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This paper presents an efficient iterative method originated from the family of Chebyshev’s operations for the solution of nonlinear
problems. For this aim, the product operation matrix of integration is presented, and therefore the operation of derivative is
developed by using Chebyshev wavelet functions of the first and second kind, initially. Later, Chebyshev’s iterative method is
improved by approximation of the first and second derivatives. The analysis of convergence demonstrates that the method is at
least fourth-order convergent. The effectiveness of the proposed scheme is numerically and practically evaluated. It is concluded
that it requires the less number of iterations and lies on the best performance of the proposed method, especially for highly varying
nonlinear problems.

1. Introduction

In general, one of themost popular and practical methods for
the solution of nonlinear equations is iterative type schemes.
Theunderlying concept is to linearize equations by evaluation
of the nonlinear terms with known solution from the former
iteration. Recently, the evaluation of iterative methods has
attracted much attention due to their computational effi-
ciency and feasibility in different disciplines of science and
engineering. Fundamentally, these methods are developed by
using Taylor series and algebraic decompositions. There are
many studies conducted for improving the classical Newton’s
method by introducing predictor-corrector procedures. For
example, the family of Chebyshev’s methods is developed
to constitute the fifth and sixth order iterative method [1–
7]. The major drawback of offered schemes is that, for
corrector step of these methods, computation of the second
derivative is necessary, which most of the time is excessively
difficult. There have been many attempts in the literature to
overcome aforementioned shortcoming for improving these
methods by making relevant algorithms free from the second
derivatives [3–5]. It is shown that the rate of convergence of

the modified iterative methods varies according to operation
of various parameters [6, 7].

Mathematically, orthogonal polynomials are widely
employed for functional interpolation and approximation.
The basic principle lies on interpolating a function by using
prescribed fix points (known as knots). Basically, it is a bad
idea to increase the number of inside knots in order to
get accurate results (for the higher degree interpolations);
however, implementation of the superior Chebyshev
functions is only option for higher degree approximations
(in referring to the Runge phenomenon) [5, 8]. In practice,
functional approximation using orthogonal polynomials
has been received considerable attention in dealing with
solution of partial, ordinary, or fractional differential
equations [9]. The main property of such series is that it
converts these problems to those of solving a system of
linear algebraic equations, where the repeated and redundant
calculations are neglected during the process of analysis,
thus making the very easy solution procedure. One of
the powerful tools constructed by developed versions of
orthogonal polynomials is established as wavelet functions.
Considerably, the effective characteristics of wavelets such
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as localization properties and multiresolution analysis have
been the focus of considerations among researchers. There
are several studies available for application of this powerful
tool in dynamical problems [10, 11] and integral equations
[12, 13]; however, there are less reports received in the
literature for development of iterative methods.

Subsequently, the main contribution of this paper is
to develop an operation of derivative stemmed from the
particular properties of Chebyshev wavelets capable of the
modification of Chebyshev’s iterative methods.The structure
of this paper is organized as follows. In the next section, the
background of Chebyshev operations as well as the first and
second kind of Chebyshev polynomials, the construction of
corresponding wavelet functions, and the product matrix of
integration and its well-known iterative method are briefly
summarized. In Section 3 of this paper, the operation of
derivative of Chebyshev is improved to approximate the
first and the second derivatives. Section 4 is devoted to the
proposed iterative method and analysis of convergence of the
least scale of wavelet functions. For this purpose, the applica-
bility and feasibility of the proposed method are investigated
on two nonlinear scalar functions. Finally, two practical
examples are given to validate and demonstrate efficiency
and capability of the proposed method with emphasis on the
solution of the geometrically nonlinear systems and highly
varying nonlinear problems.

2. A Brief Background of Family of
Chebyshev Operations

In the following section, a brief background of Chebyshev
wavelets of the first and second kind is presented. Basically,
a family of continues wavelet functions is constructed from
transformation of stretched and compressed variants of the
mother wavelet 𝜓(𝑥) defining as follows [14]:

𝜓
𝑎,𝑏
(𝜏) = |𝑎|

−0.5

𝜓(
𝜏 − 𝑏

𝑎
) , 𝑎, 𝑏 ∈ R, 𝑎 ̸= 0. (1)

In this definition, 𝑎 and 𝑏 represent the transition and
scale of the mother wavelet 𝜓(𝑥). In general, wavelets
those structured with different orders of polynomials (i.e.,
Chebyshev polynomials) have four underlying arguments of
𝜓
𝑎,𝑏
= 𝜓(𝑘, 𝑛,𝑚, 𝜏). Any positive integer 𝑘 is the parameter

of transition, 𝑛 indicates the corresponding scale, 𝑚 is the
degree (order) of the relevant polynomials, and 𝜏 denotes the
local coordinate of the wavelet. Fundamentally, a function is
approximated by transition of scaled wavelets on the global
interval of 𝑥

𝑖
to 𝑥
𝑖+1
(𝑖 = 0, 1, 2, . . .). This global interval is

dividing into the many subdivisions according to the degree
of the corresponding wavelet. The idea of discretizing the
global domain into the multiple partitions appropriate to the
global-scaled-frequency analysis is known as Segmentation
Method (SM) [10]. The main purpose of SM is to define
several collocation points on themain setting domain (global
points of 𝑥

𝑖
along the global domain) and therefore to

convey components of those to the new alternative domain
of the analysis (i.e., local points 𝜏

𝑖
in frequency domain). In

this study, 2𝑘−1𝑀 is assumed as the number of partitions

in each global interval (in referring to the SM collocation
points) and the corresponding wavelets are constructed by
𝑚 = 0, 1, 2, . . . , (2

𝑘−1

𝑀/2
𝑘−1

) − 1 order of the considered
polynomials. Accordingly, local coordinates of 𝜏

𝑖
are defined

based on SM as follows:

𝜏
𝑖
= (

1

2𝑘−1𝑀
)(𝑖 − 0.5) , 𝑖 = 1, 2, 3, . . . , 2

𝑘−1

𝑀. (2)

Clearly, for mapping the coordinates of interval [0, 1] to
[𝑥
𝑖
, 𝑥
𝑖+1

] one may use 𝑥
2𝑀

= 𝑥
𝑖
+ 𝜏
𝑖
(𝑥
𝑖+1
− 𝑥
𝑖
). It should be

noted that, in this study, 𝑘 = 2 is assumed for all derivations
and calculations.

2.1. The First Kind of Chebyshev Wavelet. The families of
orthogonal Chebyshev polynomials are classified into two
main types. The first kind of Chebyshev polynomials 𝑇

𝑚
(𝑥)

is obtained by a recursive formulation as follows [5, 15, 16]:

𝑇
0
(𝑥) = 1, 𝑇

1
(𝑥) = 𝑥,

𝑇
𝑚+1

(𝑥) = 2𝑥𝑇
𝑚
(𝑥) − 𝑇

𝑚−1
(𝑥) , 𝑚 = 1, 2, . . . ,

(3)

where the orthogonality of 𝑇
𝑚
(𝑥) is satisfied with respect

to the weight function of 𝜔(𝑥) = 1/√1 − 𝑥2 on |𝑥| < 1.
Subsequently, Chebyshev wavelets of the first kind (FCW) are
constructed by substituting 𝑇

𝑚
(𝑥) in (1) as [14, 16]

𝜓
𝑛,𝑚
(𝑥)

=
{

{

{

(2
𝑘/2

) ⋅ �̃�
𝑚
(2
𝑘

𝑥 − 2𝑛 + 1) ,
𝑛 − 1

2𝑘−1
≤ 𝑥 <

𝑛

2𝑘−1

0, Otherwise,
(4)

where

�̃�
𝑚
(𝑥) =

{{{{

{{{{

{

1

√𝜋
, 𝑚 = 0,

√
2

𝜋
𝑇
𝑚
(𝑥) , 𝑚 > 0,

(5)

where 𝑚 = 0, 1, 2, . . . ,𝑀 − 1 and 𝑛 = 1, 2, . . . , 2
𝑘−1

represent the order of corresponding polynomials and the
considered scale of the wavelet, respectively. 𝑇

𝑚
(𝑥) shows the

recursive formula in (3) relevant to the different orders of𝑚.
Subsequently, dilated and transformed weight functions of
𝜔(𝑥) are obtained as 𝜔

𝑛
(𝑥) = 𝜔(2

𝑘

𝑥 − 2𝑛 + 1) to calculate
orthogonal Chebyshev wavelets of the first kind (FCW).

2.2. The Second Kind of Chebyshev Wavelet. Chebyshev poly-
nomials of the second kind 𝑈

𝑚
(𝑥) are expressed by the

recurrence relation of [5]

𝑈
0
(𝑥) = 1, 𝑈

1
(𝑥) = 2𝑥,

𝑈
𝑚+1

(𝑥) = 2𝑥𝑈
𝑚
(𝑥) − 𝑈

𝑚−1
(𝑥) , 𝑚 = 1, 2, . . . .

(6)

The weight functions of 𝜔(𝑥) = (2/𝜋)√1 − 𝑥2, (|𝑥| <
1) satisfy the orthogonal relation between divers degrees of
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𝑈
𝑚
(𝑥). The second kind of Chebyshev wavelets (SCW) is

constituted as follows [17]:

𝜓
𝑛,𝑚
(𝑥)

=

{{

{{

{

(2
𝑘/2

) ⋅ �̃�
𝑚
(2
𝑘

𝑥 − 2𝑛 + 1) ,
𝑛 − 1

2𝑘−1
≤ 𝑥 <

𝑛

2𝑘−1
,

0, Otherwise,
(7)

where �̃�
𝑚
(𝑥) = √2/𝜋𝑈

𝑚
(𝑥) and arguments of 𝑘, 𝑛, and𝑚 are

the same as presented before. In addition, for different orders
of 𝑚, 𝑈

𝑚
(𝑥) is obtained from (6). Correspondingly, delayed

and transitioned weight functions of 𝜔
𝑛
(𝑥) = 𝜔(2

𝑘

𝑥− 2𝑛+ 1)

are developed to calculate orthogonal SCWs.

2.3. Functional Decomposition. Mathematically, any quadrat-
ically integrable function 𝑓(𝑥) may be decomposed by the
truncated series of a wavelet’s family (i.e., FCW or SCW) as
follows [13, 14, 17]:

𝑓 (𝑥) ≅

2
𝑘−1

∑

𝑛=1

𝑀−1

∑

𝑚=0

𝑐
𝑛,𝑚
𝜓
𝑛,𝑚
(𝑥) = 𝐶

𝑇

Ψ (𝑥) , (8)

where 𝐶 denotes the vector of coefficients of the considered
wavelets, that is, FCWor SCW. Furthermore,Ψ(𝑥) represents
the vector of corresponding wavelet functions defined as

𝐶 = [𝑐
1
, 𝑐
2
, 𝑐
3
, . . . , 𝑐

2
𝑘−1]
𝑇

2
𝑘−1
𝑀×1

⇐⇒ 𝑐
𝑖
= [𝑐
𝑖0
, 𝑐
𝑖1
, 𝑐
𝑖2
, . . . , 𝑐

𝑖,𝑀−1
]
𝑇

,

𝑖 = 1, 2, . . . , 2
𝑘−1

,

Ψ (𝑥) = [𝜓
1
, 𝜓
2
, 𝜓
3
, . . . , 𝜓

2
𝑘−1]
𝑇

2
𝑘−1
𝑀×1

⇐⇒ 𝜓
𝑖
(𝑥) = [𝜓

𝑖0
(𝑥) , 𝜓

𝑖1
(𝑥) , 𝜓

𝑖2
(𝑥) , . . . , 𝜓

𝑖,𝑀−1
(𝑥)]
𝑇

.

(9)

Eventually, a 2𝑘−1𝑀 × 2
𝑘−1

𝑀-dimensional matrix of
𝜙
𝑛,𝑚
(𝑥) is developed as

𝜙
𝑛,𝑚
(𝑥) = [Ψ (𝑥

1
) Ψ (𝑥

2
) ⋅ ⋅ ⋅ Ψ (𝑥

𝑖
)]
2
𝑘−1
𝑀×2
𝑘−1
𝑀
. (10)

The square matrix of 𝜙
𝑛,𝑚
(𝑥) is populated with vectors of

wavelet functions for a set of discrete SM local points (𝑥
𝑖
, 𝑖 =

1, 2, 3, . . . , 2
𝑘−1

𝑀).

2.4. Product Matrix of Integration. The product matrix 𝑃 of
integration (for FCW and SCW) is briefly discussed in this
section.The detailed calculations of𝑃 can be found in [14, 17].
Assumption of the integration of Ψ(𝑥) is as follows (for 𝑘 =
2):

∫

1

0

Ψ
2𝑀
(𝑥) 𝑑𝑡 = 𝑃

2𝑀
Ψ (𝑥) . (11)

In (11), the subscripts of Ψ
2𝑀

and 𝑃
2𝑀

denote the dimen-
sion of matrices. Accordingly, the 2𝑘𝑀 × 2

𝑘

𝑀-dimensional
operational matrix 𝑃 for FCW and SCW is derived as

𝑃 =
1

2𝑘

[
[
[
[
[
[
[
[
[
[

[

[𝐿]
𝑀×𝑀

[𝐹]
𝑀×𝑀

𝐹 ⋅ ⋅ ⋅ 𝐹

[𝑂]
𝑀×𝑀

[𝐿]
𝑀×𝑀

𝐹 ⋅ ⋅ ⋅ 𝐹

𝑂 𝑂 d d
.
.
.

.

.

.
.
.
. ⋅ ⋅ ⋅ d 𝐹

𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂 𝐿

]
]
]
]
]
]
]
]
]
]

]

, (12)

where𝑀×𝑀 square matrices 𝐹 and 𝐿 are given as follows:

𝐹 =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

2 0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 ⋅ ⋅ ⋅ 0 0

𝑎
1
0 0 ⋅ ⋅ ⋅ 0 0

0 0 0 d
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.

.

.

. d
.
.
.

𝑎
2
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐿 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 𝑎
6
𝑎
9
𝑎
12
⋅ ⋅ ⋅ 0 0 0

𝑎
3
0 𝑎
10
𝑎
13
⋅ ⋅ ⋅ 0 0 0

𝑎
4
𝑎
7
0 𝑎
14
⋅ ⋅ ⋅ 0 0 0

𝑎
5
𝑎
8
𝑎
11

0 ⋅ ⋅ ⋅
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. d

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. d
.
.
.

.

.

.

𝑎
15

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎
17

d 𝑎
19

𝑎
16

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑎
18

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(13)

It is deduced from (12) and (13) that the population of
arrays of𝑃 is similar for FCW and SCW. In detail, coefficients
of 𝑎
𝑖
are defined for FCW and SCW and tabulated in Table 1

[14, 17].
It is to be pointed out that 𝑀 refers to 2𝑘−1𝑀/2𝑘−1. To

calculate product matrix of 𝑃 for FCW and SCW, a backward
algorithm of program coding is recommended. In other
words, only the first four rows and columns of 𝑃 are being
computed, initially. Then, the elements of 𝑃 being calculated
from the last row and column𝑀th until computation of the
5th row and column. To clarify the expression of wavelet’s
parameters of FCW and SCW, matrices of 𝜙

4,4
and 𝑃

4,4
are

calculated and tabulated in Table 2 for 𝑘 = 2,𝑀 = 2.
The practical effectiveness of data displayed inTable 2will

be discussed in detail later.

2.5.The Iterative Chebyshev’s Operation. The basic method to
solve nonlinear problems is the classical Newton’s method.
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Table 1: Coefficients of 𝑎
𝑖
, defined in (13) corresponding to FCW

and SCW.

𝑎
𝑖

FCW SCW

𝑎
1

−
2√2

3

2

3

𝑎
2

√2

2
(
1 − (−1)

𝑀

𝑀
−
1 − (−1)

𝑀−2

𝑀− 2
)


sin(𝑀𝜋

2
)


2

𝑀

𝑎
3

−
√2

4
−
3

4

𝑎
4

−
√2

3

1

3

𝑎
5

√2

4
−
1

4

𝑎
6

1

√2

1

2

𝑎
7

−
1

2
−
1

6

𝑎
8

0 0
𝑎
9

0 0

𝑎
10

1

4

1

4

𝑎
11

−
1

4
−
1

8

𝑎
12

0 0
𝑎
13

0 0

𝑎
14

1

6

1

6

𝑎
15

√2

2
(
(−1)
𝑀−3

𝑀− 3
−
(−1)
𝑀−1

𝑀− 1
) (−1)

𝑀−2
1

𝑀 − 1

𝑎
16

√2

2
(
(−1)
𝑀−2

𝑀− 2
−
(−1)
𝑀

𝑀
) (−1)

𝑀−1
1

𝑀

𝑎
17

−1

2(𝑀 − 3)
−

1

2(𝑀 − 1)

𝑎
18

−1

2(𝑀 − 2)
−
1

2𝑀

𝑎
19

1

2(𝑀 − 1)

1

2(𝑀 − 1)

This scheme converges quadratically and for a single nonlin-
ear equation is expressed as 𝑥

𝑛+1
= 𝑥
𝑛
− 𝑓(𝑥

𝑛
)/𝑓


(𝑥
𝑛
) [2–

4]. One of the iterative methods utilized to improve New-
ton’s scheme lies on the third-order convergent Chebyshev’s
method. According to this algorithm, the new point of 𝑥

𝑛+1

is iterated from the preceding point of 𝑥
𝑛
by [7]

𝑥
𝑛+1

= 𝑥
𝑛
− (1 +

1

2

𝑓


(𝑥
𝑛
) 𝑓 (𝑥

𝑛
)

𝑓 (𝑥
𝑛
)

)
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
. (14)

As it is shown in (14), iterative Chebyshev’s algorithm is
rigorously dependent on the calculation of second deriva-
tives, in which most of the time it is neither possible nor
practical. Thus, the computing process is excessively diffi-
cult, and therefore the practical applications are extremely
restricted, particularly, for solving highly varying nonlinear
systems. Consequently, the main contribution of our study is
discovered here, whereby an iterative procedure is proposed

to improve (14) by employing FCW and SCW free from
computation of the second derivatives.

3. The Proposed Method for Operation
of Derivative

In this section, an efficient approach is proposed for approx-
imation of derivatives using free-scaled wavelet functions.
The proposed method is applicable for various wavelet basis
functions, once the productmatrix of integration andwavelet
coefficient vectors are available. For this purpose, integral
functions are numerically developed from local coordinates
to global system. For a differentiable function of 𝑓(𝑥): 𝑥 ∈
[𝑥
𝑛
, 𝑥
𝑛+1
], indefinite formulation of (15) is considered based

on the Newton theorem as follows:

𝑓 (𝑥) = 𝑓 (𝑥
𝑛
) + ∫

𝑥

𝑥𝑛

𝑓


(𝑥) 𝑑𝑥. (15)

We initialize 𝑥
𝑛+1

= 𝑥
𝑛
− 𝑓(𝑥

𝑛
)/𝑓


(𝑥
𝑛
) for definite form

of (15); let 𝑑
𝑛
= 𝑥
𝑛+1
− 𝑥
𝑛
. Using (8) the derivative function is

approximated on global coordinates as follows:

𝑓


(𝑥) = 𝐶
𝑇

⋅ Ψ (𝑥) . (16)

Substituting into (15) we have

𝑓 (𝑥
𝑛+1
) = 𝑓 (𝑥

𝑛
) + ∫

𝑥𝑛+1

𝑥𝑛

𝐶
𝑇

⋅ Ψ (𝑥) 𝑑𝑥. (17)

Multiplying by operational matrix 𝑃 of integration,
adding initial constant of integration, we have

𝑓 (𝑥
𝑛+1
) = 𝑓 (𝑥

𝑛
) + 𝑑
𝑛
⋅ 𝐶
𝑇

⋅ 𝑃 ⋅ Ψ (𝑥) + 𝑓


(𝑥
0
) , (18)

where 𝑑
𝑛
is operated for mapping local characteristics of

Chebyshev wavelet to global ones. To simplify this equation,
constant quantities are approximated by Chebyshev wavelets
in each step. For this purpose, the unity is being expanded by
the Chebyshev wavelet as [10, 15, 16]

1 ≅ 𝐼
∗

Ψ (𝑡) ≅ 𝐷 [1
1,1
, 0, 0, . . . , 1

1,𝑀+1
, 0, 0, . . .] Ψ (𝑡) , (19)

where 𝐷 = √𝜋/4 and √𝜋/8 for FCW and SCW, respec-
tively. Therefore, initial values are developed as 2𝑘−1𝑀 × 1-
dimensional vectors corresponding to collocation points:

𝑓


(𝑥
0
) = 𝑓


(𝑥
0
) 𝐼
∗

Ψ (𝑥) ,

𝑓 (𝑥
𝑛+1
) = 𝑓 (𝑥

𝑛+1
) 𝐼
∗

Ψ (𝑥) ,

𝑓 (𝑥
𝑛
) = 𝑓 (𝑥

𝑛
) 𝐼
∗

Ψ (𝑥) .

(20)

Substituting (20) into (18) we have

𝑓 (𝑥
𝑛+1
) 𝐼
∗

Ψ (𝑥) = 𝑓 (𝑥
𝑛
) 𝐼
∗

Ψ (𝑥) + 𝑑
𝑛
⋅ 𝐶
𝑇

⋅ 𝑃

⋅ Ψ (𝑥) + 𝑓


(𝑥
0
) 𝐼
∗

Ψ (𝑥) .

(21)

Subsequently, eliminating Ψ(𝑥) from both sides of (21)
and after algebraic calculations 𝐶𝑇 is being calculated. Using
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Table 2: Corresponding components of wavelets 𝜙
𝑖,𝑗
and 𝑃, calculated on four SM = 4 points for FCW and SCW.

Column 𝑗 1 2 3 4
Row 𝑖 𝜙

𝑖,𝑗
𝑃
𝑖,𝑗

𝜙
𝑖,𝑗

𝑃
𝑖,𝑗

𝜙
𝑖,𝑗

𝑃
𝑖,𝑗

𝜙
𝑖,𝑗

𝑃
𝑖,𝑗

1 FCW 1.1284 0.2500 1.1284 0.1768 0 0.5000 0 0
SCW 1.5958 0.2500 1.5958 0.1250 0 0.5000 0 0

2 FCW −0.7979 −0.0884 0.7979 0 0 0 0 0
SCW −1.5958 −0.1875 1.5958 0 0 0 0 0

3 FCW 0 0 0 0 1.1284 0.2500 1.1284 0.1768
SCW 0 0 0 0 1.5958 0.2500 1.5958 0.1250

4 FCW 0 0 0 0 −0.7979 −0.0884 0.7979 0
SCW 0 0 0 0 −1.5958 −0.1875 1.5958 0

Note: FCW = first Chebyshev wavelet, SCW = second Chebyshev wavelet.

(16), 𝑓(𝑥) is approximated on 2𝑀 global points. The same
approach is employed on 𝑓



(𝑥) to compute the second
derivative of𝑓(𝑥).The proposedmethod is implemented on
𝑓(𝑥) = sin(𝑥2); 𝑥 ∈ [0, 2], in which its definite 𝑓(𝑥) = 2𝑥 ⋅
cos(𝑥2) and 𝑓(𝑥) = 2[cos(𝑥2) − 2𝑥2 sin(𝑥2)] exist. The first
and second derivatives are calculated for 2𝑀 = 8 collocation
points of FCW and SCW and have been compared with exact
values (designated by original 𝑑𝑓/𝑑𝑥 or 𝑑(𝑑𝑓/𝑑𝑥)) in Figures
1 and 2, respectively. The approximated results for the first
and second derivatives of 𝑓(𝑥) are designated in figures by
App(𝑑𝑓/𝑑𝑥) and App(𝑑(𝑑𝑓/𝑑𝑥)), respectively.

The schematic view of results in Figures 1 and 2 lies on
the better accuracy of SCW, when 2𝑀 = 8 is applied. For
the purpose of a detailed comparison, various 2𝑀 points are
employed through the proposed method corresponding to
diverse scales of FCW and SCW to calculate the first and
second derivative of considered 𝑓(𝑥). The comparison of
results is depicted in Figures 3 and 4 related to the FCW and
SCW, respectively. Accordingly, the percentile total average
error (PTAE) measurement is presented for the purpose of
comparison. By assumption of 𝛼 for the closed-form solution
and 𝑋

𝑐
as the calculated value, PTAE is defined as PTAE =

100∑ |(𝛼 − 𝑋
𝑐
)/𝛼|.

The measured PTAE data shown in Figures 3 and 4
illustrate that free scales of SCW approximate the first and
second derivatives more accurate than those of FCW. For
instance, PTAE = 89.49% is measured for the second scale
of FCW, while this value is considerably decreased to 9.32%
for the same scale of SCW. As it is shown in Figure 3, the
accuracy of the second derivative is more than the first one.
This is because the oscillatory shape of the results coincides
with the exact result for the second derivative, in contrast
to the calculated results by SCW for the first derivative.
Significantly, the error measurement of the proposedmethod
using higher scales of SCW demonstrates the superiority of
this wavelet. Finally, it is apparent from the figures that end
point errors diversely affect the accuracy of results for the
higher order approximations shown for 2𝑀 = 64 collocation
points.

In addition, the proposed scheme is applicable in prob-
lems with several unknowns, where the tangent line becomes

a tangent (hyper) plane. For instance, (15) is developed for a
function of two variables 𝑓(𝑥, 𝑦) as follows:

𝑓 (𝑥, 𝑦 = 𝑦
0
) = 𝑓 (𝑥

𝑛
, 𝑦 = 𝑦

0
) + ∫

𝑥

𝑥𝑛

𝑓


𝑥
(𝑥, 𝑦 = 𝑦

0
) 𝑑𝑥,

(22)

where 𝑥 and 𝑦 = 𝑦
0
represent the first variable and the con-

stant point for the second variable, respectively.𝑓
𝑥
(𝑥, 𝑦 = 𝑦

0
)

indicates the derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥 while
𝑦 = 𝑦

0
and the subscripts 𝑥 and 𝑦 are changed for the next

variable as

𝑓 (𝑥 = 𝑥
0
, 𝑦) = 𝑓 (𝑥 = 𝑥

0
, 𝑦
𝑛
) + ∫

𝑦

𝑦𝑛

𝑓


𝑦
(𝑥 = 𝑥

0
, 𝑦
𝑛
) 𝑑𝑦.

(23)

Consequently, 𝑓
𝑥
and 𝑓
𝑦
are calculated, and therefore the

normal vector ( ⃗𝑛) to the plane at 𝑥
0
and 𝑦

0
is derived as

⃗𝑛 = ⟨𝑓


𝑥
(𝑥
0
, 𝑦
0
) , 𝑓


𝑦
(𝑥
0
, 𝑦
0
) , −1⟩ . (24)

4. The Proposed Iterative Method

The proposed iterative method contains the set of modi-
fied predictors-correctors explained in (14). The operation
of derivative proposed in previous section is employed to
approximate the second derivatives using FCW and SCW.
Basically, the most accurate results are computed for the
approximation of only the second derivative; however, the
method is also applicable for approximation of the first
derivative. For this purpose,𝑦

𝑛
= 𝑥
𝑛
−𝑓(𝑥
𝑛
)/𝑓


(𝑥
𝑛
) is initially

predicted. Later, the second derivatives of 𝑓(𝑥) for 𝑥 ∈

[𝑥
𝑛
, 𝑦
𝑛
] are approximated using FCW or SCW on 2𝑀 collo-

cation points. Eventually, the new point 𝑥
𝑛+1

is iterated using
Chebyshev’s iterative algorithm of (14). The geometric con-
struction of the proposed method is illustrated in Figure 5.
Accordingly, the analysis of convergence of the proposed
method using SCW or FCW may be satisfied for the least
orders of 2𝑀 = 2 corresponding to the first column and
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Figure 1: The approximated results using the proposed operation of derivative of FCW on 2𝑀 = 8 collocation points for calculation of (a)
the first and (b) the second derivative.
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Figure 2: The approximated results using the proposed operation of derivative of SCW on 2𝑀 = 8 collocation points for computation of (a)
the first and (b) the second derivative.
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row of matrix 𝑃 and vector 𝐶 as (the matrix calculus is then
satisfied):

𝑥
𝑛+1

= 𝑥
𝑛
− (1 +

1

2

𝐶
𝑇

𝜓 (𝑥) ⋅ 𝐶
𝑇

𝑃
2

𝜓 (𝑥)

𝐶𝑇𝑃𝜓 (𝑥)
)
𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
. (25)

Using (7) and substituting 𝜓
1,1
(𝑥) = (√2/𝜋)(16𝑥 − 4) for

SCW yield

𝑥
𝑛+1

= 𝑥
𝑛
− (1 +

1

2
𝜂 (16𝑥

𝑛
− 4))

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
, (26)

where 𝜂 is assumed as an independent variable of the error
function. On the other hand, let 𝛼 be a simple root of 𝑓;
thus 𝑓(𝛼) = 0 and 𝑓(𝛼) ̸= 0. As long as 𝑓 is a sufficiently
differentiable function, usingTaylor series expansion of𝑓 and
𝑓
 around 𝑥

𝑛
= 𝛼 gives [1–4, 8]

𝑓 (𝑥
𝑛
) = 𝑓


(𝛼) (𝑥
𝑛
− 𝛼) +

1

2!
𝑓


(𝛼) (𝑥
𝑛
− 𝛼)
2

+
1

3!
𝑓


(𝛼) (𝑥
𝑛
− 𝛼)
3

+ ⋅ ⋅ ⋅ + 𝑂 ((𝑥
𝑛
− 𝛼)
4

) .

(27)

Using𝑂(𝑒
𝑛

𝑙

) = ∑
∞

𝑖=𝑙
𝑐
𝑖
𝑒
𝑛

𝑖 and 𝑐
𝑠
= (1/𝑠!)(𝑓

𝑠

(𝛼)/𝑓


(𝛼)), 𝑠 =
1, 2, . . . and 𝑒

𝑛
= 𝑥
𝑛
−𝛼, (27) is therefore developed as follows:

𝑓 (𝑥
𝑛
) = 𝑓


(𝛼) [𝑒
𝑛
+ 𝑐
2
𝑒
𝑛

2

+ 𝑐
3
𝑒
𝑛

3

+ 𝑐
4
𝑒
𝑛

4

+ 𝑐
5
𝑒
𝑛

5

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
𝑛

6

)] .

(28)

Accordingly, the first derivative of 𝑓 is obtained as

𝑓


(𝑥
𝑛
) = 𝑓


(𝛼) [1 + 2𝑐
2
𝑒
𝑛
+ 3𝑐
3
𝑒
𝑛

2

+ 4𝑐
4
𝑒
𝑛

3

+ 5𝑐
5
𝑒
𝑛

4

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
𝑛

5

)] .

(29)

Dividing (28) by (29), one may obtain

𝑓 (𝑥
𝑛
)

𝑓 (𝑥
𝑛
)
= 𝑒
𝑛
− 𝑐
2
𝑒
𝑛

2

+ 2 (𝑐
2

2
− 𝑐
3
) 𝑒
𝑛

3

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
𝑛

4

) .

(30)

Let 𝑒
𝑛
= 𝑥
𝑛
− 𝛼; therefore, (26) is developed as follows:

𝑥
𝑛+1

= 𝑥
𝑛
− (1 +

1

2
𝜂 (16𝑒

𝑛
+ 16𝛼 − 4))

⋅ [𝑒
𝑛
− 𝑐
2
𝑒
𝑛

2

+ 2 (𝑐
2

2
− 𝑐
3
) 𝑒
𝑛

3

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
𝑛

4

)] .

(31)

Table 3: Comparison of the proposed iterative methods and
Newton’s method for solution of 𝑓

1
and 𝑓

2
.

𝑓(𝑥
𝑛
) 𝑥
0

Newton FCW (2𝑀8) 𝐷% SCW (2𝑀8) 𝐷%

𝑓
1

0 4 2 50% 2 50%
0.5 4 2 50% 2 50%

𝑓
2

1.2 6 2 66.7% 2 66.7%
3.5 7 4 42.85% 3 57.14%

Note: FCW (2𝑀8), SCW (2𝑀8) = first and second kind of Chebyshev
wavelets on 2𝑀 = 8.

This means that the order of convergence of the proposed
method is at least four (𝑒

𝑛

4), when the least scale of SCW is
employed. The same approach is applied for FCW and the
same convergence rate is obtained.

Nowwe present two examples to investigate the efficiency
of the improved iterative method. The solution of two scalar
nonlinear equations 𝑓

1
(𝑥) and 𝑓

2
(𝑥) is considered as follows:

𝑓
1
(𝑥) = 𝑥

2

− 𝑒
𝑥

− 3𝑥 + 2, 𝛼 = 0.2575302854,

𝑓
2
(𝑥) = sin2 (𝑥) − 𝑥2 + 1, 𝛼 = 1.4044916482,

(32)

where 𝛼 denotes the simple root of the nonlinear equation
and the prescribed error measurement at the ending of
the iteration process is |𝑓(𝑥

𝑛
)| < 1 ⋅ 𝑒 − 6. The total

number of iterations (NIt) and relative percentile reduction
of NIt (designated by 𝐷%) from the starting point of 𝑥

𝑛
are

compared for the classicalNewton’smethod and the proposed
methods of FCW and SCW (for 2𝑀 = 8), shown in Table 3.

Obviously, data displayed in Table 3 demonstrate that
FCW and SCW require lesser number of iterations than
Newton’s method. In addition, it shows the satisfactory
performance of the developedmethod using 2𝑀 = 8 scales of
FCW, while the superior performance is observed for SCW.

5. Numerical Application

One of the important practices of iterative methods is
nonlinear structural analysis. In structural analysis, {𝑓(𝑥)} =
𝑃 is the equilibrium equation of structural elements with the
vector of nodal internal loadings {𝑓} subjected to external
forces 𝑃. In a nonlinear structure, the load-deformation
relations of each degree of freedom (DOF) illustrate that
{𝑓} is a nonlinear function of displacements {𝑥}. Therefore,
the convenient analysis will be carried out by using the
incremental form of structural equilibrium of [𝐾

𝑡
] {Δ𝑥} =

{Δ𝑃}. In this description, [𝐾
𝑡
] is the gradient matrix of

the equations; namely, tangential stiffness matrix contains
both the linear stiffness matrix [𝐾

𝐿
] and the geometric

stiffness matrix of [𝐾
𝐺
] stemmed from updated stresses

due to the deformations. This matrix is predicted at the
first step of each increment and therefore is corrected,
iteratively ([𝐾Predicted

𝑡
] and [𝐾Corrected

𝑡
] shown in Figure 5).

Furthermore, the incremental load-control schemes of arc-
length and classical Newton-Raphson are the most popular
methods to follow the nonlinear equilibrium path of load-
displacement, however, with various performance. Figure 5
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Figure 5:The geometric construction of the proposedmethod using
FCW or SCW.
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Figure 6: William’s toggle frame subjected to the 𝑃 at the apex.

describes the overall process of Newton-Raphson method
and the proposedmethod, whereby the out-of-balanced force
Δ𝑄
𝑛
is considered for new iterations (correctors).
The geometrically nonlinear analysis of the well-known

William’s toggle frame is considered in this section. Figure 6
shows the geometry of this simple frame comprised of two
truss elements and one DOF. 𝐸 = 20.7𝑒3N/cm2, 𝐴 = 1 cm2,
and 𝑙 = 254 cm are chosen as the modulus of elasticity, cross-
sectional area, and undeformed length, respectively.The load
increment of Δ𝑃 = 550 kN is applied at the top node of this
truss for two increments (𝛽 = 30∘).

In this application, the displacement-control criterion is
utilized to stop the ending iterations and the tolerance factor
1𝑒 − 3 is accordingly chosen. Basically, the geometrically
nonlinear equilibrium and the one DOF tangential stiffness
[𝐾
𝑡
] of this structure (which is the gradient of the 𝑓(𝑥)) are

defined as [18]

𝑓 (𝑥) = 2𝐸𝐴(sin (𝛽) − Δ
𝑙
)

⋅
[
[

[

1

√1 + (Δ/𝑙)
2

− 2 (Δ/𝑙) sin (𝛽)
− 1
]
]

]

,

𝐾
𝑡
= 1 −

cos2 (𝛽)

(1 + (Δ/𝑙)
2

− 2 (Δ/𝑙) sin (𝛽))
1.5
.

(33)

This structure is analyzed using the proposed method
of FCW and SCW (2𝑀 = 8) and the classical Newton’s
method for two increments of load. For the classical Newton’s

Table 4: Comparison of number of iterations (NIt) for two incre-
ments of Δ𝑃.

-
FCW SCW

NIt 𝐷% NIt 𝐷%
2𝑀 = 2 32 33% 30 37%
2𝑀 = 4 30 37% 29 39%
2𝑀 = 8 29 39% 24 50%

method the convergence criteria are achieved by NIt = 48
for two increments (predictions). Subsequently, total number
of iterations (NIt) and relative percentile reductions are
displayed in Table 4 corresponding to various scales of FCW
and SCW.

It is apparent from Table 4 that the convergence criterion
is accomplished by less iterations using the 8th scales of
SCW. It is shown that this scale of wavelet rapidly converges.
Furthermore, the competency of the proposed method is
also confirmed by FCW, while it requires the less number
of iterations compared with Newton’s method. Actually, the
main computational efficiency of the proposedmethod is not
discovered well through this application, where the similar
number of increments is utilized for Newton’s and the pro-
posed method. As a result, the computational time (recorded
with a same hardware) due to the 8th scales of the proposed
method reached the highest value of 0.5 sec compared with
the minimum value of 0.01 sec recorded for the solution of
Newton’s method. However, the best rate of convergence is
achieved by the proposed method. It is concluded that the
best performance of the proposed method is revealed in
statically or dynamically highly varying nonlinear problems,
in which the initial value of 𝑓Predicted

(𝑥𝑛)
may be predicted for a

long increment of Δ𝑃 as shown in Figure 7.
Figure 7 shows the shortcoming of Newton’s method for

the highly varying nonlinear problems. In contrast, it is
illustrated that the highly varying nonlinear behaviors are
accurately captured using the proposed method of FCW or
SCW on corresponding collocation points. In this figure 𝑥𝑤

2𝑀

refers to the 2𝑀 collocation points of wavelet, the same as
introduced in Figure 5 for initial predictions of 𝑦

1
to 𝑦
2𝑀

.
It is shown that the only increment of Δ𝑃 applied for the
proposed method will be divided to at least four increments
of Newton’s scheme in pursuit of an accurate analysis (for
this particular case). Consequently, the cost of analysis
is significantly increased depends on existed nonlinearity.
Such nonlinear behaviors cannot happen on our practical
example (geometric nonlinearity of structures), where the
nonlinear path is almost linear until the first critical point
(inflection point). However in many applications of physics
or chemistry aforementioned highly nonlinear characteristics
are considered through both static and dynamic analysis.

To investigate the effectiveness of the proposed method
in highly varying nonlinear problems, nonlinear function of
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Figure 7: The geometric illustration of computational efficiency of the proposed method compared with Newton’s method.
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Figure 8:The schematic view of iterative solution of nonlinear 𝑓(𝑥)
using the proposed method.

𝑓(𝑥) = 𝑥 + 𝛼 Sin(𝛽𝑥), 𝛼 = 1/3, and 𝛽 = 3 is evaluated by
Newton’s scheme and various scales of FCW and SCW. For
this purpose, one increment of Δ𝑃 = 14 is considered for
the proposed procedure, whereas eight increments of Δ𝑃 are
utilized for the classical Newton’smethod to capture details of
foregoing function.The schematic viewof iterative solution of
𝑓(𝑥) using the proposed scheme is shown in Figure 8.

As it is shown in Figure 8, by using the long increment of
Δ𝑃 = 14, details of the nonlinear function are almost accu-
rately evaluated to iterate new 𝑥

𝑛+1
from 𝑥

𝑛
. The prescribed

error measurement at the ending of the iteration process is
|𝑓(𝑥
𝑛
)| < 1 ⋅ 𝑒 − 5. The total number of iterations (NIt),

relative percentile reduction of NIt (designated by𝐷%) from
the starting point of 𝑥

𝑛
, and computation time involved (CT)

are compared in Table 5 for the proposed methods of FCW
and SCW. It is to be noted that NIt = 361 is recorded for
the classical Newton’s method (8 numbers of Δ𝑃) with CT =
0.53 sec.

Data in Table 5 shows that the best efficiency is recorded
for SCW (2𝑀 = 8) by NIt = 8 and the least time consumption
of CT = 0.19 sec. It is shown that, for the low scales of FCW
and SCW (2𝑀 = 2 or 4), because of the simplicity of
function’s evaluation of 2𝑀 = 2, the final computational
times are almost the same.However, for the larger scales, time

Table 5: Comparison of number of iterations (NIt) and computa-
tional time (CT) for one increment of Δ𝑃 = 14.

FCW SCW
NIt 𝐷% CT (sec) NIt 𝐷% CT (sec)

2𝑀 = 2 21 94.1% 0.28 19 94.7% 0.25
2𝑀 = 4 15 95.8% 0.27 14 96.1% 0.25
2𝑀 = 8 10 97.2% 0.22 8 97.8% 0.19

consumption is decreased due to less number of iterations.
Finally, this numerical example demonstrates the capability
of the proposed method in such applications by using larger
scales, in which details of nonlinear problem are accurately
captured prior to the new iterations.

6. Conclusion

This paper presented an efficient iterative approach for solv-
ing nonlinear equations. For this purpose, the operation of
derivative is developed using free-scaled Chebyshev wavelet
functions of the first and second kind. Accordingly, the
Chebyshev iterative method is improved by calculation of the
second derivatives using the proposed operations. It is shown
that the rate of convergence of the proposedmethod using the
less scales of FCW and SCW is at least four.The robustness of
the proposed algorithm in terms of computational efficiency
is validated for numerical examples as well as a practical
example. It is deduced that the proposed method requires
the less number of iterations and therefore rapidly converges,
particularly, when the second kind of Chebyshev wavelet
is implemented. The practical applications demonstrate the
capability of the proposed method for solution of highly
varying nonlinear problems. It is recommended to employ
the proposed method for dynamic nonlinear analysis, where
the dynamic solution is benefited by themultiresolution char-
acteristics of wavelet functions for capturing the important
details of considered systems for both geometry and material
nonlinearity.
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