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Multiple-machine scheduling problems with position-based learning effects are studied in this paper. There is an initial schedule
in this scheduling problem. The optimal schedule minimizes the sum of the weighted completion times; the difference between
the initial total weighted completion time and the minimal total weighted completion time is the cost savings. A multiple-machine
sequencing game is introduced to allocate the cost savings. The game is balanced if the normal processing times of jobs that are on
the same machine are equal and an equal number of jobs are scheduled on each machine initially.

1. Introduction

In a single-machine scheduling problem, a finite number of
jobs are processed on a machine. Jobs are characterized by
normal processing times, weights, due-dates, release times,
and so on.The objective is tominimize a given function, such
as the sum of the completion times, the sum of the weighted
completion times, the maximal lateness, and the makespan.

Scheduling problems with learning effects were first
introduced byBiskup [1], who described the actual processing
time of a job as a decreasing power function of its position.
Since then, several classes of learning effects in schedul-
ing problems have been studied, namely, time-dependent
learning effects [2–6], position-based learning effects [7–
13], combined effects of position-based effects and time-
dependent effects [14–17]. In a scheduling problemwith time-
dependent learning effects, the actual processing time of a
job depends on the total processing times of jobs already
processed, while, in a scheduling problem with position-
based learning effects, the actual processing time of a job
is a function of its position. In a scheduling problem with
learning effects, the later a job starts, the shorter its actual
processing time is. Learning effects have also been introduced
to multiple-machine scheduling problems [8–10, 12, 15].
The main aims of the above works are optimal schedules,

algorithms, and complexities of the algorithms. We refer to
[18] for a review of scheduling with learning effects.

Cooperative games arising from scheduling or sequenc-
ing situations are called sequencing games. Curiel et al. [19]
considered a single-machine sequencing situation, in which
each job belongs to an agent (a player) and there is an initial
order of jobs. The weight of a job is the cost per unit time of
the agent. The optimal order minimizes the total cost which
is the sum of the weighted completion times. The difference
between the initial total cost and theminimal total cost can be
seen as cost savings of all agents.This begs the question: How
to allocate the cost savings among the agents fairly? Curiel
et al. tackled this problem by introducing sequencing games.
Sequencing games have been extended by many researchers.
The extensions focus on the allocation rules [20, 21], the
number of jobs [22, 23], the admissible rearrangements of
jobs [24, 25], the initial order of jobs [26, 27], the family
or batch sequencing situations [28, 29], the ready times
[30], and the due-dates [31]. Convexity and balancedness of
the corresponding sequencing games are the main goals of
these studies as convex games and balanced games have nice
properties.

Studies on the sequencing games with multiple machines
are also found in the literatures. Hamers et al. [32] and
Slikker [33] proposed a multiple-machine scheduling in
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which each player has one job and each job is processed
on one machine only; the corresponding sequencing game
is balanced if the normal processing times are equal or
the weights are equal. Calleja et al. [34] considered a two-
machine scheduling in which each player has two jobs and
each job must be processed on each machine; it is shown
that the corresponding sequencing game is balanced. Slikker
[35] extended the model in [34] to sequencing games with𝑚
machines and 𝑛 jobs.

In all the above mentioned models, the processing times
are constant. van Velzen [36] studied a sequencing game with
controllable processing times, where the processing times can
be reduced to crashed processing times; the corresponding
sequencing games are balanced but need not be convex.

In this paper, a multiple-machine scheduling problem
with position-based learning effects is studied. In our model,
each player has one job to be processed on one machine only,
there is an initial schedule of the jobs, and the learning index
depends on themachine.The actual processing time of a job is
not a constant but a power function of its position. To achieve
the optimal schedule, the jobs should be rearranged, and
a rearrangement results in some changes of the processing
times.The processing time of a job decreases if the job moves
to the back of its queue; it increases if the job moves to the
front of its queue. A multiple-machine sequencing game is
introduced to allocate the cost savings. The game is balanced
if and only if a related machine game is balanced. If in the
initial schedule the normal processing times of jobs that are
on the samemachine are equal and eachmachine has an equal
number of jobs, then the related machine game is balanced;
furthermore, the multiple-machine sequencing game is bal-
anced. To the best of our understanding, sequencing games
have not been studied so far.

The rest of the paper is organized as follows. In Section 2
some preliminaries are recalled. In Section 3 a multiple-
machine scheduling problem with learning effects is consid-
ered, and a cooperative game is defined on this scheduling
problem. In Section 4 it is shown that a simple multiple-
machine sequencing game with learning effects is balanced.
Some concluding remarks are given in Section 5.

2. Preliminaries

A cooperative game is denoted by (𝑁, V), where 𝑁 = {1, 2,

. . . , 𝑛} is the set of players and V : 2𝑁 → R is the charac-
teristic function such that V(0) = 0.

Let (𝑁, V) be a cooperative game and 𝜎 an order of the
players. A coalition 𝑆 ⊆ 𝑁 is connected if for all 𝑖, 𝑗 ∈ 𝑆 and
𝑙 ∈ 𝑁 with 𝜎(𝑖) < 𝜎(𝑙) < 𝜎(𝑗) it holds that 𝑙 ∈ 𝑆. The game
(𝑁, V) is a 𝜎-component additive game if

(1) V({𝑖}) = 0 for all 𝑖 ∈ 𝑁,
(2) V(𝑆) + V(𝑇) ≤ V(𝑆 ∪ 𝑇) for all 𝑆, 𝑇 ⊆ 𝑁 with 𝑆 ∩ 𝑇 = 0;

that is, (𝑁, V) is superadditive,
(3) V(𝑆) = ∑

𝑇∈𝑆\𝜎
V(𝑇) for all 𝑆 ⊆ 𝑁, where 𝑆 \ 𝜎 is the set

ofmaximally connected components of 𝑆with respect
to 𝜎. A coalition 𝑇 ⊆ 𝑆 is maximally connected if 𝑇 is
connected and𝑇∪{𝑖} is not connected for all 𝑖 ∈ 𝑆\𝑇.

The core 𝐶(V) of a cooperative game (𝑁, V) is defined by

𝐶 (V)

= {𝑥 ∈ 𝑅
𝑛
| 𝑥 (𝑁) = V (𝑁) , 𝑥 (𝑆) ≥ V (𝑆) ∀𝑆 ⊆ 𝑁} ,

(1)

where 𝑥(𝑆) = ∑
𝑖∈𝑆
𝑥
𝑖
.

For a cooperative game (𝑁, V) and a coalition 𝑆 ⊆ 𝑁\ {0},
the subgame (𝑆, V

|𝑆
) is defined by V

|𝑆
(𝑇) = V(𝑇) for all 𝑇 ⊆ 𝑆.

Let 𝑍 = (𝑧
𝑖𝑗
)
𝑛×𝑛

be a matrix. A permutation game (𝑁, 𝑢)
is defined by

𝑢 (𝑆) = max
𝜋∈Π(𝑆)

∑

𝑖∈𝑆

[𝑧
𝑖𝑖
− 𝑧
𝑖𝜋(𝑖)
] (2)

for all 𝑆 ⊆ 𝑁, where 𝑧
𝑖𝑗
∈ 𝑍 and Π(𝑆) is the set of all permu-

tations of 𝑆.
It is well known that the component additive games and

the permutation games are balanced [37, 38]; thus their cores
are not empty.

3. Multiple-Machine Scheduling with
Learning Effects and Sequencing Games

In a multiple-machine scheduling problem, there are 𝑚
machines and 𝑛 players. Each player has one job to be
processed on one of themachines, every job can be processed
by any machine, and there is an initial schedule of jobs.
Let 𝑀 = {1, 2, . . . , 𝑚} denote the set of machines and let
𝑁 = {1, 2, . . . , 𝑛} denote the set of players. With an abuse of
notation we denote the job of player 𝑖 by 𝑖 itself. The normal
processing time of job 𝑖 is denoted by 𝑝

𝑖
≥ 0. The cost 𝑐

𝑖
of

player 𝑖 depends linearly on the completion time of his job;
that is, 𝑐

𝑖
(𝑡) = 𝑤

𝑖
𝑡, where 𝑤

𝑖
≥ 0 is the weight of job 𝑖. The

objective is to minimize the total cost which is the sum of the
weighted completion times of the 𝑛 jobs.

The initial schedule of jobs is denoted by 𝑏0 : 𝑁 →

𝑀 × 𝑁, and 𝑏0(𝑖) = (𝑘, 𝑟) indicates that job 𝑖 is processed
in position 𝑟 on machine 𝑘. The notation 𝑏0

−1

is the inverse
mapping of 𝑏0.

We assume that all the machines have position-based
learning effects. The learning index of machine 𝑘 is denoted
by 𝑎
𝑘
, where 𝑎

𝑘
≤ 0. Let 𝑝

𝑖𝑟𝑘
be the actual processing time of

job 𝑖 if it is scheduled in position 𝑟 on machine 𝑘; then

𝑝
𝑖𝑟𝑘
= 𝑝
𝑖
𝑟
𝑎
𝑘

. (3)

A multiple-machine scheduling with learning effects as
described above is denoted by (𝑀,𝑁, 𝑏0, 𝑝, 𝑤, 𝑎), where
vectors 𝑝 = (𝑝

𝑖
)
𝑖∈𝑁

, 𝑤 = (𝑤
𝑖
)
𝑖∈𝑁

, and 𝑎 = (𝑎
𝑘
)
𝑘∈𝑀

.
The ordering ≺ on𝑀×𝑁 is defined as follows. For 𝑖, 𝑗 ∈

𝑁, 𝑏0(𝑗) ≺ 𝑏0(𝑖) if and only if 𝑏0
1
(𝑗) = 𝑏

0

1
(𝑖) and 𝑏0

2
(𝑗) < 𝑏

0

2
(𝑖).

It indicates that jobs 𝑖 and 𝑗 are on the same machine and
𝑖 follows 𝑗. Note that 𝑏0

1
(𝑖) and 𝑏0

2
(𝑖) are the first component

and the second component of 𝑏0(𝑖), respectively. Let𝑃(𝑏0, 𝑖) =
{𝑗 ∈ 𝑁 | 𝑏

0
(𝑗) ≺ 𝑏

0
(𝑖)} and 𝐹(𝑏0, 𝑖) = {𝑗 ∈ 𝑁 | 𝑏

0
(𝑗) ≻ 𝑏

0
(𝑖)}.

For each 𝑘 ∈ 𝑀, the set 𝑁
𝑘
(𝑏
0
) = {𝑗 ∈ 𝑁 |

𝑏
0

1
(𝑗) = 𝑘} represents the jobs that are on machine 𝑘 with

respect to 𝑏0, and 𝑛
𝑘
(𝑏
0
) is the number of jobs on machine
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𝑘; that is, 𝑛
𝑘
(𝑏
0
) = |𝑁

𝑘
(𝑏
0
)|. In addition, 𝜎0

𝑘
: 𝑁
𝑘
(𝑏
0
) →

{1, 2, . . . , 𝑛
𝑘
(𝑏
0
)} denotes the initial processing order of the

jobs that are on machine 𝑘; that is, 𝜎0
𝑘
(𝑖) = 𝑟 implies that job 𝑖

is in position 𝑟 on machine 𝑘.
Suppose that job 𝑖 is on machine 𝑘; then the starting time

𝑡(𝑏
0
, 𝑖) of job 𝑖 with respect to 𝑏0 is given by

𝑡 (𝑏
0
, 𝑖) = ∑

𝑗∈𝑃(𝑏
0

,𝑖)

𝑝
𝑗
[𝑏
0

2
(𝑗)]

𝑎
𝑘

, (4)

and the completion time 𝑇(𝑏0, 𝑖) of job 𝑖 is the sum of its
processing time and the waiting time; that is,

𝑇 (𝑏
0
, 𝑖) = 𝑝

𝑖
[𝑏
0

2
(𝑖)]

𝑎
𝑘

+ ∑

𝑗∈𝑃(𝑏
0

,𝑖)

𝑝
𝑗
[𝑏
0

2
(𝑗)]

𝑎
𝑘

. (5)

We assume that, in the initial schedule, the starting time
of the last job of each machine is less than or equal to the
completion times of the last jobs of othermachines. Formally,
for each 𝑘 ∈ 𝑀, the initial schedule 𝑏0 satisfies

𝑡 (𝑏
0
, 𝑙
𝑘
) ≤ 𝑇 (𝑏

0
, 𝑙
ℎ
) (6)

for all ℎ ∈ 𝑀, where 𝑙
𝑘
is the last job ofmachine 𝑘with respect

to 𝑏0. This assumption implies that in the initial schedule the
last job of a machine cannot make any profit by joining the
end of a queue of any other machine.

The cost of job 𝑖 with respect to schedule 𝑏0 is denoted by
𝐶(𝑏
0
, 𝑖). For each coalition 𝑆 ⊆ 𝑁, the total cost of 𝑆 is the

sum of the costs of jobs contained in 𝑆; that is,

𝐶 (𝑏
0
, 𝑆) = ∑

𝑖∈𝑆

𝐶 (𝑏
0
, 𝑖) = ∑

𝑖∈𝑆

𝑤
𝑖
𝑇 (𝑏
0
, 𝑖) . (7)

Clearly, there is an optimal schedule 𝑏∗ such that the total cost
𝐶(𝑏
∗
, 𝑁) is minimal. The maximal cost savings 𝐶(𝑏0, 𝑁) −

𝐶(𝑏
∗
, 𝑁) can be seen as a profit of all players.
The maximal cost savings of a coalition 𝑆 depend on the

set of admissible schedules of this coalition. A schedule 𝑏 :
𝑁 → 𝑀×𝑁 is admissible for 𝑆with respect to 𝑏0 if it satisfies
the following conditions.

(1) For 𝑖, 𝑗 ∈ 𝑆, jobs 𝑖 and 𝑗 which are on the same
machine can be switched only if the jobs that are
between 𝑖 and 𝑗 belong to 𝑆.

(2) For 𝑖, 𝑗 ∈ 𝑆, jobs 𝑖 and 𝑗 that are on different machines
can be switched only if both the jobs in 𝐹(𝑏0, 𝑖) and
the jobs in 𝐹(𝑏0, 𝑗) are contained in 𝑆.

The set of all admissible schedules for 𝑆 is denoted by 𝐴(𝑆).
Formultiple-machine scheduling problems with learning

effects (𝑀,𝑁, 𝑏0, 𝑝, 𝑤, 𝑎), a corresponding 𝑚-sequencing
game (𝑁, V) is defined by

V (𝑆) = max
𝑏∈𝐴(𝑆)

[𝐶 (𝑏
0
, 𝑆) − 𝐶 (𝑏, 𝑆)]

= 𝐶 (𝑏
0
, 𝑆) − 𝐶 (𝑏

∗

𝑆
, 𝑆) ,

(8)

where 𝑏∗
𝑆
is the optimal schedule for coalition 𝑆. Obviously,

V({𝑖}) = 0 for all 𝑖 ∈ 𝑁.

1 2

3

2 1

3

2

3 1

M1

M2

M1

M2

M1

M2

b
0 b

1
b
2

Figure 1: The schedules of 𝑏0, 𝑏1, and 𝑏2.

Remark 1. Let 𝑆 ⊆ 𝑁
𝑘
(𝑏
0
) and the last job 𝑙

𝑘
∈ 𝑆. To achieve

the optimal schedule 𝑏∗
𝑆
, the queue of machine 𝑘 should be

rearranged. After the rearrangement, the last job 𝑙
𝑘
(it may be

different from 𝑙
𝑘
) can make a profit by joining the end of a

queue of another machine, although this will not occur in the
initial schedule.The reason is that the starting time of the last
job 𝑙
𝑘
of the new queue may increase. The following example

illustrates this.

Example 2. Let (𝑀,𝑁, 𝑏0, 𝑝, 𝑤, 𝑎) be a two-machine schedul-
ing problem with learning effects, where 𝑀 = {1, 2}, 𝑁 =

{1, 2, 3}, 𝑝 = (1, 3, 2), 𝑤 = (1, 3, 20), and 𝑎 = (−0.2, −0.3). The
initial schedule 𝑏0 is 𝑏0(1) = (1, 1), 𝑏0(2) = (1, 2), and 𝑏0(3) =
(2, 1); it satisfies 𝑡(𝑏0, 2) < 𝑇(𝑏0, 3) and 𝑡(𝑏0, 3) < 𝑇(𝑏0, 2).
Consider the coalition 𝑆 = {1, 2}; we have 𝐶(𝑏0, 𝑆) = 11.8350.

Schedule 𝑏1 is given by 𝑏1(1) = (1, 2), 𝑏1(2) = (1, 1), and
𝑏
1
(3) = (2, 1); thus 𝐶(𝑏1, 𝑆) = 12.8706.
Schedule 𝑏2 is 𝑏2(1) = (2, 2), 𝑏2(2) = (1, 1), and

𝑏
2
(3) = (2, 1); then 𝐶(𝑏2, 𝑆) = 11.8123. The schedules 𝑏0,

𝑏
1, and 𝑏2 are depicted in Figure 1. Obviously, the optimal
schedule for {1, 2} is 𝑏2.The cost𝐶(𝑏0, 𝑆) increases if the initial
schedule is changed to 𝑏1, but there is a profit if the last job
of machine 1 in schedule 𝑏1 joins the end of the queue of
machine 2.

4. Balancedness of Simple 𝑚-Sequencing
Games with Learning Effects

In this section, we restrict attention to simple multiple-
machine scheduling problem with learning effects. A
multiple-machine scheduling problem with learning effects
is simple if the normal processing times of the jobs that are
on the same machine are equal and an equal number of
jobs are scheduled on each machine initially. Without loss
of generality, we assume that, for all 𝑘 ∈ 𝑀, 𝑛

𝑘
(𝑏
0
) = 𝑞 and

𝑝
𝑖
= 𝜆
𝑘
if 𝑖 ∈ 𝑁

𝑘
(𝑏
0
).The set of such simplemultiple-machine

scheduling problems is denoted by 𝑆𝑀𝑆𝜆,𝑞.
If job 𝑖 is in position 𝑟 on machine k, then the actual pro-

cessing time of job 𝑖 is 𝜆
𝑘
𝑟
𝑎
𝑘 , the starting time is 𝜆

𝑘
∑
𝑟−1

𝑗=1
𝑗
𝑎
𝑘 ,

and the completion time, denoted by 𝑇(𝑏, 𝑖), is given by

𝑇 (𝑏, 𝑖) = 𝜆𝑘

𝑟

∑

𝑗=1

𝑗
𝑎
𝑘

. (9)

For each 𝐾 ⊆ 𝑀, let 𝑆(𝐾) = ∪
𝑘∈𝐾
𝑁
𝑘
(𝑏
0
) and let 𝑏∗

𝑆(𝐾)

denote the optimal schedule for coalition 𝑆(𝐾).
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Lemma 3. If (𝑀,𝑁, 𝑏0, 𝑝, 𝑤, 𝑎) ∈ 𝑆𝑀𝑆𝜆,𝑞, then 𝑛
𝑘
(𝑏
∗

𝑆(𝐾)
) = 𝑞

for all 𝑘 ∈ 𝐾.

Proof. In the initial schedule 𝑏0, the starting time of the
last job 𝑙

𝑘
of machine 𝑘 is 𝜆

𝑘
∑
𝑞−1

𝑗=1
𝑗
𝑎
𝑘 , and the completion

time of the last job 𝑙
𝑠
of machine 𝑠 is 𝜆

𝑠
∑
𝑞

𝑗=1
𝑗
𝑎
𝑠 since each

machine has 𝑞 jobs. According to assumption (6), we have
𝜆
𝑘
∑
𝑞−1

𝑟=1
𝑟
𝑎
𝑘

≤ 𝜆
𝑠
∑
𝑞

𝑟=1
𝑟
𝑎
𝑠 for all 𝑠 ∈ 𝑀.

In the following, wewill show that there is a contradiction
if 𝑛
𝑘
(𝑏
∗

𝑆(𝐾)
) ̸= 𝑞.

Assume that 𝑛
𝑘
(𝑏
∗

𝑆(𝐾)
) < 𝑞. Then there is a machine

ℎ ∈ 𝑀 such that 𝑛
ℎ
(𝑏
∗

𝑆(𝐾)
) ≥ 𝑞 + 1. According to the

admissible rearrangement, the last job 𝑙∗
ℎ
of machine ℎ with

respect to 𝑏∗
𝑆(𝐾)

is in coalition 𝑆(𝐾). In 𝑏∗
𝑆(𝐾)

, the completion
time 𝑇(𝑏∗

𝑆(𝐾)
, 𝑙
∗

𝑘
) of the last job 𝑙∗

𝑘
of machine 𝑘 satisfies

𝑇(𝑏
∗

𝑆(𝐾)
, 𝑙
∗

𝑘
) ≤ 𝜆

𝑘
∑
𝑞−1

𝑟=1
𝑟
𝑎
𝑘 since machine 𝑘 has at most 𝑞 − 1

jobs, and the starting time 𝑡(𝑏∗
𝑆(𝐾)
, 𝑙
∗

ℎ
) of the last job 𝑙∗

ℎ
of

machine ℎ satisfies 𝑡(𝑏∗
𝑆(𝐾)
, 𝑙
∗

ℎ
) ≥ 𝜆

ℎ
∑
𝑞

𝑟=1
𝑟
𝑎
ℎ as machine ℎ

has at least 𝑞 + 1 jobs. If 𝑙∗
ℎ
joins the end of the queue of

machine 𝑘, the cost of 𝑙∗
ℎ
will decrease since 𝑡(𝑏∗

𝑆(𝐾)
, 𝑙
∗

ℎ
) ≥

𝜆
ℎ
∑
𝑞

𝑟=1
𝑟
𝑎
ℎ

≥ 𝜆
𝑘
∑
𝑞−1

𝑟=1
𝑟
𝑎
𝑘

≥ 𝑇(𝑏
∗

𝑆(𝐾)
, 𝑙
∗

𝑘
); furthermore, the

cost 𝐶(𝑏∗
𝑆(𝐾)
, 𝑆(𝐾)) will decrease. It is contrary to the fact that

𝐶(𝑏
∗

𝑆(𝐾)
, 𝑆(𝐾)) is minimal.

Thus 𝑛
𝑘
(𝑏
∗

𝑆(𝐾)
) = 𝑞 for all 𝑘 ∈ 𝐾.

Lemma 4. Let (𝑀,𝑁, 𝑏0, 𝑝, 𝑤, 𝑎) ∈ 𝑆𝑀𝑆
𝜆,𝑞 and let (𝑁, V)

be the corresponding 𝑚-sequencing game. Then, for each 𝑘 ∈
𝑀, the subgame (𝑁

𝑘
(𝑏
0
), V
|𝑁
𝑘

(𝑏
0

)
) is a 𝜎0

𝑘
-component additive

game.

Proof. Obviously, (𝑁
𝑘
(𝑏
0
), V
|𝑁
𝑘

(𝑏
0

)
) is superadditive, and

V
|𝑁
𝑘

(𝑏
0

)
({𝑖}) = 0 for all 𝑖 ∈ 𝑁

𝑘
(𝑏
0
). It is necessary to prove

that V
|𝑁
𝑘

(𝑏
0

)
(𝑆) = ∑

𝑇∈𝑆\𝜎
0

𝑘

V
|𝑁
𝑘

(𝑏
0

)
(𝑇).

It follows from Lemma 3 that, in the optimal schedule
𝑏
∗

𝑁
𝑘

(𝑏
0

)
, the jobs in 𝑁

𝑘
(𝑏
0
) are not allowed to join the ends

of other queues; thus𝑁
𝑘
(𝑏
0
) = 𝑁

𝑘
(𝑏
∗

𝑁
𝐾

(𝑏
0

)
) and the subgame

(𝑁
𝑘
(𝑏
0
), V
|𝑁
𝑘

(𝑏
0

)
) is a single-machine sequencing game.

For each 𝑖 ∈ 𝑁
𝑘
(𝑏
0
), the cost of job 𝑖 with respect to 𝜎0

𝑘

is denoted by 𝐶(𝜎0
𝑘
, 𝑖) and is given by 𝐶(𝜎0

𝑘
, 𝑖) = 𝑤

𝑖
𝑇(𝜎
0

𝑘
, 𝑖).

Following from (9), it holds that

𝐶 (𝜎
0

𝑘
, 𝑖) = 𝑤

𝑖
𝜆
𝑘

𝜎
0

𝑘

(𝑖)

∑

𝑟=1

𝑟
𝑎
𝑘

. (10)

For any coalition 𝑆 ⊆ 𝑁
𝑘
(𝑏
0
),

V
|𝑁
𝑘

(𝑏
0

) (
𝑆) = ∑

𝑖∈𝑆

[𝐶 (𝜎
0

𝑘
, 𝑖) − 𝐶 (𝜎

∗

𝑘,𝑆
, 𝑖)] , (11)

where 𝜎∗
𝑘,𝑆

is the optimal order for 𝑆.

Suppose 𝑆 \ 𝜎0
𝑘
= {𝑇
1
, 𝑇
2
}; then 𝑇

1
and 𝑇

2
are connected,

𝑇
1
∩𝑇
2
= 0, and𝑇

1
∪𝑇
2
are not connected.The optimal orders

of 𝑇
1
and 𝑇

2
are denoted by 𝜎∗

𝑘,𝑇
1

and 𝜎∗
𝑘,𝑇
2

, respectively. Thus

V
|𝑁
𝑘

(𝑏
0

) (
𝑆) = ∑

𝑖∈𝑆

[𝐶 (𝜎
0

𝑘
, 𝑖) − 𝐶 (𝜎

∗

𝑘,𝑆
, 𝑖)]

= ∑

𝑖∈𝑇
1

[𝐶 (𝜎
0

𝑘
, 𝑖) − 𝐶 (𝜎

∗

𝑘,𝑆
, 𝑖)]

+ ∑

𝑖∈𝑇
2

[𝐶 (𝜎
0

𝑘
, 𝑖) − 𝐶 (𝜎

∗

𝑘,𝑆
, 𝑖)]

= ∑

𝑖∈𝑇
1

𝜎
0

𝑘

(𝑖)

∑

𝑟=1

𝑤
𝑖
𝜆
𝑘
𝑟
𝑎
𝑘

− ∑

𝑖∈𝑇
1

𝜎
∗

𝑘,𝑆

(𝑖)

∑

𝑟=1

𝑤
𝑖
𝜆
𝑘
𝑟
𝑎
𝑘

+ ∑

𝑖∈𝑇
2

𝜎
0

𝑘

(𝑖)

∑

𝑟=1

𝑤
𝑖
𝜆
𝑘
𝑟
𝑎
𝑘

− ∑

𝑖∈𝑇
2

𝜎
∗

𝑘,𝑆

(𝑖)

∑

𝑟=1

𝑤
𝑖
𝜆
𝑘
𝑟
𝑎
𝑘

,

(12)

where the third equality follows from (10). Since jobs in𝑇
1
are

not allowed to join the coalition 𝑇
2
and vice versa, we have

𝜎
∗

𝑘,𝑆
(𝑖) = 𝜎

∗

𝑘,𝑇
1

(𝑖) if 𝑖 ∈ 𝑇
1
and 𝜎∗

𝑘,𝑆
(𝑗) = 𝜎

∗

𝑘,𝑇
2

(𝑗) if 𝑗 ∈ 𝑇
2
.

Hence

V
|𝑁
𝑘

(𝑏
0

) (
𝑆) = ∑

𝑖∈𝑇
1

𝜎
0

𝑘

(𝑖)

∑

𝑟=1

𝑤
𝑖
𝜆
𝑘
𝑟
𝑎
𝑘

− ∑

𝑖∈𝑇
1

𝜎
∗

𝑘,𝑇

1

(𝑖)

∑

𝑟=1

𝑤
𝑖
𝜆
𝑘
𝑟
𝑎
𝑘

+ ∑

𝑖∈𝑇
2

𝜎
0

𝑘

(𝑖)

∑

𝑟=1

𝑤
𝑖
𝜆
𝑘
𝑟
𝑎
𝑘

− ∑

𝑖∈𝑇
2

𝜎
∗

𝑘,𝑇

2

(𝑖)

∑

𝑟=1

𝑤
𝑖
𝜆
𝑘
𝑟
𝑎
𝑘

= 𝐶 (𝜎
0
, 𝑇
1
) − 𝐶 (𝜎

∗

𝑘,𝑇
1

, 𝑇
1
) + 𝐶 (𝜎

0
, 𝑇
2
)

− 𝐶 (𝜎
∗

𝑘,𝑇
2

, 𝑇
2
)

= V
|𝑁
𝑘

(𝑏
0

)
(𝑇
1
) + V
|𝑁
𝑘

(𝑏
0

)
(𝑇
2
) .

(13)

The proof follows exactly in the same way for 𝑆 \ 𝜎0
𝑘
=

{𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑙
}.

Remark 5. The subgame (𝑁
𝑘
(𝑏
0
), V
|𝑁
𝑘

(𝑏
0

)
) need not be a 𝜎0

𝑘
-

component additive game if there is an 𝑖 ∈ 𝑁
𝑘
(𝑏
0
) such that

𝑝
𝑖
̸= 𝜆
𝑘
.

Example 6. Let 𝑁
𝑘
(𝑏
0
) = {1, 2, 3, 4}, 𝑝 = (3, 1, 1, 1), 𝑤 =

(1, 1, 5, 3), 𝑎
𝑘
= −0.2, and 𝜆

𝑘
= 1, and the initial order 𝜎0

𝑘
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is given by 𝜎0
𝑘
(𝑖) = 𝑖 for all 𝑖 ∈ 𝑁

𝑘
(𝑏
0
). Take the coalition

𝑆 = {1, 2, 4} such that 𝑆 \ 𝜎0
𝑘
= {{1, 2}, {4}}. It follows that

V
|𝑁
𝑘

(𝑏
0

) ({
1, 2}) = 𝑤1

𝑝
1
+ 𝑤
2
(𝑝
1
+ 𝑝
2
2
𝑎
𝑘

) − 𝑤
2
𝑝
2

− 𝑤
1
(𝑝
2
+ 𝑝
1
2
𝑎
𝑘

) = 2.2589,

V
|𝑁
𝑘

(𝑏
0

) (
𝑆) = 𝑤1

𝑝
1
+ 𝑤
2
(𝑝
1
+ 𝑝
2
2
𝑎
𝑘

)

+ 𝑤
4
(𝑝
1
+ 𝑝
2
2
𝑎
𝑘

+ 𝑝
3
3
𝑎
𝑘

+ 𝑝
4
4
𝑎
𝑘

)

− 𝑤
2
𝑝
2
− 𝑤
1
(𝑝
2
+ 𝑝
1
2
𝑎
𝑘

)

− 𝑤
4
(𝑝
2
+ 𝑝
1
2
𝑎
𝑘

+ 𝑝
3
3
𝑎
𝑘

+ 𝑝
4
4
𝑎
𝑘

)

= 3.0356,

(14)

and V
|𝑁
𝑘

(𝑏
0

)
({4}) = 0. Obviously, (𝑁

𝑘
(𝑏
0
), V
|𝑁
𝑘

(𝑏
0

)
) is not

a 𝜎0
𝑘
-component additive game since V

𝑁
𝑘

(𝑏
0

)
({1, 2, 4}) ̸=

V
𝑁
𝑘

(𝑏
0

)
({1, 2}) + V

𝑁
𝑘

(𝑏
0

)
({4}).

Although the position of job 4 is unchanged, its com-
pletion time decreases if jobs 2 and 3 are switched. In other
words, switching of jobs 2 and 3 results in an “extra” profit for
job 4.

Before we prove the balancedness of the corresponding
𝑚-sequencing game, a machine game is defined.

Let (𝑀,𝑁, 𝑏0, 𝑝, 𝑤, 𝑎) ∈ 𝑆𝑀𝑆
𝜆,𝑞 and let (𝑁, V) be the

corresponding 𝑚-sequencing game. For each 𝐾 ⊆ 𝑀, a
machine game (𝑀,𝑤) is defined by

𝑤 (𝐾) = V(⋃
𝑘∈𝐾

𝑁
𝑘
(𝑏
0
)) − ∑

𝑘∈𝐾

V (𝑁
𝑘
(𝑏
0
)) . (15)

The machine game (𝑀,𝑤) is defined on the set of machines.
The value𝑤(𝐾) is the cost savings that the machines in𝐾 can
attain if they cooperate.

Since subgames (𝑁
𝑘
(𝑏
0
), V
|𝑁
𝑘

(𝑏
0

)
) are 𝜎0

𝑘
-component addi-

tive games for all 𝑘 ∈ 𝑀, following Theorem 3.1 in [32] and
Theorem 4.1 in [33], we have the following.

Theorem 7. Let (𝑀,𝑁, 𝑏0, 𝑝, 𝑤, 𝑎) ∈ 𝑆𝑀𝑆𝜆,𝑞, and let (𝑁, V)
and (𝑀,𝑤) be the corresponding 𝑚-sequencing game and
machine game, respectively.Then (𝑁, V) is balanced if and only
if (𝑀,𝑤) is balanced.

The following lemma shows that the coalition value
V(𝑆(𝐾)) can be rewritten as a value of a permutation game.

Lemma 8. If (𝑀,𝑁, 𝑏0, 𝑝, 𝑤, 𝑎) ∈ 𝑆𝑀𝑆𝜆,𝑞 and (𝑁, V) is the
corresponding𝑚-sequencing game, then there is a permutation
game (𝑁, 𝑢) such that

V (𝑆 (𝐾)) = 𝑢 (𝑆 (𝐾)) (16)

for each 𝐾 ⊆ 𝑀.

Proof. For convenience, renumber the machines in 𝐾 such
that𝐾 = {1, 2, . . . , |𝐾|}. Note that

𝐶 (𝑏, 𝑆 (𝐾)) = ∑

𝑘∈𝐾

𝑞

∑

𝑟=1

𝑤
𝑏
−1

(𝑘,𝑟)
𝜆
𝑘

𝑟

∑

𝛽=1

𝛽
𝑎
𝑘

,

V (𝑆 (𝐾)) = max
𝑏∈𝐴(𝑆(𝐾))

[𝐶 (𝑏
0
, 𝑆 (𝐾)) − 𝐶 (𝑏, 𝑆 (𝐾))]

= max
𝑏∈𝐴(𝑆(𝐾))

[

[

∑

𝑘∈𝐾

𝑞

∑

𝑟=1

𝑤
𝑏
0

−1

(𝑘,𝑟)
𝜆
𝑘

𝑟

∑

𝛽=1

𝛽
𝑎
𝑘

− ∑

𝑘∈𝐾

𝑞

∑

𝑟=1

𝑤
𝑏
−1

(𝑘,𝑟)
𝜆
𝑘

𝑟

∑

𝛽=1

𝛽
𝑎
𝑘]

]

.

(17)

For 𝑖, 𝑗 ∈ {1, 2, . . . , |𝐾|𝑞}, let 𝑧
𝑖𝑗
= 𝑤
𝑖
𝜆
𝑘
∑
𝑗−(𝑘−1)𝑞

𝜇=1
𝜇
𝑎
𝑘 if (𝑘 −

1)𝑞 + 1 ≤ 𝑗 ≤ 𝑘𝑞; then we have

𝑤
𝑏
−1

(𝑘,𝑟)
𝜆
𝑘

𝑟

∑

𝛽=1

𝛽
𝑎
𝑘

= 𝑧
𝑏
−1

(𝑘,𝑟),(𝑘−1)𝑞+𝑟
,

V (𝑆 (𝐾)) = max
𝑏∈𝐴(𝑆(𝐾))

[∑

𝑘∈𝐾

𝑞

∑

𝑟=1

𝑧
𝑏
0

−1

(𝑘,𝑟),(𝑘−1)𝑞+𝑟

− ∑

𝑘∈𝐾

𝑞

∑

𝑟=1

𝑧
𝑏
−1

(𝑘,𝑟),(𝑘−1)𝑞+𝑟
] .

(18)

For each schedule 𝑏 ∈ 𝐴(𝑆(𝐾)), there is a permutation 𝜋𝑏 ∈
Π(𝑆(𝐾)) such that

𝜋
𝑏
(𝑖) = [𝑏1 (

𝑖) − 1] 𝑞 + 𝑏2 (
𝑖) (19)

for all 𝑖 ∈ 𝑁. For each permutation 𝜋 ∈ Π(𝑆(𝐾)), there is a
schedule 𝑏𝜋 ∈ 𝐴(𝑆(𝐾)) satisfying

𝑏
𝜋
(𝑖) = (𝑘, 𝜋 (𝑖) − (𝑘 − 1) 𝑞) , (20)

where 𝑘 is such that (𝑘 − 1)𝑞 + 1 ≤ 𝜋(𝑖) ≤ 𝑘𝑞. Thus

V (𝑆 (𝐾)) = max
𝑏∈𝐴(𝑆(𝐾))

[ ∑

𝑖∈𝑆(𝐾)

𝑧
𝑖,𝜋
𝑏

0

(𝑖)
− ∑

𝑖∈𝑆(𝐾)

𝑧
𝑖,𝜋
𝑏

(𝑖)
]

= max
𝜋∈Π(𝑆(𝐾))

[ ∑

𝑖∈𝑆(𝐾)

𝑧
𝑖,𝑖
− ∑

𝑖∈𝑆(𝐾)

𝑧
𝑖,𝜋(𝑖)

]

= 𝑢 (𝑆 (𝐾)) ,

(21)

where the first equality follows from (19) and the second
equality follows under the assumption 𝜋𝑏

0

(𝑖) = 𝑖.

Arising from 𝑆(𝐾) = ⋃
𝑘∈𝐾

𝑁
𝑘
(𝑏
0
), we have

V(⋃
𝑘∈𝐾

𝑁
𝑘
(𝑏
0
)) = 𝑢(⋃

𝑘∈𝐾

𝑁
𝑘
(𝑏
0
)) . (22)

Theorem 9. If (𝑀,𝑁, 𝑏0, 𝑝, 𝑤, 𝑎) ∈ 𝑆𝑀𝑆𝜆,𝑞, then the corre-
sponding𝑚-sequencing game (𝑁, V) is balanced.
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Proof. Following from (22), we have

𝑤 (𝐾) = V(⋃
𝑘∈𝐾

𝑁
𝑘
(𝑏
0
)) − ∑

𝑘∈𝐾

V (𝑁
𝑘
(𝑏
0
))

= 𝑢(⋃

𝑘∈𝐾

𝑁
𝑘
(𝑏
0
)) − ∑

𝑘∈𝐾

V (𝑁
𝑘
(𝑏
0
)) .

(23)

Since the permutation game (𝑁, 𝑢) is balanced, the core𝐶(𝑢)
is not empty, and there is a vector 𝑥 ∈ 𝐶(𝑢). Let 𝑦

𝑘
=

𝑥(𝑁
𝑘
(𝑏
0
)) − V(𝑁

𝑘
(𝑏
0
)) for all 𝑘 ∈ 𝑀; then

∑

𝑘∈𝐾

𝑦
𝑘
= ∑

𝑘∈𝐾

𝑥 (𝑁
𝑘
(𝑏
0
)) − ∑

𝑘∈𝐾

V (𝑁
𝑘
(𝑏
0
))

≥ 𝑢(⋃

𝑘∈𝐾

𝑁
𝑘
(𝑏
0
)) − ∑

𝑘∈𝐾

V (𝑁
𝑘
(𝑏
0
)) = 𝑤 (𝐾) ,

(24)

where the inequality follows from the fact that 𝑥 is a core
element of the game (𝑁, 𝑢). If𝐾 = 𝑀, then∑

𝑘∈𝑀
𝑦
𝑘
= 𝑤(𝑀).

Thus 𝑦 ∈ 𝐶(𝑤), the core of the game (𝑀,𝑤) is not empty, and
(𝑀,𝑤) is balanced.

The balancedness of the 𝑚-sequencing game (𝑁, V) fol-
lows fromTheorem 7 directly.

5. Conclusions

Cooperative games based on multiple-machine scheduling
problems with learning effects are investigated, where the
processing times are not constants. A necessary and sufficient
condition for the balancedness of the corresponding sequenc-
ing games is that the related machine games are balanced.
Furthermore, the sequencing games are balanced if normal
processing times of the jobs that are on the samemachine are
equal and each machine has an equal number of jobs to be
processed.

If the normal processing times of jobs that are on the same
machine are different, then the corresponding subgames
which are defined on one machine are not component addi-
tive games, and Theorem 7 does not hold. The balancedness
of general sequencing games with learning effects in which
the normal processing times are different will be studied in
the future.
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