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This paper investigates a scheduling problem on a single machine with maintenance, in which the starting time of the maintenance
is given in advance but its duration depends on the load of the machine before the maintenance. The goal is to minimize the
makespan. We formulate it as an integer programming model and show that it is NP-hard in the ordinary sense. Then, we propose
an FPTAS and point out that a special case is polynomial solvable. Finally, we design fast heuristic algorithms to solve the scheduling
problem. Numerical experiments are implemented to evaluate the performance of the proposed heuristic algorithms. The results
show the proposed heuristic algorithms are effective.

1. Introduction

We consider the following scheduling problem. Given a set of
jobs J = {𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
} to be nonpreemptively processed on

a single machine, all of which are available at time zero. To
prevent the machine breakdown, we must start maintenance
at a prefixed time, but the duration of maintenance depends
on the load of the machine before the maintenance, that is,
the sum of processing times of jobs that is scheduled before
the maintenance, which is a nonnegative and nondecreasing
function on the load. The goal is to schedule all the jobs to
minimize the maximum completion time (makespan).

For a given schedule, write 𝑝
𝑗
for the processing time

and 𝐶
𝑗
for the completion time of job 𝐽

𝑗
, 𝑗 = 1, 2, . . . , 𝑛,

respectively. Let 𝑠 denote the starting time of maintenance,
which is given in advance, and let 𝑙 denote the load of
the machine before the maintenance and let 𝑑 denote the
duration of maintenance. Then, 𝑑 = 𝑓(𝑙), where 𝑓(⋅) is a
nonnegative and nondecreasing function on 𝑙 (without loss of
generality, we assume that function 𝑓(⋅) can be computed in
polynomial time). Furthermore, let 𝐶max (= max

𝑗=1,2,...,𝑛
𝐶
𝑗
)

denote the maximum completion time (i.e., makespan).

Using the three-field notation proposed by Graham et al.
[1], we denote our problem as 1, LDM‖𝐶max, where “LDM”
denotes themaintenance subject to load-dependent duration.

As a practical example, consider the casting production
in steel-making plant [2], in which the steel slabs used for
downstream hot rolling operation are melted by the caster.
Each steel slab can be viewed as a job and the caster can be
viewed as a machine. At a given time, we must refill the fuels
for the caster, which can be regarded as maintenance. The
time for refilling the fuels is its duration, which depends on
the consumed fuels before the maintenance.

The above problem roughly falls into a class of scheduling
problem which is referred to as scheduling with machine
unavailable constraints. Since 1996, scheduling with machine
unavailable constraints has been investigated extensively. For
the related surveys, we refer the readers to Schmidt [3] and
Ma et al. [4]. In the following, we only review the previous
works very related to our problem. Lee [5] considered the
scheduling problem with unavailable intervals on a single
machine, in which the starting times and the durations of
the unavailable intervals are given in advance with the goal
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to minimize the makespan and showed the problem is NP-
hard with one unavailable interval and strong NP-hard with
multiple unavailable intervals. He et al. [6] proposed a fully
polynomial time approximation schemewith one unavailable
interval for the problem proposed by Lee [5]. Breit et al. [7]
showed that no polynomial time approximation algorithm
with a fixed performance ratio existswith two intervals for the
problem proposed by Lee [5]. Wu and Lee [8], Gawiejnowicz
[9], and Ji et al. [10] extended the problem proposed by Lee
[5] to job deterioration case, where the processing time of a
job is a simple linear function of its starting time. For other
related problems involving machine unavailable constraints,
see Lee [11], Lee et al. [12], Hwang et al. [13], Liao et al. [14],
Liao and Sheen [15], Zhong et al. [16],Wan [17], Yin et al. [18],
Yin et al. [19], and Yin et al. [20].

All of the above reviewing models assume that the
duration of maintenance is fixed. But in our model, we
assume that the duration is variable, which depends on the
load of the machine before the maintenance. As pointed
in the practical example, such assumption captures the real
setting in steel-making process and our problem extends the
previous models.

The paper is organized as follows. In Section 2, we
formulate our problem as a integer programming model. In
Section 3, we show that our problem is NP-hard and propose
an FPTAS for it. In Section 4, we point out that a special case
of our problem is polynomially solvable. Finally, we derive
the fast heuristic algorithms and carry out the numerical
experiment to evaluate their performance in Section 5. Some
concluding remarks are given in Section 6.

2. Mathematical Model

In this section, the problem 1, LDM‖𝐶max is formulated as
an integer programming model. The decision variable 𝑥

𝑗
is

a 0-1 variable, 𝑗 = 1, 2, . . . , 𝑛. If 𝑥
𝑗

= 1, then job 𝐽
𝑗
is

scheduled before themaintenance, 𝑗 = 1, 2, . . . , 𝑛. Otherwise,
job 𝐽
𝑗
is scheduled after the maintenance, 𝑗 = 1, 2, . . . , 𝑛. The

proposed model is presented as follows.
Integer programming model is

Objective function:

Minimize 𝐶max
(1)

Subject to:
𝑛

∑

𝑗=1

𝑥
𝑗
𝑝
𝑗
≤ 𝑠 (2)

𝐶max = 𝑠 + 𝑓(

𝑛

∑

𝑗=1

𝑥
𝑗
𝑝
𝑗
) +

𝑛

∑

𝑗=1

(1 − 𝑥
𝑗
) 𝑝
𝑗

(3)

𝑥
𝑗
∈ {0, 1} , 𝑗 = 1, 2, . . . , 𝑛. (4)

The objective function (1) minimizes the makespan, that
is, the maximum completion time of the final job. Constraint
(2) denotes the sum of processing times of jobs scheduled
before the maintenance no larger than the starting time of
the maintenance. Constraint (3) denotes the completion time

of the final job. Constraint (4) indicates that the range of the
decision variables is 0 or 1.

3. An FPTAS

In this section, we first state the computational complexity
for our problem. Lee [5] showed that the scheduling problem
with an unavailable fixed interval on a single machine to
minimize the makespan is NP-hard, which can be viewed as
a special case of our problem with the fixed-length duration.
Therefore, our general problem 1, LDM‖𝐶max is also NP-
hard. Accordingly, we have the following theorem.

Theorem 1. The problem 1, LDM‖𝐶max is NP-hard.

Next, we derive a fully polynomial time approximation
scheme (FPTAS) for our problem based on the classical 0-
1 Min-Knapsack Problem (Min-KP). For completeness, we
describe Min-KP in advance here. Given a knapsack and a
set of items, the size of the knapsack is given; associated with
each item is a given size and a given profit. The problem is to
select a subset of items into knapsack so as to minimize the
total profit of all unselected items. Kellerer et al. [21] showed
that there exists an FPTAS for solving Min-KP.

We now propose an FPTAS for problem 1, LDM‖𝐶max
based on the FPTAS to Min-KP.

Algorithm H.

Step 1. Let 𝜀 be a given positive constant and 𝑠
1

=

min
𝑗∈{1,2,...,𝑛}

𝑝
𝑗
. Compute a series of 𝑠

𝑖
such that 𝑓(𝑠

𝑖
) =

𝑓(𝑠
1
)(1 + 𝜀)

𝑖
, 𝑖 = 2, . . . , 𝑘 − 1 with 𝑘 − 1 = ⌊log𝑓(𝑠)

1+𝜀
− log𝑓(𝑠1)
1+𝜀

⌋.
Let 𝑠
0
= 0, 𝑠
𝑘
= 𝑠.

Step 2. For each 𝑠
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑘, construct a corresponding

Min-KP(i) as follows. Each job in an instance for problem 1,
LDM‖𝐶max is corresponding to a item.The size and the profit
of each item are the processing time of its corresponding job.
The size of the knapsack is 𝑠

𝑖
.

Step 3. Invoke the FPTAS for each constructed Min-KP(i),
𝑖 = 0, 1, 2, . . . , 𝑘 [21]; then, we obtain the corresponding
items that are selected into the knapsack. Denote them as
a corresponding job subset J𝑖

𝑏
. Construct a schedule 𝜋(𝑖),

where the jobs in J𝑖
𝑏
are scheduled before the maintenance

in an arbitrary order, and the remaining jobs J \ J𝑖
𝑏
are

scheduled after the maintenance in an arbitrary order. Let
𝐶max(𝜋(𝑖)) denote the corresponding objective value, 𝑖 = 0, 1,

2, . . . , 𝑘.

Step 4. From all the constructed schedule 𝜋(𝑖), 𝑖 = 0, 1, 2,

. . . , 𝑘, we choose the schedule with the minimal objective
value as the output. Denote it as 𝜋; that is,

𝐶max (𝜋) = min
𝑖=0,1,2,...,𝑘

𝐶max (𝜋 (𝑖)) . (5)

Next, we show that AlgorithmH is an FPTAS for problem
1, LDM‖𝐶max.
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Let 𝜋

∗ denote an optimal schedule and let 𝑙

∗ denote
the sum of processing times of jobs scheduled before the
maintenance in the optimal schedule 𝜋

∗. Let 𝑃 = ∑

𝑛

𝑗=1
𝑝
𝑗
.

Then, the makespan of the optimal schedule 𝜋

∗ is equal to
𝑠 + 𝑓(𝑙

∗
) + 𝑃 − 𝑙

∗; that is, 𝐶max(𝜋
∗
) = 𝑠 + 𝑓(𝑙

∗
) + 𝑃 −

𝑙

∗. We split the interval [0, 𝑠] into a series of subintervals
[0, 𝑠
1
], [𝑠
1
, 𝑠
2
], . . . , [𝑠

𝑘−1
, 𝑠
𝑘
]. Clearly, there exists a subinterval

[𝑠
𝑖−1

, 𝑠
𝑖
] such that 𝑠

𝑖−1
≤ 𝑙

∗
≤ 𝑠
𝑖
, 𝑖 = 1, 2, . . . , 𝑘. Consider

the constructed schedule 𝜋(𝑖); let 𝑙

𝑖 denote the sum of
processing times of jobs scheduled before the maintenance
in the schedule 𝜋(𝑖). Then, the makespan of the schedule 𝜋(𝑖)

is equal to 𝑠+𝑓(𝑙

𝑖
)+𝑃−𝑙

𝑖; that is,𝐶max(𝜋(𝑖)) = 𝑠+𝑓(𝑙

𝑖
)+𝑃−𝑙

𝑖.
According to the choice of 𝑠

𝑖
, we know 𝑓(𝑙

𝑖
) ≤ (1 + 𝜀)𝑓(𝑙

∗
).

Furthermore, we have 𝑃 − 𝑙

𝑖
≤ (1 + 𝜀)(𝑃 − 𝑙

∗
), because the

schedule 𝜋(𝑖) is obtained by an FPTAS for Min-KP(i) and 𝜋

∗

is corresponding to a feasible solution for Min-KP(i). In the
end, we have 𝑠 +𝑓(𝑙

𝑖
) +𝑃− 𝑙

𝑖
≤ (1+ 𝜀)(𝑠 +𝑓(𝑙

∗
) +𝑃− 𝑙

∗
); that

is, 𝐶max(𝜋(𝑖)) ≤ (1 + 𝜀)𝐶max(𝜋
∗
). Consequently, 𝐶max(𝜋) ≤

𝐶max(𝜋(𝑖)) ≤ (1 + 𝜀)𝐶max(𝜋
∗
). For the computation for

each 𝑠
𝑖
, since 𝑓(⋅) is nonnegative and nondecreasing and can

be computed in polynomial time, by binary search it needs
at most log𝑠

2
time. Thus, in all it needs at most log𝑓(𝑠)

2
log𝑠
2

time. Invoking eachMin-KP(𝑖) needs polynomial time.Thus,
Algorithm H needs polynomial time.

With the above argument, we have the following theorem.

Theorem2. There exists an FPTAS for problem 1, LDM‖𝐶max.

4. A Special Case

Now, we consider a special case for our problem that the
function 𝑓(⋅) is differential and (𝑑𝑓/𝑑𝑙)(⋅) ≥ 1. From the
expression on 𝐶max in (3), we know

𝐶max = 𝑠 + 𝑓(

𝑛

∑

𝑗=1

𝑥
𝑗
𝑝
𝑗
) +

𝑛

∑

𝑗=1

(1 − 𝑥
𝑗
) 𝑝
𝑗

= 𝑠 + 𝑓(

𝑛

∑

𝑗=1

𝑥
𝑗
𝑝
𝑗
) −

𝑛

∑

𝑗=1

𝑥
𝑗
𝑝
𝑗
+ 𝑃.

(6)

Applying the well-knownMean-valueTheorem [22], we have
𝐶max = 𝑠+𝑃+𝑓(0)+((𝑑𝑓/𝑑𝑙)(𝜂)−1)∑

𝑛

𝑗=1
𝑥
𝑗
𝑝
𝑗
, where 0 < 𝜂 <

∑

𝑛

𝑗=1
𝑥
𝑗
𝑝
𝑗
. Because (𝑑𝑓/𝑑𝑙)(⋅) ≥ 1 and 𝑠+𝑃+𝑓(0) is constant,

tominimize𝐶max, we set all the 𝑥𝑗, 𝑗 = 1, 2, . . . , 𝑛, to 0, that is,
𝑥
𝑗
= 0, 𝑗 = 1, 2, . . . , 𝑛, which implies that we schedule all the

jobs after the maintenance.The optimal makespan is equal to
𝑠 + 𝑓(0) + 𝑃.

5. Heuristic Algorithms and
Numerical Experiments

Although the integer programming model provides the
optimal solution, Theorem 1 indicates that the existence of
a polynomial time algorithm for solving our problem is
impossible. So designing fast heuristic algorithm to obtain

near-optimal solution is reasonable. In this section, we
propose heuristic algorithms to find approximate solutions.
Numerical experiments are implemented to evaluate the
effectiveness of these proposed heuristic algorithms.

Heuristic 1 (H1).

Step 1.Order the jobs as 𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
according to nondecreas-

ing processing time; that is, 𝑝
1
≤ 𝑝
2
≤ ⋅ ⋅ ⋅ ≤ 𝑝

𝑛
.

Step 2. Compute the value 𝑘 such that∑𝑘
𝑗=1

𝑝
𝑗
≤ 𝑠 ≤ ∑

𝑘+1

𝑗=1
𝑝
𝑗
.

Step 3. Construct a series of schedules 𝜋
𝑖
, 𝑖 = 1, 2, . . . , 𝑘,

where the jobs scheduled before the maintenance in 𝜋
𝑖
are

𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑖
and the remaining jobs are scheduled after the

maintenance. Construct schedule 𝜋
0
, where all the jobs are

scheduled after the maintenance in 𝜋
0
.

Step 4. From all the schedules 𝜋
0
, 𝜋
𝑖
, 𝑖 = 1, 2, . . . , 𝑘, choose

the best as the output.

Heuristic 2 (H2).

Step 1.Order the jobs as 𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
according to nonincreas-

ing processing time; that is, 𝑝
1
≥ 𝑝
2
≥ ⋅ ⋅ ⋅ ≥ 𝑝

𝑛
.

Step 2. Compute the value 𝑙 such that ∑𝑙
𝑗=1

𝑝
𝑗
≤ 𝑠 ≤ ∑

𝑙+1

𝑗=1
𝑝
𝑗
.

Step 3. Construct a series of schedules 𝜋
𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

where the jobs scheduled before the maintenance in 𝜋
𝑖
are

𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑖
and the remaining jobs are scheduled after the

maintenance. Construct schedule 𝜋
0
, where all the jobs are

scheduled after the maintenance in 𝜋
0
.

Step 4. From all the schedules 𝜋
0
, 𝜋
𝑖
, 𝑖 = 1, 2, . . . , 𝑙, choose the

best as the output.

The heuristic algorithms H1 and H2 are coded in MAT-
LAB language and executed on the computer with 1 GRAM
and 512 KB L2 cache. For the experiments, we choose the
following parameters to generate randomly the test problems:

number of jobs (𝑛): 50, 100, 200, 400;
the starting time of the maintenance (𝑠): 10, 20, 40, 60;
processing times of jobs: generated from the discrete
uniform distribution with range [1, 30];
the duration of the maintenance (𝑑 = 𝑓(𝑙)): ⌈2 +

𝑙/2⌉, ⌈5 + 𝑙/3⌉, ⌈10 + 𝑙/4⌉, ⌈30 + 𝑙/8⌉.

To evaluate the performance of the heuristic algorithms,
we adopt the trivial lower bound𝑓(0)+𝑃. Based on the lower
bound, define the relative error ratio as ER = [(𝐶max(H𝑖) −

𝑓(0) − 𝑃)/(𝑓(0) + 𝑃)] × 100%, where 𝐶max(H𝑖) denotes
the makespan of the schedule generated by the heuristic
algorithm Hi, 𝑖 = 1, or 2. The Average Error Ratio and the
Maximum Error Ratio measured over the lower bound of the
makespan are used for the performance evaluation.

For each parameter combination, 200 random problems
are generated to evaluate the performance of the heuristics
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Figure 1: Average error ratios of algorithm H1 with 𝑑 = 𝑓(𝑙) = 2 +

𝑙/2.
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Figure 2: Average error ratios of algorithm H1 with 𝑑 = 𝑓(𝑙) =

5 + 𝑙/3.

algorithms. We do not report CPU times since even the
largest problem is solved in a matter of seconds and there
are no substantial differences in CPU times between the two
algorithms.The evaluation results are showed in Tables 1 and
2.

The results of numerical experiments indicate that
Heuristic 1 (H1) dominatesHeuristic 2 (H2) inmost cases and
the performance of Heuristic 1 (H1) is effective in obtaining
near-optimal solution. They also display that the error ratios
reflect a downward trend when the value of 𝑛 increases (see
Figures 1, 2, 3, and 4). We also observe that the error ratios
appear in an upward trend when the value of 𝑠 increases; that
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Figure 3: Average error ratios of algorithm H1 with 𝑑 = 𝑓(𝑙) =

10 + 𝑙/4.
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Figure 4: Average error ratios of algorithm H1 with 𝑑 = 𝑓(𝑙) =

300 + 𝑙/8.

is, the heuristic solutions get worse when the starting time of
themaintenance becomes larger (see Figure 5). Furthermore,
the heuristic algorithm H1 exhibits minor error ratios when
the duration is relatively small (see Figure 6).

6. Concluding Remarks

In this paper, we investigate a scheduling problem on a single
machine, in which maintenance on the machine must be
performed. The starting time of the maintenance is given
beforehand but its duration depends on the load of the
machine before the maintenance.The goal is to minimize the
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Table 1: Computational results of average error (%).

𝑛 𝑠

[2 + (𝑙/2)] [5 + (𝑙/3)] [10 + (𝑙/4)] [30 + (𝑙/8)]

H1 H2 H1 H2 H1 H2 H1 H2

50

10 0.76 1.30 0.59 1.29 0.50 1.28 0.36 1.24
20 1.45 2.59 1.08 2.61 0.86 2.57 0.60 2.50
40 2.82 3.27 2.03 2.61 1.61 2.32 0.99 1.77
60 4.17 3.96 2.94 2.69 2.30 2.05 1.40 1.10

100

10 0.36 0.65 0.27 0.65 0.23 0.64 0.16 0.63
20 0.70 1.30 0.51 1.29 0.40 1.29 0.26 1.27
40 1.38 1.62 0.98 1.29 0.76 1.16 0.45 0.90
60 2.04 1.95 1.42 1.30 1.11 0.98 0.64 0.52

200

10 0.17 0.32 0.13 0.32 0.11 0.32 0.08 0.32
20 0.34 0.65 0.25 0.64 0.19 0.64 0.12 0.64
40 0.67 0.81 0.47 0.65 0.36 0.58 0.20 0.45
60 1.00 0.97 0.69 0.64 0.53 0.48 0.31 0.26

400

10 0.08 0.16 0.06 0.16 0.05 0.16 0.03 0.16
20 0.17 0.32 0.12 0.32 0.09 0.32 0.06 0.32
40 0.33 0.40 0.23 0.32 0.17 0.29 0.09 0.22
60 0.49 0.48 0.34 0.32 0.26 0.24 0.15 0.13

Table 2: Computational results of maximum error (%).

𝑛 𝑠

[2 + (𝑙/2)] [5 + (𝑙/3)] [10 + (𝑙/4)] [30 + (𝑙/8)]

H1 H2 H1 H2 H1 H2 H1 H2

50

10 1.03 1.65 0.94 1.64 0.78 1.58 0.72 1.49
20 1.83 3.17 1.60 3.46 1.24 3.27 1.11 3.04
40 3.53 4.01 2.64 3.44 2.14 2.87 1.50 2.26
60 5.08 5.20 3.85 3.65 2.98 2.81 2.06 1.74

100

10 0.45 0.76 0.36 0.79 0.31 0.73 0.24 0.72
20 0.89 1.50 0.68 1.51 0.53 1.51 0.41 1.53
40 1.61 1.89 1.21 1.60 1.04 1.34 0.65 1.16
60 2.43 2.31 1.72 1.50 1.35 1.22 0.84 0.72

200

10 0.21 0.36 0.15 0.36 0.14 0.37 0.10 0.36
20 0.39 0.73 0.28 0.72 0.24 0.70 0.18 0.71
40 0.75 0.90 0.54 0.72 0.43 0.66 0.26 0.51
60 1.15 1.14 0.78 0.73 0.62 0.55 0.38 0.29

400

10 0.11 0.17 0.07 0.17 0.07 0.0017 0.05 0.18
20 0.19 0.36 0.14 0.35 0.10 0.35 0.07 0.35
40 0.36 0.44 0.25 0.36 0.20 0.31 0.12 0.25
60 0.53 0.53 0.38 0.35 0.29 0.26 0.18 0.14

makespan.We formulate it as an integer programmingmodel
and then propose an FPTAS and show that a special case of
our problem is polynomially solvable. Finally, we propose fast
heuristic algorithms and carry out numerical experiments to
evaluate their performance.

Appendix

See Figures 1–6.
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Figure 5: Average error ratios of algorithm H1 with 𝑛 = 400 and
𝑑 = 𝑓(𝑙) = 5 + 𝑙/3.
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Figure 6: Average error ratios of algorithm H1 with 𝑛 = 400 and
𝑑 = 𝑓(𝑙) = 5 + 𝑙/(10 − 𝑥).
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