜕

𝜕𝜃
𝑃 (𝑥
𝑘
, 𝑡
𝑘
) = 𝐴𝑥

𝑘+1
− e𝐷(𝑇𝑘−𝜏)e𝐴𝜏𝐴 (𝑥

𝑘
+ 𝜆
𝑘
𝐵) .

(14)

Proof. See Appendix C.

Introduce additional notation referring to mapping (8)
and augmenting the continuous state vector with the discrete
state. Define the function

𝑄
𝑘,𝑠
(𝑞) = [

𝑃
𝑘,𝑠
(𝑞)

𝜃 + Φ (𝐶𝜁)
] , where 𝑞 = [

𝜁

𝜃
] . (15)

Set 𝑄(𝑞) = 𝑄
𝑘,𝑠
(𝑞) for 𝑞 ∈ 𝑆

𝑘,𝑠
. Then by the definition

of 𝑃(𝜁, 𝜃) in Section 6 one has 𝑄(𝑞) = [ 𝑃(𝑞)
𝜃+Φ(𝐶𝜁)

], and from
Theorem 2 it follows that 𝑞

𝑛+1
= 𝑄(𝑞

𝑛
), where 𝑞

𝑛
= [
𝑥
𝑛

�̂�
𝑛

].
Propagation of the observer hybrid dynamics through the

firing times is described by iterations of the operator 𝑄. The
𝑚th iteration is defined as

𝑄
(𝑚)
(𝑞) = 𝑄 (𝑄 (⋅ ⋅ ⋅ (𝑄 (𝑞)))) . (16)
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tk − Φ(0) tk − 𝜏 tk tk+1 − Φ(0) tk+1 − 𝜏 tk+1 𝜃

C𝜁

Sk,k 

Cxk+1

Cxk

Sleftk−1,k+1

Sleftk−1,k
Srightk−1,k

Srightk,k+1

Srightk−1,k+1
Sleftk,k+1

Figure 1: A neighborhood of the point (𝑥
𝑘
, 𝑡
𝑘
) in the axes 𝜃 and 𝐶𝜁.

Theorem 4 implies that the operator 𝑄 can be linearized in a
vicinity of (𝑥

𝑘
, 𝑡
𝑘
).

From Section 5, it follows that the synchronous mode
with respect to 𝑥(𝑡) is completely characterized by the vector
sequence

𝑞
0

𝑛
= [
𝑥
𝑘

𝑡
𝑘

] , where 𝑛 = 𝑘 + 𝑎, (17)

where 𝑎 is a number from the definition of a synchronous
mode.

Then the Jacobian of 𝑄 at the point 𝑞0
𝑛
is calculated as

𝑄

(𝑞
0

𝑛
) = 𝐽
𝑘
(𝑥
𝑘
, 𝑡
𝑘
) = [

(𝐽
𝑘
)
11
(𝐽
𝑘
)
12

(𝐽
𝑘
)
21
(𝐽
𝑘
)
22

] , (18)

where

(𝐽
𝑘
)
11
= Φ


𝑘
𝐴𝑥
𝑘+1
𝐶 + e𝐷(𝑇𝑘−𝜏)e𝐴𝜏 [𝐼 + 𝐹

𝑘
𝐵𝐶] ,

(𝐽
𝑘
)
12
= 𝐴𝑥
𝑘+1
− e𝐷(𝑇𝑘−𝜏)e𝐴𝜏𝐴 (𝑥

𝑘
+ 𝜆
𝑘
𝐵) ,

(𝐽
𝑘
)
21
= Φ


𝑘
𝐶,

(𝐽
𝑘
)
22
= 1.

(19)

By the chain rule, it follows that, for any 𝑚 ⩾ 1, the
Jacobian of the 𝑚th iteration of the mapping is given by the
expression

(𝑄
(𝑚)
)


(𝑞
0

𝑛
) = 𝐽
𝑘+𝑚−1

𝐽
𝑘+𝑚−2

⋅ ⋅ ⋅ 𝐽
𝑘+1
𝐽
𝑘
. (20)

8. Local Stability of a Synchronous Mode with
Respect to an 𝑚-Cycle

A solution of (4) is called 𝑚-cycle if it is periodic with
exactly 𝑚 pulse modulation instants in the least period. The
existence conditions of an𝑚-cycle in pulse-modulated time-
delay system (4) were studied in [16, 17].

Let (𝑥(𝑡), 𝑡
𝑛
) be an 𝑚-cycle of plant (4), where 𝑚 is some

integer, 𝑚 ⩾ 1. The existence conditions of an 𝑚-cycle of
pulse-modulated system with time delay are readily derived
in [17]. Then 𝑥

𝑛+𝑚
≡ 𝑥
𝑛
, 𝜆
𝑛+𝑚

≡ 𝜆
𝑛
, 𝑇
𝑛+𝑚

≡ 𝑇
𝑛
. Consider

a synchronous mode of observer (7) with respect to (𝑥(𝑡), 𝑡
𝑛
)

and let 𝑞0
𝑛
be the corresponding vector sequence as in (17),

such that 𝑞0
𝑛+1
= 𝑄(𝑞

0

𝑛
) is satisfied.

Consider previously defined matrices 𝐽
𝑖
. Since 𝐽

𝑖+𝑚
≡ 𝐽
𝑖
,

the sequence {𝐽
𝑖
}
∞

𝑖=0
contains at most 𝑚 distinct matrices,

namely, 𝐽
0
, . . . , 𝐽

𝑚−1
. The theorem below provides a simple

tool for checking local stability of observer (7).

Theorem 5. Let the matrix product 𝐽
0
⋅ ⋅ ⋅ 𝐽
𝑚−1

be Schur stable;
that is, all the eigenvalues of this matrix lie strictly inside the
unit circle.Then the synchronousmode with respect to (𝑥(𝑡), 𝑡

𝑛
)

is locally asymptotically stable.

Proof. The result can be proved along the lines of Theorem 3
in [31].

Theorem 5 formulates a stability condition guiding the
choice of the observer gain 𝐾 that appears in the matrix
𝐷 = 𝐴−𝐾𝐿. As pointed out above, the condition is local and
depends not only on the coefficients of the system, but also on
the parameters of the observed periodic mode. In particular,
the multiplicity of the periodical solution in the plant has to
be known. The spectral radius of Jacobian (18) reflects the
local convergence rate of the linearized observer dynamics.
To optimize the observer performance, the static gain 𝐾 can
be chosen numerically to fulfill the conditions of Theorem 5
while minimizing the spectral radius of the Jacobian.

9. Mathematical Model of
Testosterone Regulation

Tomodel testosterone regulation in the humanmale [17], the
case of a third-order system (1) with the matrices

𝐴
0
=
[
[

[

−𝑏
1
0 0

𝑔
1
−𝑏
2
0

0 0 −𝑏
3

]
]

]

,
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𝐴
1
=
[
[

[

0 0 0

0 0 0

0 𝑔
2
0

]
]

]

,

𝐵 =
[
[

[

1

0

0

]
]

]

,

𝐿 = [0 1 0] ,

𝐶 = [0 0 1]

(21)

is considered. Here 𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑔
1
, 𝑔
2
are given positive

parameters reflecting the kinetics of the involved hormones.
From the biology of the system, one has 𝑏

𝑖
̸= 𝑏
𝑗
for 𝑖 ̸= 𝑗.

The elements of 𝑥 correspond to the concentrations of GnRH
(𝑥
1
), LH (𝑥

2
), and Te (𝑥

3
).

The presence of a constant time delay 𝜏 in closed loop
relates to a delay in the hormone transport in the blood
stream and a delay occurring in hormone synthesis prior
to secretion [41]. The contribution of the transport delays is
relatively smaller than that due to synthesis of testosterone. In
the simulations, the delay value is selected so that theminimal
distance between two consecutive impulses does not exceed
the sum of the testosterone synthesis and hormone transport
delays, that is, 𝜏 < 40. This is in line with the data provided in
[18, 20].

The concentrations of Te and LH can be measured in
the blood, while the concentration of GnRH is typically not
available in humans and has to be estimated. Nonetheless, the
level of testosterone is usually overlymore noisy than the level
of LH (see, e.g., [4]), and it is difficult to distinguish between
the basal and pulsatile components. Thus the structure of the
output row vector 𝐿 is chosen so that only the measurement
of LH concentration is taken into account.

Within a feedback construct, pulsatile secretion of a
hormone gives rise to a dynamic system where amplitude
and frequency modulation are employed to control the
concentrations of other hormones, ostensibly in order to
induce sustained oscillations in the closed-loop system.

As the amplitudemodulation function𝐹(⋅) and frequency
modulation function Φ(⋅) Hill functions with the following
(continuous) parameterizations are chosen

Φ (𝜉) = 𝜘1 + 𝜘2
(𝜉/ℎ)
𝑞

1 + (𝜉/ℎ)
𝑞
,

𝐹 (𝜉) = 𝜘
3
+

𝜘
4

1 + (𝜉/ℎ)
𝑞
,

(22)

where 𝜘
1
, 𝜘
2
, 𝜘
3
, 𝜘
4
, ℎ, 𝑞 are positive parameters and 𝑞 is

integer. It is easy to check that the functions 𝐹(⋅) andΦ(⋅) are
smooth, strictly monotonic and bounded.

Since 𝐴
1
𝐴
𝑘

0
𝐴
1
= 0 for 𝑘 = 0, 1, 2, system (1) with

matrix coeffecients (21) is FD-reducible, and, hence, can be
represented in the form of delay-free system (4) with 𝐴 =

𝐴
0
+ 𝐴
1
e−𝐴0𝜏, 𝐵 = e−𝐴𝜏e𝐴0𝜏𝐵.

The matrix exponentials are given by

e𝐴0𝑡 =
[
[
[

[

e−𝑏1𝑡 0 0

𝐸
21 (𝑡) e−𝑏2𝑡 0

0 0 e−𝑏3𝑡

]
]
]

]

,

e𝐴𝑡 = e𝐴0𝑡 + [[

[

0 0 0

0 0 0

𝐸
31
(𝑡) 𝐸

32
(𝑡) 0

]
]

]

,

(23)

where

𝐸
21
(𝑡) = −

𝑔
1

𝑏
1
− 𝑏
2

(e−𝑏1𝑡 − e−𝑏2𝑡) ,

𝐸
32
(𝑡) = −

𝑔
2
e𝑏2𝑡

𝑏
2
− 𝑏
3

(e−𝑏2𝑡 − e−𝑏3𝑡) ,

𝐸
31
(𝑡) =

𝑔
1
𝑔
2

𝑏
1
− 𝑏
2

[
e𝑏1𝑡

𝑏
1
− 𝑏
3

(e−𝑏1𝑡 − e−𝑏3𝑡)

−
e𝑏2𝑡

𝑏
2
− 𝑏
3

(e−𝑏2𝑡 − e−𝑏3𝑡)] .

(24)

Introduce the numbers

𝛼
𝑖
=

3

∏

𝑗=1,𝑗 ̸=𝑖

1

𝑏
𝑖
− 𝑏
𝑗

, 𝑖 = 1, 2, 3. (25)

Then it can be easily seen that

𝐵 = e−𝐴𝜏e𝐴0𝜏𝐵 = [[

[

1

0

𝐵
0

]
]

]

,

𝐵
0
= 𝑔
1
𝑔
2

3

∑

𝑖=0

𝛼
𝑖
e𝑏𝑖𝜏.

(26)

The state vector 𝑥(𝑡) of system (1) withmatrix coeffecients
(21) experiences jumps at the times 𝑡 = 𝑡

𝑛
, portraying

nonbasal (episodic) release of GnRH. However, because
of the matrix relationship 𝐿𝐵 = 0, the assumptions of
Theorem 4 are valid and the impulse-to-impulse mapping is
smooth.

Below the observer design and performance are exempli-
fied by two cases of periodical solutions in the plant arising
for different values of the time delay within the considered
interval. Notice that, for the numerical values in question, the
multiplicity of the periodical solutions in the plant decreases
with increasing delay.
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10. Numerical Examples

Assume the following values in model (1): ℎ = 2.7, 𝑏
1
= 0.02,

𝑏
2
= 0.15, 𝑏

3
= 0.1, 𝑔

1
= 0.6, 𝑔

2
= 1.5 and

Φ (𝜉) = 40 + 80
(𝜉/ℎ)
2

1 + (𝑧/ℎ)
2
,

𝐹 (𝑧) = 0.05 +
5

1 + (𝜉/ℎ)
2
.

(27)

Since inf
𝜉
Φ(𝜉) = 40, then the time-delay value is within 0 ⩽

𝜏 < 40, to make the analysis of this paper applicable.

10.1. Observation of a 4-Cycle. Let 𝜏 = 5. Then, the plant has
a stable 4-cycle with

𝑥
T
0
= [0.0334 0.1543 3.1980]

T
,

𝑥
T
1
= [0.3821 1.7635 36.4028]

T
,

𝑥
T
3
= [0.0420 0.1941 4.0212]

T
,

𝑥
T
4
= [0.2455 0.1329 23.4306]

T
,

(28)

where ⋅T denotes transpose.
Choose the observer feedback gain in the form

𝐾 = [𝑘1 𝑘2 𝑘3]
𝑇 (29)

with 𝑘
1
⩾ 0, 𝑘

2
⩾ 0, 𝑘

3
= 0. Then

𝐷 =
[
[
[

[

−𝑏
1

−𝑘
1

0

𝑔
1

−𝑏
2
− 𝑘
2
0

𝑔
2
𝐸
21
(−𝜏) 𝑔

2
e𝑏2𝜏 −𝑏

3

]
]
]

]

. (30)

Hence, the characteristic polynomial of 𝐷 is independent of
𝜏 and equal to

𝑝
𝐷
(𝑠) = (𝑠 + 𝑏

3
)

⋅ (𝑠
2
+ (𝑏
1
+ 𝑏
2
+ 𝑘
2
) 𝑠 + 𝑘

1
𝑔
1
+ 𝑏
1
(𝑏
2
+ 𝑘
2
)) .

(31)

Since 𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑔
1
are positive and 𝑘

1
, 𝑘
2
are nonnegative, 𝐷

is Hurwitz stable.
To ensure the (locally) fastest convergence rate, find 𝑘

1
,

𝑘
2
for which the synchronous mode is locally asymptotically

stable and the spectral radius of 𝐽
0
𝐽
1
𝐽
2
𝐽
3
is minimal. By

inspection of Figures 2, 3, and 4, such values of 𝑘
1
, 𝑘
2
are

𝑘
1
= 0.47,

𝑘
2
= 6.15,

𝜌 (𝐽
0
𝐽
1
𝐽
2
𝐽
3
) = 0.00058.

(32)

Hybrid observer performance can bemeasured in numer-
ous ways.The convergence to a synchronous mode is charac-
terized here by the first time instant when �̂�

𝑛
comes into 𝜀

𝑓
-

neighborhood of 𝑡
𝑛
and never leaves it:

P (𝜀
𝑓
) = �̂�
𝑛
∗ ,

𝑛
∗
= min {𝑘 : �̂�𝑁 − 𝑡𝑁

 < 𝜀𝑓 ∀𝑁 > 𝑘} .

(33)

0
5

10

00.2
0.4

0.6
0

1

2

k1
k2

𝜌
(J
0
J 1
J 2
J 3
)

Figure 2: Four-cycle with 𝜏 = 5. The spectral radius of the product
𝐽
0
𝐽
1
𝐽
2
𝐽
3
as a function of 𝑘

1
, 𝑘
2
. The values less than one correspond

to stability.
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0

0.5

1

1.5

2

k1

𝜌
(J
0
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)

Figure 3: Four-cycle with 𝜏 = 5. The spectral radius of the product
𝐽
0
𝐽
1
𝐽
2
𝐽
3
as a function of 𝑘

1
(𝑘
2
= 6.85). The values less than one

correspond to stability.

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

𝜌
(J
0
J 1
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)

k2

Figure 4: Four-cycle with 𝜏 = 5. The spectral radius of the product
𝐽
0
𝐽
1
𝐽
2
𝐽
3
as a function of 𝑘

2
(𝑘
1
= 0.47). The values less than one

correspond to stability.

This criterion somehow captures the most demanding state
estimation error in the hybrid observer since all the infor-
mation regarding the discrete state in (1) comes from the
continuous measurements. The relationship between the
value of the threshold in (33) and P(𝜀

𝑓
) is depicted in

Figure 5.

10.2. Observation of a 2-Cycle. Increasing the time delay to
𝜏 = 30 yields a stable 2-cycle with

𝑥
T
0
= [0.0272 0.1255 4.2853]

T
,

𝑥
T
1
= [0.2141 0.9883 33.3766]

T
.

(34)
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Figure 5: Four-cycle with 𝜏 = 5. The dependence of settling time
P(𝜀
𝑓
) on the synchronization threshold 𝜀

𝑓
for 𝑘
1
= 0.47, 𝑘

2
= 6.15.
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Figure 6: Two-cycle with 𝜏 = 30. The dependence of the spectral
radius of the product 𝐽

0
𝐽
1
on 𝑘
1
, 𝑘
2
. The values less than one

correspond to stability.

A search for 𝑘
1
, 𝑘
2
that render a locally asymptotically

stable synchronousmode andminimal spectral radius of 𝐽
0
𝐽
1

gives (see Figures 6, 7, and 8):

𝑘
1
= 0.93,

𝑘
2
= 6.85,

𝜌 (𝐽
0
𝐽
1
) = 0.149.

(35)

The relationship between the value of the threshold in (33)
and P(𝜀

𝑓
) for a certain stabilizing observer gain is depicted

in Figure 9.

11. Conclusions

A state estimation problem motivated by unmeasured hor-
mone concentrations in the system of nonbasal testosterone
regulation in the human male is considered. The system
dynamics are modeled by a linear continuous time-delay
system under intrinsic pulse-modulated feedback. The con-
tinuous part of the model is known to possess the property of
finite-dimensional reducibility that opens up for the use of a
finite-dimensional (delay-free) model for the reconstruction
of the discrete and continuous states of the process model. A
hybrid observer exploiting this possibility is introduced and
analyzed bymeans of a discrete impulse-to-impulsemapping.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1
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Figure 7: Two-cycle with 𝜏 = 30. The dependence of the spectral
radius of the product 𝐽

0
𝐽
1
on 𝑘
1
(𝑘
2
= 6.85). The values less than one

correspond to stability.
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Figure 8: Two-cycle with 𝜏 = 30. The dependence of the spectral
radius of the product 𝐽

0
𝐽
1
on 𝑘
2
(𝑘
1
= 0.47).The values less than one

correspond to stability.

0 5 10 15 20 25
0

500

1000

1500

2000

𝜀f

𝒫
(𝜀

f
)

Figure 9: Two-cycle with 𝜏 = 30. The dependence of settling time
P(𝜀
𝑓
) on accuracy 𝜀

𝑓
for 𝑘
1
= 0.93, 𝑘

2
= 6.85.

Appendices

A. Proof of Theorem 2

Consider the difference 𝑟(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) in the interval
(�̂�
𝑛
, �̂�
𝑛+1
) and suppose that

𝑡
𝑘
⩽ �̂�
𝑛
< 𝑡
𝑘+1
,

𝑡
𝑠
⩽ �̂�
𝑛
+ Φ (𝐶𝑥

𝑛
) < 𝑡
𝑠+1

(A.1)

for some 𝑘 and 𝑠, such that 𝑠 ⩾ 𝑘 (Figure 10). Obviously, 𝑟(𝑡)
satisfies a differential equation

𝑑𝑟 (𝑡)

𝑑𝑡
= D (𝑡) 𝑟 (𝑡) , (A.2)
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x(t)

x̂(t)

t̂ntk tk+1 tk+2 tk+3 ts ts+1t̂n+1

Figure 10: The firing times of the plant and the observer.

where

D (𝑡) =
{

{

{

𝐴, if �̂�
𝑛
⩽ 𝑡 < �̂�

𝑛
+ 𝜏,

𝐷, if �̂�
𝑛
+ 𝜏 ⩽ 𝑡 < �̂�

𝑛+1

(A.3)

at all the points 𝑡, where 𝑟(𝑡) has no jumps.
Derive explicit formulas for the map (8). Introduce a

number𝑚 ⩾ 0 such that 𝑠 = 𝑘 + 𝑚.
For 𝑚 = 0 (i.e., 𝑠 = 𝑘) the vector function 𝑟(𝑡) has no

jumps in the interval (�̂�
𝑛
, �̂�
𝑛+1
). Hence,

𝑥
𝑛+1
= 𝑥 (�̂�

−

𝑛+1
) − 𝑟 (�̂�

−

𝑛+1
)

= e𝐴(�̂�𝑛+1−𝑡𝑠)𝑥 (𝑡+
𝑠
) − e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)𝑟 (�̂�

𝑛
+ 𝜏)

= e𝐴(�̂�𝑛+1−𝑡𝑠)𝑥 (𝑡+
𝑠
) − e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)e𝐴𝜏𝑟 (�̂�+

𝑛
)

= e𝐴(�̂�𝑛+1−𝑡𝑠)𝑥 (𝑡+
𝑠
)

− e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)e𝐴𝜏 (e𝐴(�̂�𝑛−𝑡𝑘)𝑥 (𝑡+
𝑘
) − 𝑥 (�̂�

−

𝑛
) − �̂�
𝑛
𝐵)

(A.4)

implies (12) for 𝑠 = 𝑘.
For𝑚 ⩾ 1 the function 𝑟(𝑡) has jumps 𝑟(𝑡+) − 𝑟(𝑡−) = 𝜆

𝑖
𝐵

at the points 𝑡 = 𝑡
𝑖
, 𝑘+1 ⩽ 𝑖 ⩽ 𝑠.The assumption inf

�̃�
Φ(�̃�) > 𝜏

guarantees that �̂�
𝑛
+ 𝜏 < 𝑡

𝑖
for 𝑖 > 𝑘 + 1, while the point 𝑡

𝑘+1

may lie either in the interval (�̂�
𝑛
, �̂�
𝑛
+𝜏) or in the interval (�̂�

𝑛
+

𝜏, �̂�
𝑛+1
), so these two cases should be considered separately.

Suppose that𝑚 = 1 (i.e., 𝑠 = 𝑘+1).Then 𝑥
𝑛+1
= 𝑥(�̂�
−

𝑛+1
) −

𝑟(�̂�
−

𝑛+1
) = e𝐴(�̂�𝑛+1−𝑡𝑠)𝑥(𝑡+

𝑠
) − 𝑟(�̂�

−

𝑛+1
).

Find 𝑟(�̂�−
𝑛+1
).

(i) If �̂�
𝑛
+ 𝜏 ⩽ 𝑡

𝑠
, one has

𝑟 (�̂�
−

𝑛+1
) = e𝐷(�̂�𝑛+1−𝑡𝑠)𝑟 (𝑡+

𝑠
)

= e𝐷(�̂�𝑛+1−𝑡𝑠) (e𝐷(𝑡𝑠−�̂�𝑛−𝜏)𝑟 (�̂�
𝑛
+ 𝜏) + 𝜆

𝑠
𝐵)

= e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)e𝐴𝜏𝑟 (�̂�+
𝑛
) + 𝜆
𝑠
e𝐷(�̂�𝑛+1−𝑡𝑠)𝐵.

(A.5)

(ii) If 𝑡
𝑠
< �̂�
𝑛
+ 𝜏, one has

𝑟 (�̂�
−

𝑛+1
) = e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)𝑟 (�̂�

𝑛
+ 𝜏)

= e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)e𝐴(�̂�𝑛+𝜏−𝑡𝑠)𝑟 (𝑡+
𝑠
)

= e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)e𝐴𝜏𝑟 (�̂�+
𝑛
)

+ 𝜆
𝑠
e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)e𝐴(�̂�𝑛+𝜏−𝑡𝑠)𝐵.

(A.6)

Hence 𝑟(�̂�−
𝑛+1
) = e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)e𝐴𝜏𝑟(�̂�+

𝑛
) + 𝜆
𝑠
𝐺
𝑘
(𝑥(�̂�
−

𝑛
), �̂�
𝑛
)𝐵.

Thus,

𝑥
𝑛+1

= e𝐴(�̂�𝑛+1−𝑡𝑠)𝑥 (𝑡+
𝑠
)

− e𝐷(�̂�𝑛+1−�̂�𝑛−𝜏)e𝐴𝜏 (e𝐴(�̂�𝑛−𝑡𝑘)𝑥 (𝑡+
𝑘
) − 𝑥 (�̂�

−

𝑛
) − �̂�
𝑛
𝐵)

− 𝜆
𝑠
𝐺
𝑘
(𝑥 (�̂�
−

𝑛
) , �̂�
𝑛
) 𝐵

(A.7)

implying (12) for 𝑠 = 𝑘 + 1.
Suppose that 𝑚 ⩾ 2. Prove that 𝑟(𝑡+

𝑘+2
) =

e𝐷(𝑡𝑘+2−�̂�𝑛−𝜏)e𝐴𝜏𝑟(�̂�+
𝑛
) + 𝜆
𝑘+1
𝐺
𝑘,𝑘+2

(�̂�
𝑛
)𝐵 + 𝜆

𝑘+2
𝐵, where

𝐺
𝑖,𝑗
(𝜃) =

{

{

{

e𝐷(𝑡𝑗−𝑡𝑖+1), if 𝜃 + 𝜏 ⩽ 𝑡
𝑖+1

e𝐷(𝑡𝑗−𝜃−𝜏)e𝐴(𝜃+𝜏−𝑡𝑖+1), if 𝑡
𝑖+1
< 𝜃 + 𝜏

(A.8)

for some 𝑖, 𝑗 such that 𝑘 ⩽ 𝑖 < 𝑗 ⩽ 𝑠.

(i) If �̂�
𝑛
+ 𝜏 ⩽ 𝑡

𝑘+1
, then

𝑟 (𝑡
+

𝑘+2
) = e𝐷(𝑡𝑘+2−𝑡𝑘+1)𝑟 (𝑡+

𝑘+1
) + 𝜆
𝑘+2
𝐵

= e𝐷(𝑡𝑘+2−𝑡𝑘+1) (e𝐷(𝑡𝑘+1−�̂�𝑛−𝜏)𝑟 (�̂�
𝑛
+ 𝜏) + 𝜆

𝑘+1
𝐵)

+ 𝜆
𝑘+2
𝐵

= e𝐷(𝑡𝑘+2−�̂�𝑛−𝜏)e𝐴𝜏𝑟 (�̂�+
𝑛
) + 𝜆
𝑘+1

e𝐷(𝑡𝑘+2−𝑡𝑘+1)𝐵

+ 𝜆
𝑘+2
𝐵.

(A.9)

(ii) If �̂�
𝑛
< 𝑡
𝑘+1
< �̂�
𝑛
+ 𝜏 < 𝑡

𝑘+2
, then

𝑟 (𝑡
+

𝑘+2
) = e𝐷(𝑡𝑘+2−�̂�𝑛−𝜏)𝑟 (�̂�

𝑛
+ 𝜏) + 𝜆

𝑘+2
𝐵

= e𝐷(𝑡𝑘+2−�̂�𝑛−𝜏)e𝐴(�̂�𝑛+𝜏−𝑡𝑘+1)𝑟 (𝑡+
𝑘+1
) + 𝜆
𝑘+2
𝐵

= e𝐷(𝑡𝑘+2−�̂�𝑛−𝜏)e𝐴(�̂�𝑛+𝜏−𝑡𝑘+1) (e𝐴(𝑡𝑘+1−�̂�𝑛)𝑟 (�̂�+
𝑛
)

+ 𝜆
𝑘+1
𝐵) + 𝜆

𝑘+2
𝐵.

(A.10)

For𝑚 ⩾ 3 one has

𝑟 (𝑡
+

𝑠
) = e𝐷(𝑡𝑠−�̂�𝑛−𝜏)e𝐴𝜏𝑟 (�̂�+

𝑛
) + 𝜆
𝑘+1
𝐺
𝑘,𝑠
(�̂�
𝑛
) 𝐵

+ 𝜆
𝑘+2

e𝐷(𝑡𝑠−𝑡𝑘+2)𝐵 + ⋅ ⋅ ⋅ + 𝜆
𝑠
𝐵.

(A.11)
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Thus one concludes that

𝑟 (�̂�
−

𝑛+1
) = e𝐷(�̂�𝑛−𝜏)e𝐴𝜏𝑟 (�̂�+

𝑛
) + 𝑟
𝑘,𝑠
, (A.12)

where

𝑟
𝑘,𝑠
=

𝑠

∑

𝑗=𝑘+1

𝜆
𝑗
e𝐷(�̂�𝑛+1−𝑡𝑠)𝐺

𝑗−1,𝑠
(�̂�
𝑛
) 𝐵. (A.13)

Then (A.12) can be rewritten as

𝑥
𝑛+1
= 𝑥 (�̂�

−

𝑛+1
) + e𝐷(�̂�𝑛−𝜏)e𝐴𝜏 (𝑥

𝑛
+ �̂�
𝑛
𝐵 − 𝑥 (�̂�

+

𝑛
))

− 𝑟
𝑘,𝑠
.

(A.14)

Since

𝑥 (�̂�
−

𝑛+1
) = e𝐴(�̂�𝑛+1−𝑡𝑠)𝑥 (𝑡+

𝑠
) ,

𝑥 (�̂�
+

𝑛
) = e𝐴(�̂�𝑛−𝑡𝑘)𝑥 (𝑡+

𝑘
) ,

𝐺
𝑘
(𝑥
𝑛
, �̂�
𝑛
) = e𝐷(�̂�𝑛+Φ(𝐶𝑥𝑛)−𝑡𝑠)𝐺

𝑘,𝑠
(�̂�
𝑛
) ,

(A.15)

equality (A.14) implies (12).

B. Proof of Theorem 3

Since

𝑥 (𝑡
+

𝑘
) = e𝐴(𝑡𝑘−𝑡𝑘−1)𝑥 (𝑡+

𝑘−1
) + 𝜆
𝑘
𝐵, 𝑘 ⩾ 1, (B.1)

it is straightforward to see that

𝑃
𝑘,𝑠 (𝜁, 𝜃) − 𝑃𝑘−1,𝑠 (𝜁, 𝜃)

= −𝜆
𝑘
[e𝐷(Φ(𝐶𝜁)−𝜏)e𝐴(𝜃+𝜏−𝑡𝑘) − 𝐺

𝑘−1 (𝜁, 𝜃)] 𝐵,

(B.2)

𝑃
𝑘,𝑠
(𝜁, 𝜃) − 𝑃

𝑘,𝑠−1
(𝜁, 𝜃)

= 𝜆
𝑠
[e𝐴(Φ(𝐶𝜁)+𝜃−𝑡𝑠) − 𝐺

𝑠−1
(𝜁, 𝜃)] 𝐵

(B.3)

for 𝑘 ⩾ 1, 𝑠 ⩾ 1. Since the functions 𝐺
𝑘
(⋅, 𝜃) are continuous

for all 𝑘, then the function 𝑃(𝜁, 𝜃) can have gaps only on the
surfaces in space (𝜁, 𝜃), where either 𝜃 = 𝑡

𝑘
or 𝜃 + Φ(𝐶𝜁) = 𝑡

𝑠

for some 𝑘, 𝑠.
Yet, from (B.2), (B.3) and because 𝐺

𝑘−1
(𝜁, 𝑡
𝑘
) =

e𝐷(Φ(𝐶𝜁)−𝜏)e𝐴𝜏 and 𝐺
𝑠−1
(𝜁, 𝑡
𝑠
− Φ(𝐶𝜁)) = 𝐼, it follows that

𝑃
𝑘,𝑠
− 𝑃
𝑘−1,𝑠

𝜃=𝑡
𝑘

= 0,

𝑃
𝑘,𝑠
− 𝑃
𝑘,𝑠−1

𝜃+Φ(𝐶𝜁)=𝑡
𝑠

= 0,

(B.4)

and the function 𝑃 is continuous everywhere.

C. Proof of Theorem 4

Since
𝜕𝐺
𝑘
(𝜁, 𝜃)

𝜕𝜃

=
{

{

{

e𝐷(𝜃+Φ(𝐶𝜁)−𝑡𝑘+1)𝐷, if 𝜃 ⩽ 𝑡
𝑘+1
− 𝜏,

e𝐷(Φ(𝐶𝜁)−𝜏)e𝐴(𝜃+𝜏−𝑡𝑘+1)𝐴, if 𝑡
𝑘+1
− 𝜏 < 𝜃

(C.1)

has a gap on the surface𝑀
𝑘,𝜏
= {(𝜁, 𝜃) : 𝜃 = 𝑡

𝑘+1
− 𝜏}, then

𝜕𝑃
𝑘,𝑠
(𝜁, 𝜃)/𝜕𝜃 is continuous everywhere on 𝑆

𝑘,𝑠
, except 𝑀

𝑘,𝜏

for 𝑠 > 𝑘 (if 𝑠 = 𝑘 then 𝜕𝑃
𝑘,𝑠
/𝜕𝜃 is continuous everywhere on

𝑆
𝑘,𝑠
).
It is easy to see that for any 0 < 𝜏 < inf(Φ(⋅)) there

exists a sufficiently small neighborhood𝑊
𝑘
of a point (𝑥

𝑘
, 𝑡
𝑘
)

such that𝑊
𝑘
∩ 𝑀
𝑘−1,𝜏

= 𝑊
𝑘
∩ 𝑀
𝑘,𝜏
= ⌀. Hence, the partial

derivatives of𝑃(𝜁, 𝜃) can have gaps either on the surface𝑀
𝑘
=

{(𝜁, 𝜃) : 𝜃 = 𝑡
𝑘
} or on the surface𝑁

𝑘+1
= {(𝜁, 𝜃) : 𝜃 +Φ(𝐶𝜁) =

𝑡
𝑘+1
}.
Let (𝜁, 𝜃) ∈ 𝑀

𝑘
= {(𝜁, 𝜃) : 𝜃 = 𝑡

𝑘
}. From (B.2) it follows

that 𝜕𝑢
𝑘
(𝜁, 𝑡
𝑘
)/𝜕𝜁 = 𝜕𝑢

𝑘−1
(𝜁, 𝑡
𝑘
)/𝜕𝜁 and 𝜕𝑢

𝑘
(𝜁, 𝑡
𝑘
)/𝜕𝜃 =

𝜕𝑢
𝑘−1
(𝜁, 𝑡
𝑘
)/𝜕𝜃. Hence 𝜕𝑃(𝜁, 𝜃)/𝜕𝜁 and 𝜕𝑃(𝜁, 𝜃)/𝜕𝜃 have no

gaps on𝑀
𝑘
.

Let (𝜁, 𝜃) ∈ 𝑁
𝑘+1

. From (B.3) it follows that

𝜕 (V
𝑘+1 (𝜁, 𝜃) − V𝑘 (𝜁, 𝜃))

𝜕𝜁

𝜃+Φ(𝐶𝜁)=𝑡
𝑘+1

= −𝜆
𝑘+1
Φ

(𝐶𝜁)𝐾𝐿𝐵𝐶 = 0,

𝜕 (V
𝑘+1
(𝜁, 𝜃) − V

𝑘
(𝜁, 𝜃))

𝜕𝜃

𝜃+Φ(𝐶𝜁)=𝑡
𝑘+1

= −𝜆
𝑘+1
𝐾𝐿𝐵

= 0.

(C.2)

Hence 𝜕𝑃(𝜁, 𝜃)/𝜕𝜁 and 𝜕𝑃(𝜁, 𝜃)/𝜕𝜃 have no gaps on𝑁
𝑘+1

.
Formula (14) follows by direct calculations along the lines

of Theorem 2 in [31].
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