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This paper investigates the coordination of a supply chain consisting of a loss-averse supplier and a risk-neutral buyer who orders
products from the supplier who suffers from random yield to meet a deterministic demand. We derive the risk-neutral buyer’s
optimal order policy and the loss-averse supplier’s optimal production policy under shortage-penalty-surplus-subsidy (SPSS)
contracts. We also analyze the impacts of loss aversion on the loss-averse supplier’s production decision making and find that the
loss-averse supplier may produce less than, equal to, or more than the risk-neutral supplier. Then, we provide explicit conditions
on which the random yield supply chain with a loss-averse supplier can be coordinated under SPSS contracts. Finally, adopting
numerical examples, we find that when the shortage penalty is low, the buyer’s optimal order quantity will increase, while the
supplier’s optimal production quantity will first decrease and then increase as the loss aversion level increases. When the shortage
penalty is high, the buyer’s optimal order quantity will decrease but the supplier’s optimal production quantity will always increase
as the loss aversion level increases. Furthermore, the numerical examples provide strong evidence for the view that SPSS contracts
can effectively improve the performance of the whole supply chain.

1. Introduction

Random yield is a major cause of supply uncertainty which
has been identified as one of the top three operation risks
in a supply chain [1, 2]. In the academic circle, supply
chain management with random yield has attracted many
researchers and how to hedge or share the random yield risk
in a supply chain, in particular, has drawn an ever wider
concern [3–5]. A recent paper by Inderfurth and Clemens
[6] analyzed a buyer-supplier supply chain in which the buyer
orders products from the supplier who suffers from random
yield to meet a deterministic demand. In their paper, two
operation scenarios are considered in terms of suppliers:
with and without a second source (emergency procurement).
Under each scenario, the optimal production quantity under
centralized decisionmaking and the buyer’s optimal ordering
quantity as well as the supplier’s optimal production quantity
under decentralized decisionmaking are derived.They found
that the double marginalization effect also exists under a
simple wholesale price contract (WHP), whereas the supply
chain coordination can be achieved with an overproduction

risk sharing contract (also called surplus subsidy contract in
some literature, e.g., Yan and Liu [7]) or a penalty contract
in the case of without emergency procurement. However, a
wholesale price contract is enough to achieve the channel
coordination if there is an emergency procurement option for
the supplier.

Like many supply chain models in literature, decision
makers in Inderfurth and Clemens [6] paper are assumed
to be risk-neutral and to maximize profit [8, 9]. However,
from previous experimental studies of managerial decision-
making under uncertainty, it can be observed that the
managers’ decision-making behaviors were consistent with
loss aversion and deviated from maximizing (expected)
profit [10–13]. Loss aversion, originated from Kahneman
and Tversky’s Prospect Theory [14], refers to people’s strong
preference of avoiding losses to acquiring the same-sized
gains [15–17]. It has been well studied in fields such as
organizational behavior, finance, marketing, and economics.
In recent years, operations management with loss aversion
has gradually attracted great attention in the academic circle
[15].

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 192147, 11 pages
http://dx.doi.org/10.1155/2015/192147



2 Mathematical Problems in Engineering

Motivated by the observations above, we in this paper
revisit the similar problem as Inderfurth and Clemens [6]
and consider the case where the supplier is loss-averse, while
the buyer is still risk-neutral. As a common phenomenon
in reality, such case has attracted many researchers [17,
18]. However, most of them consider solely the demand
uncertainty while neglecting the supply uncertainty, espe-
cially the relevant risks caused by random yield. Our major
contributions to the literature are as follows.

(1) We develop supply chain models incorporating both
shortage penalty (SP) contract and a surplus subsidy (SS)
contract (we will call it SPSS contract in this paper) as well
as a loss-averse supplier. Our paper casts light on the impact
of loss-averse on decision making and performance of the
supply chain in the context of random yield.

(2) We derive analytical solutions to the risk-neutral
buyer’s optimal order policy and loss-averse supplier’s opti-
mal production policy. Meanwhile, we explore the impact
of loss aversion on the loss-averse supplier’s production
decision-making and obtain many interesting results.

(3) We also provide explicit conditions on which the
random yield supply chain with a loss-averse supplier can be
coordinated and demonstrate that the results of Inderfurth
and Clemens [6] are special cases in our paper.

This paper is organized as follows. The next section
reviews related work in the literature. We restate prob-
lem description and notations in Section 3. In Section 4,
we investigate the loss-averse supplier’s optimal production
policy and the impact of loss aversion on the loss-averse
supplier’s decision-making. The risk-neutral buyer’s optimal
order policy is derived in Section 5.We explore the conditions
for supply chain coordination in Section 6 and present
numerical examples in Section 7. Finally, we conclude the
paper in Section 8.

2. Literature Review

Our paper touches two areas of supply chain management
research: with random yield and with loss-averse agents.
Although both areas have been extensively studied, most of
the previous studies are in separate contexts. Karlin [19],
motivated by uncertain harvest yield in agriculture, was a pio-
neer in investigating single-period inventory problem with
random yield. Later, an increasing number of researchers
also took interest in this field, but the early research mainly
focused on developing various random yield models to
analyze the inventory/production control problem (e.g., lot
sizing). Yano and Lee [20] provided a detailed review on
these researches. Along with the popularity of supply chain
management in academic circle [21, 22], how to manage
random yield risk in a supply chain context has attracted a
vast amount of researchers’ concern. Among these studies,
some investigated the issue of procurement and production
management problems, such as the studies of Keren [23],
Li et al. [24], He and Zhang [3], Wang [25], and Kaki et
al. [26]; others extended their exploration into the issue of
supply chain coordination, such as the studies of Yan and
Liu [7], Li et al. [4], and Tang and Kouvelis [5]. For more

detailed literature review on this field, readers may refer
to He and Zhang [3] and Li et al. [4]. These papers have
comprehensively studied the management of the random
yield risk from different views. However, the decision makers
in these studies are usually supposed to be risk-neutral.

There is an intensive literature on supply chain man-
agement with loss-averse agents, too. The majority of these
studies focus on the single-period inventory problem, also
known as the newsvendor problem. Eeckhoudt et al. [27]
are the first to study the loss-averse newsvendor problem by
considering the case that the newsvendor is allowed to obtain
additional quantity when the demand exceeds the initial
order.Their analyses show that a loss-averse newsvendor will
order strictly less than a risk-neutral one. Since then, the loss-
averse newsvendor models and the impact of loss aversion
on the ordering decision have been discussed under various
settings, for example, without shortage cost [11], with shortage
cost [28], with substitutable products [29], with credit insur-
ance and capital constraint [18], with customer returns [30]
and with asymmetric information [31]. However, only a few
of these papers are involved in the supply chain coordination
with loss aversion. Wang and Webster [32] investigated the
role of a gain/loss- (GL-) sharing provision in mitigating the
loss aversion effect in a risk-neutral manufacturer and a loss-
averse retailer system. They, in particular, show that a GL-
sharing-and-buyback (GLB) credit provision can achieve the
channel coordination. Chen et al. [16] considered a supply
chain consisting of a risk-neutral supplier and a loss-averse
retailer.They analyzed the optimal policies both of the retailer
and supplier as well as the coordination conditions of the
supply chain under option contracts. These studies consider
the situations where the attitudes of decision makers are
loss-averse to the associated risks. In addition, Chiu and
Choi [17] reviewed the literatures that adopt the mean-
variance models to depict the utility function of loss-averse
agents in supply chain risk management. However, they only
consider the demand uncertainty while neglecting the supply
uncertainty, especially the relevant risks caused by random
yield.

The papers by Giri [33], Liu et al. [34], and X. Li and
Y. J. Li [15] are the rare ones to consider both loss aversion and
random yield. Giri [33] studied how the loss aversion affects
the dual sourcing strategies of a risk-averse retailer who can
order from two suppliers, the cheaper one with random yield
and the reliable but more expensive one. Liu et al. [34] also
investigated a loss-averse newsvendor model with random
yield and stochastic demand.Theyobtained the optimal order
quantity and analyzed the impacts of loss aversion. Giri [33]
and Liu et al. [34] were still confined to consider loss aversion
from the angle of the newsvendor problem. Considering
multiplicative and additive random yield risks, X. Li and
Y. J. Li [15] investigated the lot-sizing problem in a random
yield production system. However, they just considered the
production problem while not considering the buyer’s order
problem, let alone the channel coordination issue. To the best
of our knowledge, there has not been any published paper that
has addressed such issue so far. Hence, our study shed new
light on the management of supply chain with random yield
and loss aversion.
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3. Problem Description and Notations

Consider a supply chain consisting of a loss-averse supplier
and a risk-neutral buyer who orders products from the
loss-averse supplier to meet a deterministic demand 𝑑 in
a single-period selling season. The loss-averse supplier is
subject to a random yield risk in the production process. We
in this study depict the random yield with a stochastically
proportional yield model, which has been frequently used in
the literatures (see Karlin [19]); that is, for an input 𝑄, the
output is 𝑇𝑄; 𝑇 (𝑇 ∈ [0, 1]) is the random variable with the
density function 𝜑(𝑡) and the cumulative distribution Φ(𝑡)
and 𝐸(𝑇) = 𝜇. Note that here the random yield rate 𝑇 is
independent of the input size 𝑄.

In this paper, we study the case where the buyer is
comparatively more powerful and provides the supplier with
a contract composed of shortage penalty (SP) and surplus
subsidy (SS). Under SPSS contract, the supplier will be
punished for underdelivery, whereas the supplier can obtain
subsidy (compensation) for overproduction (the amount that
exceeds the order); that is, the buyer has to pay for every
unit produced by the supplier. Let 𝑞 be the number of the
buyer’s order and let𝑄 be the number of the input level of the
supplier. The buyer pays the supplier 𝑤 per unit of the order
while compensates𝑤

1
(𝑤
1
< 𝑤) for each unit that exceeds the

order if the production yield is high. If the production yield is
low, the buyer charges penalty 𝑠

1
for each unit ordered but not

fulfilled. The production cost of the supplier is 𝑐 per unit and
the buyer sells the end-products at a unit price 𝑝. To simplify
the analysis, we normalize the production cost and salvage
value of the end-product as well as all other costs to zero. Note
that we assume in this paper that the supplier obtains finished
goods only from the initial regular production; that is, there
is no emergency production or other outside source to meet
the buyer’s order.

We further assume that utility function of the risk-
neutral buyer is equal to its expected profit function and
the loss-averse supplier has the following piecewise-linear
utility function which is widely adopted in literatures (see
Schweitzer and Cachon [11]; Chen et al. [16]; Wang and
Webster [32]). Consider

𝑈 (𝜋) =
{

{

{

𝜋 if 𝜋 ≥ 0

𝛾𝜋 if 𝜋 < 0,
(1)

where 𝛾 ≥ 1 is the supplier’s loss aversion coefficient, which
means that people are more sensitive to losses than to same-
sized gains. Higher values of 𝛾 correspond to higher level of
loss aversion, and 𝛾 = 1 implies that the supplier is risk-
neutral. Throughout the paper, we assume that all parties’
reference level is zero.

Besides, symmetric information is assumed; that is, at the
beginning of the game, both firms hold the same information,
which means all parameters and rules are known by each
firm. To avoid uninteresting case, we assume 𝑝 > 𝑤 >

𝑐/𝜇 > 𝑤
1
. Superscripts “𝑏” (buyer) and “𝑠” (supplier) are

adopted to differentiate between the profit of the buyer and
that of the supplier, and “𝑐” is adopted to denote profit of
the integrated supply chain. Note that 𝑥+ = max(0, 𝑥).

In addition, the proofs of all lemmas and theorems will be
given in the appendix.

4. Loss-Averse Supplier’s
Optimal Production Policy

In this section, we explore the optimal production policy of
the loss-averse supplier under a SPSS contract. The profit
function of the supplier, denoted by 𝜋𝑠(𝑄), is

𝜋
𝑠
(𝑄)

=
{

{

{

𝜋
𝑠

1 (𝑡; 𝑄; 𝑞) = 𝑤𝑡𝑄 − 𝑠1 (𝑞 − 𝑡𝑄) − 𝑐𝑄 if 𝑡𝑄 < 𝑞

𝜋
𝑠

2 (𝑡; 𝑄; 𝑞) = 𝑤𝑞 + 𝑤1 (𝑡𝑄 − 𝑞) − 𝑐𝑄 if 𝑡𝑄 ≥ 𝑞.

(2)

Then the expected profit function of the supplier, denoted
by 𝐸[𝜋𝑠(𝑄)], is

𝐸 [𝜋
𝑠
(𝑄)] = ∫

𝑞/𝑄

0
(𝑤−𝑤1 + 𝑠1) (𝑡𝑄− 𝑞) 𝜑 (𝑡) 𝑑𝑡 +𝑤𝑞

+𝑤1 (𝜇𝑄− 𝑞) − 𝑐𝑄.

(3)

We discuss the breakeven quantities of the realized yield
rate below. Let 𝑡 be the realized yield rate.

Case 1. If 𝑡 < 𝑞/𝑄, then, from the supplier’s profit function
(2), 𝜋𝑠
1
(𝑡; 𝑄; 𝑞) = 𝑤𝑡𝑄 − 𝑠

1
(𝑞 − 𝑡𝑄) − 𝑐𝑄; let 𝜋𝑠

1
(𝑡
1
; 𝑄; 𝑞) = 0;

we get 𝑡
1
= (𝑠
1
𝑞 + 𝑐𝑄)/(𝑤 + 𝑠

1
)𝑄. Since 𝜋𝑠

1
(𝑡; 𝑄; 𝑞) is strictly

increasing in 𝑡, so if 𝑄 ≤ (𝑤/𝑐)𝑞, then 𝜋𝑠
1
(𝑡; 𝑄; 𝑞) < 0 for

𝑡 < 𝑡
1
and 𝜋𝑠

1
(𝑡; 𝑄; 𝑞) > 0 for 𝑡

1
< 𝑡 < 𝑞/𝑄; if 𝑄 > (𝑤/𝑐)𝑞,

then 𝜋𝑠
1
(𝑡; 𝑄; 𝑞) < 0 for 𝑡 < 𝑞/𝑄.

Case 2. If 𝑡 ≥ 𝑞/𝑄, then, from the supplier’s profit function
(2), 𝜋𝑠
2
(𝑡; 𝑄; 𝑞) = 𝑤𝑞+𝑤

1
(𝑡𝑄−𝑞)−𝑐𝑄; letΠ𝑠

2
(𝑡
2
; 𝑄; 𝑞) = 0; we

get 𝑡
2
= (𝑐𝑄−(𝑤−𝑤

1
)𝑞)/𝑤

1𝑄
. Since 𝜋𝑠

2
(𝑡; 𝑄; 𝑞) is also strictly

increasing in 𝑡, so if 𝑄 ≤ (𝑤/𝑐)𝑞, then 𝜋𝑠
2
(𝑡; 𝑄; 𝑞) > 0 for

𝑡 ≥ 𝑞/𝑄; if 𝑄 > (𝑤/𝑐)𝑞, then 𝜋𝑠
2
(𝑡; 𝑄; 𝑞) < 0 for 𝑞/𝑄 < 𝑡 < 𝑡

2

and 𝜋𝑠
2
(𝑡; 𝑄; 𝑞) > 0 for 𝑡 > 𝑡

2
.

Combining the above two parts, we can get the following
lemma.

Lemma 1. If 𝑄 ≤ (𝑤/𝑐)𝑞, then 𝜋𝑠(𝑄) ≥ 0 for 𝑡 ∈ ((𝑠1𝑞 +
𝑐𝑄)/(𝑤 + 𝑠1)𝑄, 1) and 𝜋𝑠(𝑄) < 0 for 𝑡 ∈ (0, (𝑠1𝑞 + 𝑐𝑄)/(𝑤 +
𝑠1)𝑄); if 𝑄 > (𝑤/𝑐)𝑞, then 𝜋𝑠(𝑄) ≥ 0 for 𝑡 ∈ ((𝑐𝑄 −

(𝑤 − 𝑤1)𝑞)/𝑤1𝑄, 1) and 𝜋𝑠(𝑄) < 0 for 𝑡 ∈ (0, (𝑐𝑄 − (𝑤 −
𝑤1)𝑞)/𝑤1𝑄).

Lemma 1 provides the conditions under which the loss-
averse supplier’s profit will be negative or positive according
to the realized yield rate. It shows that, whatever the pro-
duction quantity is, there are only one breakeven threshold
(𝑡
1
= (𝑠
1
𝑞 + 𝑐𝑄)/(𝑤 + 𝑠

1
)𝑄 for 𝑄 ≤ (𝑤/𝑐)𝑞 and 𝑡

2
=

(𝑐𝑄 − (𝑤 − 𝑤
1
)𝑞)/𝑤

1𝑄
for 𝑄 > (𝑤/𝑐)𝑞), which means that

the supplier will always face losses as long as the realized yield
rate is low.

According to the above results, the loss-averse supplier’s
expected utility function, denoted by 𝐸[𝑈(𝜋𝑠(𝑄))], can be
written as
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𝐸 [𝑈 (𝜋
𝑠
(𝑄))] = 𝐸 [𝜋

𝑠
(𝑄)] + (𝛾 − 1) ×

{{{

{{{

{

∫

𝑡1

0
𝜋
𝑠

1 (𝑡; 𝑄; 𝑞) 𝜑 (𝑡) 𝑑𝑡, if 𝑄 ≤ 𝑤
𝑐
𝑞,

∫

𝑞/𝑄

0
𝜋
𝑠

1 (𝑡; 𝑄; 𝑞) 𝜑 (𝑡) 𝑑𝑡 + ∫
𝑡2

𝑞/𝑄

𝜋
𝑠

2 (𝑡; 𝑄; 𝑞) 𝜑 (𝑡) 𝑑𝑡, if 𝑄 > 𝑤
𝑐
𝑞. (4)

The loss-averse supplier’s expected utility can be regarded
as the expected profit plus its biased losses related to the
expected profit. The loss-averse supplier’s decision problem
is

max
𝑄>0
𝐸 [𝑈 (𝜋

𝑠
(𝑄))] . (5)

Theorem2. 𝐸[𝑈(𝜋𝑠(𝑄))] is concave in𝑄; let𝑄∗(𝑞) denote the
supplier’s optimal production quantity for a given 𝑞. If𝑄∗(𝑞) ≤
(𝑤/𝑐)𝑞, then 𝑄∗(𝑞) is solved by the following equation:

∫

𝑞/𝑄
∗

(𝑞)

0
(𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡 + (𝛾 − 1)

⋅ ∫

(𝑠1𝑞+𝑐𝑄
∗

(𝑞))/(𝑤+𝑠1)𝑄
∗

(𝑞)

0
[(𝑤+ 𝑠1) 𝑡 − 𝑐] 𝜑 (𝑡) 𝑑𝑡 = 𝑐

−𝑤1𝜇.

(6)

If 𝑄∗(𝑞) > (𝑤/𝑐)𝑞, then 𝑄∗(𝑞) is solved by the following
equation:

∫

𝑞/𝑄
∗

(𝑞)

0
𝛾 (𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡

+ (𝛾 − 1) ∫
(𝑐𝑄
∗

(𝑞)−(𝑤−𝑤1)𝑞)/𝑤1𝑄
∗

(𝑞)

0
(𝑤1𝑡 − 𝑐) 𝜑 (𝑡) 𝑑𝑡

= 𝑐 −𝑤1𝜇.

(7)

Theorem2 characterizes the supplier’s best response func-
tion (optimal production quantity), 𝑄∗(𝑞), for the buyer’s
any given order quantity 𝑞. Due to the loss-averse attitude of
the supplier to the random yield, the response functions to
𝑄 ≤ (𝑤/𝑐)𝑞 and 𝑄 > (𝑤/𝑐)𝑞 are different. We can further
derive the following lemma fromTheorem 2.

Lemma 3. 𝑄∗(𝑞) is linearly increasing in 𝑞.

Lemma 3 indicates that the optimal production quantity
of the loss-averse is linearly increasing in the risk-neutral
buyer’s order quantity. It shows that the results of He and
Zhang [3] andWang [25] who assume that both the buyer and
supplier are risk-neutral do hold in our model. Therefore, we
define

𝑄
∗
(𝑞) =

{{

{{

{

𝛿
𝛾1𝑞 if 𝛿

𝛾1 ≤
𝑤

𝑐

𝛿
𝛾2𝑞 if 𝛿

𝛾2 >
𝑤

𝑐
.

(8)

Then, from (6), we can get that the linear coefficient 𝛿
𝛾1

satisfies

∫

1/𝛿
𝛾1

0
(𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡

+ (𝛾 − 1) ∫
𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)

0
[(𝑤+ 𝑠1) 𝑡 − 𝑐] 𝜑 (𝑡) 𝑑𝑡

= 𝑐 −𝑤1𝜇,

(9)

and, from (7), the linear coefficient 𝛿
𝛾2
satisfies

∫

1/𝛿
𝛾2

0
𝛾 (𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡𝜑 (𝑡) 𝑑𝑡

+ (𝛾 − 1) ∫
𝑐/𝑤1−(𝑤−𝑤1)/𝑤1𝛿𝛾2

0
(𝑤1𝑡 − 𝑐) 𝜑 (𝑡) 𝑑𝑡

= 𝑐 −𝑤1𝜇.

(10)

As a special case, if the supplier is risk-neutral (𝛾 = 1),
from (9) and (10), we can get that the linear coefficient 𝛿

1

satisfies∫1/𝛿1
0
(𝑤−𝑤

1
+𝑠
1
)𝑡𝜑(𝑡)𝑑𝑡 = 𝑐−𝑤

1
𝜇.Thus, the impact of

risk aversion on the optimal production policy of the supplier
can be characterized in the following theorem.

Theorem 4. (1) If ∫𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)0 [(𝑤+𝑠1)𝑡−𝑐]𝜑(𝑡)𝑑𝑡 > 0,
then 𝛿

𝛾1 < 𝛿1 and 𝑑𝛿𝛾1/𝑑𝛾 > 0. If ∫𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)0 [(𝑤 +

𝑠1)𝑡 − 𝑐]𝜑(𝑡)𝑑𝑡 = 0, then 𝛿
𝛾1 = 𝛿1 and 𝑑𝛿

𝛾1/𝑑𝛾 = 0. If
∫
𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)

0 [(𝑤 + 𝑠1)𝑡 − 𝑐]𝜑(𝑡)𝑑𝑡 < 0, then 𝛿
𝛾1 > 𝛿1

and 𝑑𝛿
𝛾1/𝑑𝛾 < 0.

(2) If ∫1/𝛿𝛾20 (𝑤 − 𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 + ∫
𝑐/𝑤1−(𝑤−𝑤1)/𝑤1𝛿𝛾2

0 (𝑤1𝑡 −

𝑐)𝜑(𝑡)𝑑𝑡 > 0, then 𝛿
𝛾2 < 𝛿1 and 𝑑𝛿𝛾2/𝑑𝛾 > 0. If ∫1/𝛿𝛾20 (𝑤 −

𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 + ∫
𝑐/𝑤1−(𝑤−𝑤1)/𝑤1𝛿𝛾2

0 (𝑤1𝑡 − 𝑐)𝜑(𝑡)𝑑𝑡 = 0, then
𝛿
𝛾2 = 𝛿1 and 𝑑𝛿𝛾2/𝑑𝛾 = 0. If ∫1/𝛿𝛾20 (𝑤 − 𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 +

∫
𝑐/𝑤1−(𝑤−𝑤1)/𝑤1𝛿𝛾2

0 (𝑤1𝑡 − 𝑐)𝜑(𝑡)𝑑𝑡 < 0, then 𝛿
𝛾2 > 𝛿1 and

𝑑𝛿
𝛾2/𝑑𝛾 < 0.

Theorem 4 shows that when the supplier is loss-averse the
linear coefficient 𝛿

𝛾1 (𝛿𝛾2) will be smaller than, equal to, or
bigger than that of the risk-neutral 𝛿

1
. It indicates that when

the yield is random the loss-averse supplier may produce less
than, equal to, or more than the risk-neutral supplier under
the SPSS contract.

Next, we investigate the impacts of the price/cost on the
linear coefficient 𝛿

𝛾𝑖
(𝑖 = 1, 2).

Lemma 5. 𝛿
𝛾𝑖
(𝑖 = 1, 2) is increasing in 𝑤 and 𝑠1 while

decreasing in 𝑐.
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Lemma 5 suggests that the higher the wholesale price 𝑤
or the penalty for per unit 𝑠

1
or the smaller the production

cost 𝑐 is, the bigger the linear coefficient 𝛿
𝛾𝑖
(𝑖 = 1, 2) will be.

5. Risk-Neutral Buyer’s Optimal Order Policy

We now turn our attention to the optimal order policy of the
risk-neutral buyer. Assuming that the buyer decides to order
units 𝑞 tomeet the deterministic market demand 𝑑 according
to the realization of the supplier’s yield rate, then the risk-
neutral buyer’s expected profit, denoted by 𝐸[𝜋𝑏(𝑞)], is

𝐸 [𝜋
𝑏
(𝑞)] = 𝑝𝐸min (𝑇𝑄∗, 𝑑) + 𝑠1𝐸 (𝑞 − 𝑇𝑄

∗
)
+

−𝑤𝐸min (𝑇𝑄∗, 𝑞) −𝑤1𝐸 (𝑇𝑄
∗
− 𝑞)
+

.

(11)

The first two terms are the expected revenue from
sales and penalty the supplier has to pay for the shortage,
respectively. The last two terms are the costs incurred by
purchasing the amount up to the order and the amount that
exceeds the order, respectively. The above equation can be
rewritten as

𝐸 [𝜋
𝑏
(𝑞)] = ∫

𝑑/𝑄
∗

0
𝑝 (𝑡𝑄
∗
−𝑑) 𝜑 (𝑡) 𝑑𝑡

−∫

𝑞/𝑄
∗

0
(𝑤+ 𝑠1 −𝑤1) (𝑡𝑄

∗
− 𝑞) 𝜑 (𝑡) 𝑑𝑡

+ 𝑝𝑑−𝑤𝑞−𝑤1 (𝜇𝑄
∗
− 𝑞) .

(12)

The risk-neutral buyer solves the following problem:

max
𝑞>0
𝐸 [𝜋
𝑏
(𝑞)] . (13)

Taking into account 𝑄∗(𝑞) = 𝛿
𝛾𝑖
𝑞 (𝑖 = 1 if 𝛿

𝛾𝑖
≤ 𝑤/𝑐,

otherwise 𝑖 = 2), we can get

𝐸 [𝜋
𝑏
(𝑞)]

= ∫

𝑑/𝛿
𝛾𝑖
𝑞

0
𝑝 (𝑡𝛿
𝛾𝑖
𝑞 − 𝑑) 𝜑 (𝑡) 𝑑𝑡

−∫

1/𝛿
𝛾𝑖

0
(𝑤+ 𝑠1 −𝑤1) (𝑡𝛿𝛾𝑖𝑞 − 𝑞) 𝜑 (𝑡) 𝑑𝑡 + 𝑝𝑑

−𝑤𝑞−𝑤1 (𝜇𝛿𝛾𝑖𝑞 − 𝑞) .

(14)

And then we derive the following theorem.

Theorem 6. 𝐸[𝜋𝑏(𝑞)] is concave in 𝑞, and 𝑞∗ satisfies the
following equation:

∫

𝑑/𝛿
𝛾𝑖
𝑞
∗

0
𝑝𝑡𝛿
𝛾𝑖
𝜑 (𝑡) 𝑑𝑡

−∫

1/𝛿
𝛾𝑖

0
(𝑤+ 𝑠1 −𝑤1) (𝑡𝛿𝛾𝑖 − 1) 𝜑 (𝑡) 𝑑𝑡

= 𝑤+𝑤1 (𝜇𝛿𝛾𝑖 − 1) ,

(15)

where 𝑖 = 1 if 𝛿
𝛾𝑖
≤ 𝑤/𝑐, otherwise 𝑖 = 2.

Theorem 6 shows that the buyer’s optimal order quantity
(𝑞
∗
) depends on 𝑝, 𝑤, 𝑤

1
, 𝑠
1
, and the distribution of yield

rate. From the above analysis, we can see that the optimal
production quantity of the loss-averse suppler should be𝑄∗ =
𝛿
𝛾𝑖
𝑞
∗ (𝑖 = 1 if 𝛿

𝛾𝑖
≤ 𝑤/𝑐, otherwise 𝑖 = 2) if the risk-neutral

buyer’s optimal order quantity is 𝑞∗.
Inderfurth and Clemens [6] provided clear evidence for

the existence of the double marginalization effect in the
case of random yield and deterministic demand under the
WHP. They also demonstrated that a surplus subsidy or a
penalty contract can coordinate supply chains and provided
the conditions on which the supply chain coordination can
be achieved under each contract. Based on Inderfurth and
Clemens’s study, we have derived and analyzed the optimal
policies of the risk-neutral buyer and the loss-averse supplier
under SPSS contracts in this section. Next, we will discuss the
conditions on which the random yield supply chain with a
loss-averse supplier can be coordinated under SPSS contracts.

6. Supply Chain Coordination

Here we begin with studying the optimization problem of
the integrated supply chain. Specifically, we assume that the
integrated system is controlled by a large and risk-neutral
firm. If the production quantity under the controlled firm is
𝑄
𝑐, then the integrated supply chain’s expected profit, denoted

by Π𝑐(𝑄𝑐), is

𝐸 [Π
𝑐
(𝑄
𝑐
)] = 𝑝min (𝑇𝑄𝑐, 𝑑) − 𝑐𝑄𝑐. (16)

The terms above refer to the expected revenue and the
production cost, respectively. The above equation can be
rewritten as

𝐸 [Π
𝑐
(𝑄
𝑐
)] = ∫

𝑑/𝑄
𝑐

0
𝑝 (𝑡𝑄
𝑐
−𝑑) 𝜑 (𝑡) 𝑑𝑡 + 𝑝𝑑− 𝑐𝑄

𝑐
. (17)

Then, the integrated supply chain solves the following
problem:

max
𝑄
𝑐
>0
𝐸 [Π
𝑐
(𝑄
𝑐
)] . (18)

Theorem 7. 𝐸[Π𝑐(𝑄𝑐)] is concave in 𝑄𝑐, and 𝑄𝑐∗ satisfies the
following equation:

∫

𝑑/𝑄
𝑐∗

0
𝑡𝜑 (𝑡) 𝑑𝑡 =

𝑐

𝑝
. (19)

Next, we explore the conditions on which the supply
chain can be coordinated under SPSS contracts. Supply
chain coordination can be achieved if the members can be
motivated to take the same action as integrated supply chain
requires (as in the integrated case) [35]. We assume that the
risk-neutral buyer is comparatively more powerful in this
paper. In such context, the supply chain coordination will
be achieved if the risk-neutral buyer set contract parameters
and order quantity based on the supplier’s loss aversion level
to motivate the supplier to produce in accordance with the
decision of the integrated supply chain; that is, the loss-averse
supplier should produce 𝑄𝑐∗. Therefore, replacing 𝑄∗ with
𝑄
𝑐∗ and 𝑞∗ with 𝑑 of Theorem 2, we can get Theorem 8.
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Theorem 8. The decentralized supply chain can be coordi-
nated with shortage-penalty-surplus-subsidy contract when
(1) 𝑤 ≥ 𝑐𝑄

𝑐∗
/𝑑 and ∫𝑑/𝑄

𝑐∗

0 (𝑤 − 𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 + (𝛾 −

1) ∫(𝑠1𝑑+𝑐𝑄
𝑐∗

)/(𝑤+𝑠1)𝑄
𝑐∗

0 [(𝑤 + 𝑠1)𝑡 − 𝑐]𝜑(𝑡)𝑑𝑡 = 𝑐 − 𝑤1𝜇; or

(2) 𝑤 < 𝑐𝑄
𝑐∗
/𝑑 and ∫𝑑/𝑄

𝑐∗

0 𝛾(𝑤 − 𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 + (𝛾 −

1) ∫(𝑐𝑄
𝑐∗

−(𝑤−𝑤1)𝑑)/𝑤1𝑄
𝑐∗

0 (𝑤1𝑡 − 𝑐)𝜑(𝑡)𝑑𝑡 = 𝑐 − 𝑤1𝜇 is satisfied.

It can be observed formTheorem 8 that the coordination
condition is closely related to the wholesale price 𝑤. From
Theorem 8, we can see that when 𝛾 = 1 and 𝑠

1
= 0, the

coordination condition changes as 𝑤 + (𝑝/(𝑐/𝜇) − 1)𝑤
1
= 𝑝.

Besides, when 𝛾 = 1 and 𝑤
1
= 0, the condition is 𝑤 + 𝑠

1
= 𝑝.

It indicates that the results of Inderfurth and Clemens [6] are
special cases in our paper.

When there is coordination for the supply chain, its total
expected profit is always not smaller than that of the baseline
case without coordination. It is clear that, by varying the
contract parameters 𝑤, 𝑤

1
, and 𝑠

1
according to Theorem 8,

the allocation of the supply chain profit between the buyer
and the supplier will be achieved in many different ways.
Comparedwith the noncoordinating scenario, there is always
a Pareto improvement with the coordination scenario; that is,
neither the supplier’s nor the buyer’s profit decreases and at
least one firm is strictly better off.Thus, the buyer should aim
at coordination so that both firms will see increase in their
profits.

7. Numerical Examples

In the above sections, we adopt a generalized yield distribu-
tion to make our results more applicable. In this section, in
order to make it more intuitive and intelligible, we suppose
that the yield rate follows a uniform distribution with the
mean yield rate 𝜇 = 0.6 and perform the numerical examples
to analyze the impacts of loss aversion and some system
parameters on the decisions and performances of the supply
chain. The parameters are set as follows: 𝑐 = 4, 𝑤 = 8,
and 𝑝 = 15. We consider a base example with 𝑤

1
= 1,

𝑠
1
= 0, 𝛾 = 3, 𝑑 = 100, and 𝑇 ∼ 𝑈(0.2, 1.0). To conduct

the comparison, we change the focal parameter and fix other
parameters of the base case. The results are shown in Figures
1–6.

To analyze the impacts of loss aversion on the buyer’s
optimal order quantity and the supplier’s optimal production
quantity, we first consider four different loss aversion levels:
𝛾 = 1, 𝛾 = 2, 𝛾 = 3, 𝛾 = 4, and 𝛾 = 5 with 𝑠

1
= 0 and

𝑠
1
= 3. The optimal policies of the buyer and the supplier are

plotted in Figures 1 and 2, respectively. From Figures 1 and 2,
we find that the shortage penalty 𝑠1 is a crucial parameter that
affects the sensitivity of the two firms’ optimal policies to the
loss aversion level.More specifically, as 𝛾 increases, the buyer’s
optimal order quantity will decrease when 𝑠1 is high, while it
will increase when 𝑠1 is low. Meanwhile, for the supplier, as 𝛾
increases, its optimal production quantity will increase when
𝑠1 is high and will first decrease and then increase when 𝑠1 is
low, which further verifies Theorem 4; that is, the loss-averse
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Figure 1: Plot of the buyer’s optimal order quantity with 𝛾 with
different 𝑠
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Figure 2: Plot of the supplier’s optimal production quantity with 𝛾
with different 𝑠

1
.

supplier may produce less than, equal to, or more than the
risk-neutral supplier under SPSS contracts.

Next, we consider four different loss aversion levels: 𝛾 = 1,
𝛾 = 2, 𝛾 = 3, 𝛾 = 4, and 𝛾 = 5 with 𝑤1 = 1 and
𝑤1 = 3. The optimal policies of the buyer and the supplier
are plotted in Figures 3 and 4, respectively. Figures 3 and
4 show that the surplus subsidy 𝑤1 poses only a limited
influence on the sensitivity of the two firms’ optimal policies
to the loss aversion level. We find that in the two cases of
𝑤1, as 𝛾 increases, the buyer’s optimal order quantity will
increase, while the supplier’s optimal production quantity
first decreases and then increases. Moreover, Figures 1–4
show that the buyer is more sensitive to the supplier’s loss
aversion than the supplier.

To analyze the impacts of the surplus subsidy 𝑤1 on the
two firms’ optimal policies, we consider four different surplus
subsidy values: 𝑤1 = 1, 𝑤1 = 2.5, 𝑤1 = 4, and 𝑤1 = 5.5. The
optimal policies of the buyer and the supplier with different
𝑤1 are plotted in Figure 5. From Figure 5, we find that both
the buyer’s optimal order quantity and the supplier’s optimal
production quantity will increase as𝑤1 increases. It indicates
that when the supplier is loss-averse, a bigger surplus subsidy
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Figure 3: Plot of the buyer’s optimal order quantity with 𝛾 with
different 𝑤1.
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Figure 4: Plot of the supplier’s optimal production quantity with 𝛾
with different 𝑤1.

𝑤1 will lead the buyer to order more and the supplier to
produce more.

To analyze the impacts of the shortage penalty 𝑠1 on
the two firms’ optimal policies, we consider four different
shortage penalty value 𝑠1 = 0, 𝑠1 = 1, 𝑠1 = 2 and 𝑠1 = 3. The
optimal policies of the buyer and the supplier with different
𝑤1 are plotted in Figure 6. From Figure 6, we find that as 𝑠1
increases, the buyer’s optimal order quantity will decrease but
the supplier’s optimal production will increase. It indicates
thatwhen the supplier is loss-averse, a bigger shortage penalty
𝑠1 will lead the buyer to order less but the supplier to produce
more.

Table 1 illustrates the impacts of random yield and loss
aversion on supply chain performance as well as the changes
in the expected profit of the supplier, the buyer, and the
whole supply chain after the introduction of SPSS contracts.
In Table 1, 𝜋𝑠WHP, 𝜋

𝑏

WHP, and ΠWHP (ΠWHP = 𝜋
𝑠

WHP + 𝜋
𝑏

WHP),
respectively, stand for the expected profit of the supplier, the
buyer, and the whole supply chain under wholesale price
contracts, while𝜋𝑠SPSS,𝜋

𝑏

SPSS, andΠSPSS (ΠSPSS = 𝜋
𝑠

SPSS+𝜋
𝑏

SPSS)
stand for the expected profit of the supplier, the buyer, and
the whole supply chain under SPSS contracts. Π

𝑐
stands for
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Figure 5: Plot of the buyer’s optimal order quantity and the
supplier’s optimal production quantity with 𝑤1.
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Figure 6: Plot of the buyer’s optimal order quantity and the
supplier’s optimal production quantity with 𝑠1.

Table 1: Expected profit under theWHP and the SPSS contract with
different yield rate variance and loss aversion level when 𝑤 = 9 and
𝑤1 = 5.

𝑇(𝑎, 𝑏) 𝛾 𝜋
𝑠

WHP 𝜋
𝑏

WHP ΠWHP 𝜋
𝑠

SPSS 𝜋
𝑏

SPSS ΠSPSS Π
𝑐

(0.2, 1)
2 120.0 325.4 445.4 118.3 422.1 540.4 594.1
3 107.7 302.6 410.3 89.9 409.2 499.1 594.1
4 99.0 297.6 396.6 65.8 403.3 469.1 594.1

(0.22, 0.98)
2 133.6 342.5 476.1 124.1 431.4 555.5 612.4
3 117.1 326.8 443.9 94.8 420.9 515.7 612.4
4 105.5 318.1 423.6 71.95 414.6 486.5 612.4

(0.24, 0.96)
2 139.4 354.9 494.3 129.9 440.9 570.8 630.4
3 126.4 341.6 468.0 104.3 430.9 535.2 630.4
4 112.2 325.1 437.3 75.88 424.4 500.2 630.4

the expected profit of the integrated supply chain. Table 1
shows that the expected profit of all parties will increase as the
yield rate variance decreases. Meanwhile, it also shows that
the expected profit of all parties will decrease as the supplier’s
loss aversion level increases. More importantly, from Table 1,
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we can see that SPSS contracts can effectively improve
the whole supply chain performance though the supplier’s
expected profit may be smaller under WHP contracts than
that of under SPSS contracts. Nevertheless, under SPSS con-
tracts, the expected profit of the whole supply chain without
coordination is still smaller than that of with coordination,
which indicates that the coordination is desirable.

8. Conclusion and Future Research

This paper probes into how the loss aversion affects the
supply chainmanagement and on what conditions the supply
chain coordination can be achieved with a shortage-penalty-
surplus-subsidy contract in the case of random yield. We
develop supply chain models by assuming that the loss-
averse supplier has a piecewise-linear utility function and
derive the risk-neutral buyer’s optimal order quantity and
loss-averse supplier’s optimal production quantity. Our work
reveals that there’s also a linear relationship between the
buyer’s order quantity and the supplier’s production quantity.
Through model comparison between loss-averse and risk-
neutral suppliers, we find that when the yield is random
the loss-averse supplier will produce less than, equal to,
or more than the risk-neutral supplier under the shortage-
penalty-surplus-subsidy contract. Then, we provide explicit
conditions on which the random yield supply chain with a
loss-averse supplier can be coordinated and point out that
the results of Inderfurth and Clemens [6] are special cases
in our paper. Finally, the impacts of loss aversion and some
system parameters on the decision and performances of the
supply chain are analyzed by adopting numerical examples.
Our study shed new light on themanagement of supply chain
with random yield.

Similar to any other models previously published in the
literature, the present model in our paper is also based on
some assumptions. For example, our model assumes that the
supplier is loss aversion, while the buyer is risk-neutral; we
have to acknowledge that the buyermay be loss-averse; hence,
a natural extension of our work can consider the problem
when the buyer is also loss-averse. In addition, the case where
both the random yield and stochastic demand are considered
will be studied in the future. Finally, more general supply
chains such as multiperiod models and multiple supplier and
multiple buyer models should be examined.

Appendix

Proof of Theorem 2. From (4), if 𝑄 ≤ (𝑤/𝑐)𝑞 (𝑞 ≥ (𝑐/𝑤)𝑄),
then we know that

𝐸 [𝑈 (𝜋
𝑠
(𝑄))] = (𝛾 − 1)

⋅ ∫

(𝑠1𝑞+𝑐𝑄)/(𝑤+𝑠1)𝑄

0
[(𝑤+ 𝑠1) 𝑡𝑄− 𝑠1𝑞 − 𝑐𝑄] 𝜑 (𝑡) 𝑑𝑡

+∫

𝑞/𝑄

0
(𝑤−𝑤1 + 𝑠1) (𝑡𝑄− 𝑞) 𝜑 (𝑡) 𝑑𝑡 +𝑤𝑞

+𝑤1 (𝜇𝑄− 𝑞) − 𝑐𝑄.

(A.1)

So, we get

𝑑𝐸 [𝑈 (𝜋
𝑠
(𝑄))]

𝑑𝑄

= ∫

𝑞/𝑄

0
(𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡

+ (𝛾 − 1) ∫
(𝑠1𝑞+𝑐𝑄)/(𝑤+𝑠1)𝑄

0
[(𝑤+ 𝑠1) 𝑡 − 𝑐] 𝜑 (𝑡) 𝑑𝑡

− 𝑐 +𝑤1𝜇,

𝑑
2
𝐸 [𝑈 (𝜋

𝑠
(𝑄))]

𝑑𝑄
2

= − (𝑤−𝑤1 + 𝑠1)
𝑞
2

𝑄3𝜑(
𝑞

𝑄
)

− (𝛾 − 1)
𝑠
2
1𝑞

2

(𝑤 + 𝑠1) 𝑄
3𝜑(

𝑠1𝑞 + 𝑐𝑄

(𝑤 + 𝑠1) 𝑄
) < 0.

(A.2)

In addition, if 𝑄 > (𝑤/𝑐)𝑞 (𝑞 ≥ (𝑐/𝑤)𝑄), then we get

𝐸 [𝑈 (𝜋
𝑠
(𝑄))] = (𝛾 − 1)

⋅ ∫

(𝑐𝑄−(𝑤−𝑤1)𝑞)/𝑤1𝑄

0
[𝑤𝑞 +𝑤1 (𝑡𝑄− 𝑞) − 𝑐𝑄]

⋅ 𝜑 (𝑡) 𝑑𝑡𝑤𝑞 +∫

𝑞/𝑄

0
𝛾 (𝑤−𝑤1 + 𝑠1) (𝑡𝑄− 𝑞)

⋅ 𝜑 (𝑡) 𝑑𝑡 +𝑤𝑞+𝑤1 (𝜇𝑄− 𝑞) − 𝑐𝑄.

(A.3)

Similarly, we get

𝑑𝐸 [𝑈 (𝜋
𝑠
(𝑄))]

𝑑𝑄

= ∫

𝑞/𝑄

0
𝛾 (𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡

+ (𝛾 − 1) ∫
(𝑐𝑄−(𝑤−𝑤1)𝑞)/𝑤1𝑄

0
(𝑤1𝑡 − 𝑐) 𝜑 (𝑡) 𝑑𝑡

− 𝑐 +𝑤1𝜇,

𝑑
2
𝐸 [𝑈 (𝜋

𝑠
(𝑄))]

𝑑𝑄
2

= − 𝛾 (𝑤−𝑤1 + 𝑠1)
𝑞
2

𝑄3𝜑(
𝑞

𝑄
)

− (𝛾 − 1)
(𝑤 − 𝑤1)

2
𝑞
2

𝑤1𝑄
3 𝜑(

𝑐𝑄 − (𝑤 − 𝑤1) 𝑞

𝑤1𝑄
)

< 0;

(A.4)

that is, 𝐸[𝑈(𝜋𝑠(𝑄))] is concave in 𝑄, and a unique produc-
tion quantity 𝑄∗ which maximizes 𝐸[𝑈(𝜋𝑠(𝑄))] exists. Let
𝑑𝐸[𝑈(𝜋

𝑠
(𝑄))]/𝑑𝑄 = 0 for the case of 𝑞 ≥ (𝑐/𝑤)𝑄 and

𝑞 < (𝑐/𝑤)𝑄; we can derive (6) and (7), respectively.
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Proof of Lemma 3. From (6), letting

𝐾1 (𝑞, 𝑄
∗
(𝑞)) = ∫

𝑞/𝑄
∗

(𝑞)

0
(𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡 − 𝑐

+𝑤1𝜇+ (𝛾 − 1)

⋅ ∫

(𝑠1𝑞+𝑐𝑄
∗

(𝑞))/(𝑤+𝑠1)𝑄
∗

(𝑞)

0
[(𝑤+ 𝑠1) 𝑡 − 𝑐] 𝜑 (𝑡) 𝑑𝑡,

(A.5)

we have

𝜕𝐾1
𝜕𝑞

= (𝑤−𝑤1 + 𝑠1)
𝑞

[𝑄∗ (𝑞)]
2𝜑(

𝑞

𝑄∗ (𝑞)
)

+ (𝛾 − 1)
𝑠
2
1𝑞

(𝑤 + 𝑠1) 𝑄
∗ (𝑞)

𝜑(
𝑠1𝑞 + 𝑐𝑄

∗
(𝑞)

(𝑤 + 𝑠1) 𝑄
∗ (𝑞)

) ,

𝜕𝐾1
𝜕𝑄∗ (𝑞)

= − (𝑤−𝑤1 + 𝑠1)
𝑞
2

[𝑄∗ (𝑞)]
3𝜑(

𝑞

𝑄∗ (𝑞)
)

− (𝛾 − 1)
𝑠
2
1𝑞

2

(𝑤 + 𝑠1) [𝑄
∗ (𝑞)]

2

⋅ 𝜑 (
𝑠1𝑞 + 𝑐𝑄

∗
(𝑞)

(𝑤 + 𝑠1) 𝑄
∗ (𝑞)

) .

(A.6)

By the implicit function theorem, we can see

𝑑𝑄
∗
(𝑞)

𝑑𝑞
= −

𝜕𝐾1/𝜕𝑞

𝜕𝐾1/𝜕𝑄
∗ (𝑞)

=
𝑄
∗
(𝑞)

𝑞
> 0,

𝑑
2
𝑄
∗
(𝑞)

𝑑2𝑞
=
𝑞𝑑𝑄
∗
(𝑞) /𝑑𝑞 − 𝑄

∗
(𝑞) 𝑑𝑞/𝑑𝑞

𝑞2
= 0.

(A.7)

Besides, from (7), letting

𝐾2 (𝑞, 𝑄
∗
(𝑞)) = ∫

𝑞/𝑄
∗

(𝑞)

0
𝛾 (𝑤+ 𝑠1 −𝑤1) 𝑡𝜑 (𝑡) 𝑑𝑡

+ (𝛾 − 1)

⋅ ∫

(𝑐𝑄
∗

(𝑞)−(𝑤−𝑤1)𝑞)/𝑤1𝑄
∗

(𝑞)

0
(𝑤1𝑡 − 𝑐) 𝜑 (𝑡) 𝑑𝑡 − 𝑐

+𝑤1𝜇,

(A.8)

we get

𝜕𝐾2
𝜕𝑞

= 𝛾 (𝑤+ 𝑠1 −𝑤1)
𝑞

[𝑄∗ (𝑞)]
2𝜑(

𝑞

𝑄∗ (𝑞)
)

+ (𝛾 − 1)
(𝑤 − 𝑤1)

2
𝑞

𝑤1𝑄
∗
(𝑞)

⋅ 𝜑(
𝑐𝑄
∗
(𝑞) − (𝑤 − 𝑤1) 𝑞

𝑤1𝑄
∗ (𝑞)

) ,

𝜕𝐾2
𝜕𝑄∗ (𝑞)

= − 𝛾 (𝑤+ 𝑠1 −𝑤1)
𝑞
2

[𝑄∗ (𝑞)]
3𝜑(

𝑞

𝑄∗ (𝑞)
)

− (𝛾 − 1)
(𝑤 − 𝑤1)

2
𝑞
2

𝑤1 [𝑄
∗ (𝑞)]

2

⋅ 𝜑 (
𝑐𝑄
∗
(𝑞) − (𝑤 − 𝑤1) 𝑞

𝑤1𝑄
∗ (𝑞)

) .

(A.9)

By the implicit function theorem, we also can see
𝑑𝑄
∗
(𝑞)/𝑑𝑞 = −(𝜕𝐾2/𝜕𝑞)/(𝜕𝐾2/𝜕𝑄

∗
(𝑞)) = 𝑄

∗
(𝑞)/𝑞 > 0,

and 𝑑2𝑄∗(𝑞)/𝑑2𝑞 = (𝑞𝑑𝑄∗(𝑞)/𝑑𝑞 − 𝑄∗(𝑞)𝑑𝑞/𝑑𝑞)/𝑞2 = 0.
So, 𝑄∗(𝑞) is linearly increasing in 𝑞.

Proof of Theorem 4. From (9), set

𝐿 (𝛾, 𝛿
𝛾1) = (𝛾 − 1)

⋅ ∫

𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)

0
[(𝑤+ 𝑠1) 𝑡 − 𝑐] 𝜑 (𝑡) 𝑑𝑡

+∫

1/𝛿
𝛾1

0
(𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡 − 𝑐 +𝑤1𝜇.

(A.10)

By the implicit function theorem, we get

𝑑𝛿
𝛾1

𝑑𝛾
= −

𝜕𝐿/𝜕𝛾

𝜕𝐿/𝜕𝛿
𝛾1
=

∫
𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)

0 [(𝑤 + 𝑠1) 𝑡 − 𝑐] 𝜑 (𝑡) 𝑑𝑡

(1/𝛿3
𝛾1) (𝑤 − 𝑤1 + 𝑠1) 𝜑 (1/𝛿𝛾1) + (𝛾 − 1) (𝑠21/ (𝑤 + 𝑠1) 𝛿3𝛾1) 𝜑 (𝑠1/ (𝑤 + 𝑠1) 𝛿𝛾1 + 𝑐/ (𝑤 + 𝑠1))

. (A.11)

Comparing (9) with ∫1/𝛿10 (𝑤 − 𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 = 𝑐 − 𝑤1𝜇,
we have the following.

(1) If ∫𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)0 [(𝑤 + 𝑠1)𝑡 − 𝑐]𝜑(𝑡)𝑑𝑡 > 0, then

𝛿
𝛾1 < 𝛿1 and 𝑑𝛿

𝛾1/𝑑𝛾 > 0. If ∫𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)0 [(𝑤 +

𝑠1)𝑡 − 𝑐]𝜑(𝑡)𝑑𝑡 = 0, then 𝛿
𝛾1 = 𝛿1 and 𝑑𝛿

𝛾1/𝑑𝛾 = 0. If

∫
𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)

0 [(𝑤 + 𝑠1)𝑡 − 𝑐]𝜑(𝑡)𝑑𝑡 < 0, then 𝛿
𝛾1 > 𝛿1

and 𝑑𝛿
𝛾1/𝑑𝛾 < 0.

From (9), set

𝐿 (𝛾, 𝛿
𝛾2)

= ∫

1/𝛿
𝛾2

0
𝛾 (𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡

+ (𝛾 − 1) ∫
𝑐/𝑤1−(𝑤−𝑤1)/𝑤1𝛿𝛾2

0
(𝑤1𝑡 − 𝑐) 𝜑 (𝑡) 𝑑𝑡

− 𝑐 +𝑤1𝜇.

(A.12)
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Then, we get

𝑑𝛿
𝛾2

𝑑𝛾
= −

𝜕𝐿/𝜕𝛾

𝜕𝐿/𝜕𝛿
𝛾2
=

∫
1/𝛿
𝛾2

0 (𝑤 − 𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡 + ∫
𝑐/𝑤1−(𝑤−𝑤1)/𝑤1𝛿𝛾2

0 (𝑤1𝑡 − 𝑐) 𝜑 (𝑡) 𝑑𝑡

(𝛾/𝛿3
𝛾2) (𝑤 − 𝑤1 + 𝑠1) 𝜑 (1/𝛿𝛾2) + (𝛾 − 1) ((𝑤 − 𝑤1)

2
/𝑤1𝛿

3
𝛾1) 𝜑 (𝑐/𝑤1 − (𝑤 − 𝑤1) /𝑤1𝛿𝛾2)

. (A.13)

Comparing (10) with ∫1/𝛿10 (𝑤−𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 = 𝑐−𝑤1𝜇,
we have the following.

(2) If ∫1/𝛿𝛾20 (𝑤 − 𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 + ∫
𝑐/𝑤1−(𝑤−𝑤1)/𝑤1𝛿𝛾2

0 (𝑤1𝑡 −

𝑐)𝜑(𝑡)𝑑𝑡 > 0, then 𝛿
𝛾2 < 𝛿1 and 𝑑𝛿𝛾2/𝑑𝛾 > 0. If ∫1/𝛿𝛾20 (𝑤 −

𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 + ∫
𝑐/𝑤1−(𝑤−𝑤1)/𝑤1𝛿𝛾2

0 (𝑤1𝑡 − 𝑐)𝜑(𝑡)𝑑𝑡 = 0, then
𝛿
𝛾2 = 𝛿1 and 𝑑𝛿𝛾2/𝑑𝛾 = 0. If ∫1/𝛿𝛾20 (𝑤 − 𝑤1 + 𝑠1)𝑡𝜑(𝑡)𝑑𝑡 +

∫
𝑐/𝑤1−(𝑤−𝑤1)/𝑤1𝛿𝛾2

0 (𝑤1𝑡 − 𝑐)𝜑(𝑡)𝑑𝑡 < 0, then 𝛿
𝛾2 > 𝛿1 and

𝑑𝛿
𝛾2/𝑑𝛾 < 0.

Proof of Lemma 5. From (7), set

𝑀1 (𝛿𝛾1, 𝑤) = (𝛾 − 1)

⋅ ∫

𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)

0
[(𝑤+ 𝑠1) 𝑡 − 𝑐] 𝜑 (𝑡) 𝑑𝑡

+∫

1/𝛿
𝛾1

0
(𝑤−𝑤1 + 𝑠1) 𝑡𝜑 (𝑡) 𝑑𝑡 − 𝑐 +𝑤1𝜇.

(A.14)

Then, we get

𝑑𝛿
𝛾1

𝑑𝑤
= −

𝜕𝑀1/𝜕𝑤

𝜕𝑀1/𝜕𝛿𝛾1
=

∫
1/𝛿
𝛾1

0 𝑡𝜑 (𝑡) 𝑑𝑡 + (𝛾 − 1) ∫𝑠1/(𝑤+𝑠1)𝛿𝛾1+𝑐/(𝑤+𝑠1)0 𝑡𝜑 (𝑡) 𝑑𝑡.

(𝑤 − 𝑤1 + 𝑠1) (1/𝛿3𝛾1) 𝜑 (1/𝛿𝛾1) + (𝛾 − 1) (𝑠21/ (𝑤 + 𝑠1) 𝛿3𝛾1) 𝜑 (𝑠1/ (𝑤 + 𝑠1) 𝛿𝛾1 + 𝑐/ (𝑤 + 𝑠1))

> 0.

(A.15)

Similarly, we can get 𝑑𝛿
𝛾1/𝑑𝑠1 > 0 and 𝑑𝛿

𝛾1/𝑑𝑐 < 0. We
also can get 𝑑𝛿

𝛾2/𝑑𝑤 > 0, 𝑑𝛿
𝛾2/𝑑𝑤1 > 0, 𝑑𝛿

𝛾2/𝑑𝑠1 > 0, and
𝑑𝛿
𝛾2/𝑑𝑐 < 0.

Proof of Theorem 6. Equation (14) shows that

𝑑𝐸 [𝜋
𝑏
(𝑞)]

𝑑𝑞

= ∫

𝑑/𝛿
𝛾𝑖
𝑞

0
𝑝𝑡𝛿
𝛾𝑖
𝜑 (𝑡) 𝑑𝑡

−∫

1/𝛿
𝛾𝑖

0
(𝑤+ 𝑠1 −𝑤1) (𝑡𝛿𝛾𝑖 − 1) 𝜑 (𝑡) 𝑑𝑡 −𝑤

−𝑤1 (𝜇𝛿𝛾𝑖 − 1) ,

𝑑
2
𝐸 [𝜋
𝑏
(𝑞)]

𝑑 (𝑞)
2 = −

𝑝𝑑

𝛿2
𝛾𝑖
(𝑞)

3𝜑(
𝑑

𝛿
𝛾𝑖
𝑞
) < 0.

(A.16)

Thus, 𝐸[𝜋𝑏(𝑞)] is concave in 𝑞. Let 𝑑𝐸[𝜋𝑏(𝑞)]/𝑑𝑞 = 0; we can
derive (15).

Proof ofTheorem 7. Proof ofTheorem 7 is similar to the proof
of Theorem 6.
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