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In order to retrieve gap fraction, leaf inclination angle, and leaf area index (LAI) of subtropical forestry canopy, here we acquired
forestry detailed information by means of hemispherical photography, terrestrial laser scanning, and LAI-2200 plant canopy
analyzer. Meanwhile, we presented a series of image processing and computer graphics algorithms that include image and point
cloud data (PCD) segmentation methods for branch and leaf classification and PCD features, such as normal vector, tangent plane
extraction, and hemispherical projection method for PCD coordinate transformation. In addition, various forestry mathematical
models were proposed to deduce forestry canopy indexes based on the radiation transfer model of Beer-Lambert law.Through the
comparison of the experimental results on many plot samples, the terrestrial laser scanner- (TLS-) based index estimation method
obtains results similar to digital hemispherical photograph (HP) and LAI-2200 plant canopy analyzer taken of the same stands and
used for validation. It indicates that the TLS-based algorithm is able to capture the variability in LAI of forest stands with a range
of densities, and there is a high chance to enhance TLS as a calibration tool for other devices.

1. Introduction

The forest has an irreplaceable status in improving the Earth’s
environment of human habitation and slowing down global
environmental degradation trend. Tree canopy performs
three important functions such as tree’s photosynthesis,
interchange of gases and evaporation of water between the
atmosphere and the plant body, and plant growth and devel-
opment, so how to solve and explore the finemeasurement of
tree canopy and find an effective way to calculate the canopy
indexes, such as leaf area index, crown density, and leaf area
density, is a main task in forestry research and an important
topic of inverse analysis aimed at plant growth mechanism.

In recent years, there have been several methods of
obtaining canopy morphology structure and measuring trees
parameters. Firstly, plant canopy analyzer and traditional
mechanical instruments for treesmeasurement are inefficient
and are affected by leaf overlapping and aggregation effects

in addition to the solar zenith angle. Secondly, hyperspectral
radiometer has been used to measure the canopy from top
to down and usually includes recorded reflection from the
ground [1, 2]. It is capable of producing one-shot topographic
and spectral intensity information, which will enable a
simultaneous study of structural and biochemical vegetation
parameters, but this method is constrained by atmospheric
conditions and accuracy of aerial photography and it is
not theoretically supported by modern physical models.
Additionally, airborne LIDAR can be used to monitor plant
biomass and growth [3, 4], but merely relying on finitely echo
waveform with attenuation and noise to account for detailed
forest features is far from enough.Thus, airborne LIDAR data
are always collected for generating digital forestry models
at national level or large scale instead of fine scale with
single tree measurement [5, 6]. Moreover, the TLS scans
pulse laser over the full upper hemisphere and part of the
lower hemisphere by using a mirror rotating in the vertical
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plane (the zenith scan) and rotation of the instrument to
provide azimuthal coverage.The time-dependent intensity of
reflected light from each laser pulse is recorded, providing a
waveform that may include responses from multiple targets
[7, 8]. The laser produces an energy pulse that is distributed
in time. The shape of the outgoing pulse is consistent and
has a well-defined peak. Reflections from targets are time-
delayed copies of this pulse where the range to the target
is simply inferred from the arrival time of the pulse peak
relative to the peak of the outgoing pulse. TLS can mosaic
the multiview scanning data, thereby ensuring scanning data
completeness and reducing the impact of foliage cover and
eventually getting 3D point cloud model of real stumpage.
Due to high-precision and high-density characteristics, the
TLS-based method is taken as the most appropriate method
for tree measurement, and it can also serve as a calibration
tool for airborne laser scanning and other measurement
applications with ground sampling [9, 10].

In recent years, there have been primarily several meth-
ods to calculate tree indexes from TLS PCD.

(1) Different space partitioning methods and projection
strategies on PCD were used to calculate vegetation
architecture and foliage assemblage in each space cell
and then to indicate trees’ growth index [11, 12]. For
example, Zheng and Moskal [13] presented a new
voxel-based method with line quadrat direction to
retrieve the biophysical characteristics of the forest
canopy including extinction coefficient, gap fraction,
and overlapping effect along the direction of the line
quadrat and estimated effective leaf area (ELA) from
TLS point cloud data. Béland et al. [14] investigated
the use of a voxel-based approach to retrieve leaf
area distribution of individual trees from PCD and
provided vertical as well as radial distributions of leaf
area in individual trees to estimate savanna vegeta-
tion structural parameters. Zheng and Moskal [15]
developed circular point cloud slicing to explore the
spatial variation of point density for both azimuthal
angular and radial directions; his result showed that
comprehensive scan combination could fully repre-
sent the canopy structure and structural variation
of the heterogeneous forest stand. Cifuentes et al.
[16] processed the collected 3D point clouds of forest
canopy using fully representative voxel-based and
multiscale models. Moreover, ray tracing algorithms
are designed to transform these discrete PCD into
hemispherical view, in order to assess their impact on
the gap fraction estimates derived from TLS data.

(2) The physical model and forestry formula were applied
to PCD for forestry index calculation. For exam-
ple, the semi-analytic Pgap and Radiative Transfer
(CanSPART) model was designed to predict tree gap
probability (Pgap) profiles. Then, a canopy struc-
ture model based on simple geometric forms and
parameterized with plot-scale statistical biometric
data was used to predict gap probability (Pgap) pro-
files.The experimental result showed that CanSPART
mathematical model performed better in clumped

canopies than a simple exponential model [17].
Another method combining beer laws and using least
square fitting techniques to reconstruct the normal
vectors is presented, so it can indirectly and nonde-
structively retrieve foliage elements’ orientation and
distribution from PCD obtained by using a terres-
trial laser scanning (TLS) approach [18]. Moreover,
Jensen’s inequality and Beer-Lambert law are also
adopted to construct a parametric model for estimat-
ing leaf area density at the voxel scale from TLS data.
Compared with existing ray-tracing algorithms, the
model, involving computational geometry methods,
can retrieve more useful information on forest struc-
ture and leaf area [19].

(3) Computer graphics and computer vision theory were
studied for TLS point cloud processing. To pro-
cess incomplete TLS data sets, some methods based
on a structure-aware global optimization approach
(SAGO) or allometric theory are proposed [20, 21].
These methods obtain the approximate tree skeleton
from a distance minimum spanning tree and define
the stretching directions of the branches on the tree
skeleton. Then, missing branch data are recovered
using different similarity functions and tree skele-
ton is smoothed by employing Laplacian function.
Finally, the additional branches are synthesized and
leaves are added to form the plausible crown geom-
etry. Other researches [22] used a series of cylinders
to build up visible branches, and the major stems in
a relatively dense managed forest could be located
by proposed automatic stem-mapping algorithm. For
the nonvisible branches, crown feature points are
extracted and hierarchical particle flow technique
is designed to synthesize high order branches; thus
visually convincing tree models that are consistent
with scan data are produced and more pieces of
information of scanned leaves can be used for recon-
struction [23].

Although many researchers have done a lot of valuable
work in agriculture or forestry measurement, how to design
an effective and convenient forestry monitoring method to
estimate biomass data of woods is still a research hotspot.
Hemispherical photography (HP), also known as fisheye
or canopy photography, is a technique to estimate solar
radiation and characterize plant canopy geometry using
photographs taken looking upward through an extreme
wide-angle lens [24]. HP entails five steps: photograph
acquisition, digitization, registration, classification, and index
calculation. Registration, classification, and calculation are
accomplished using dedicated hemispherical photography
analysis software. According to the principal of hemispherical
photography, here we designed a new method to calculate
the forestry index from PCD, which also include similar
steps: PCD classification to identify leaf part and branch
part, using hemispherical projection to transform leaf PCD
into HP pattern, and calculation forestry index based on the
PCD in HP pattern. Then, in order to verify the effectiveness
of our new method, we took detailed comparison in many
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Figure 1: Canopy image collection by using fisheye camera.

(a) (b)

Figure 2: Hemispherical photographs of forest canopy.

aspects to illustrate strengths andweaknesses of eachmethod.
The rest of this paper is organized as follows. In the section
of materials and methods, we firstly used full-frame fisheye
camera to capture bottom views of forestry canopy and
designed image segmentation methods to retrieve the gap
fraction and effective LAI of the canopy. Secondly, we used
Leica C10 TLS to scan the same forestry to obtain different
density PCD and meanwhile presented PCD feature extrac-
tion and classification methods to figure out normal vectors
of PCD and leaf inclination angles. Besides, LAI was deduced
from proposed hemisphere projection and application of
forestry mathematical models. In the section of experiments
and results, we compared three methods in many aspects
to illustrate the effectiveness of our TLS-based method and
provide concluding remarks for future work.

2. Data Collection and Analyses

2.1. Using Hemispherical Photography for Forestry Analysis.
We used Canon 5D MARK III full-frame digital single lens

reflex and Canon EF 24–105mm f/4 L fisheye USM Lens
as the tools for capturing high-precision bottom view of
forestry canopy. Figure 1 shows the process of experimental
data collection by our fisheye camera, and the captured
hemispherical photographs of forestry stands are shown in
Figure 2.

We took hemispherical photographs at 10 a.m., so the
photos are affected by sunlight with nonuniform brightness.
This paper presents an image segmentation algorithm with
strategy of adaptive threshold selection to classify pixels of
leaf element from HP denoted by 𝐼fisheye in order to eliminate
errors and occlusion caused by branches and background.
Specific formulas are as follows:

𝐵 (𝑖, 𝑗) = {
0 𝐵 (𝑖, 𝑗) ≥ ave (𝑖, 𝑗) ∗ 𝑒

(ave(𝑖,𝑗)−𝛽
1
)
𝛼1 sky

0 𝐵 (𝑖, 𝑗) < ave (𝑖, 𝑗) ∗ 𝑒
(ave(𝑖,𝑗)−𝛽

2
)
𝛼2 branch,

(1)

ave (𝑖, 𝑗) =
(∑
𝑚

𝑖=1∑
𝑚

𝑗=1 𝑆 (𝑖, 𝑗))

(𝑚 ∗ 𝑚)
, (2)
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(a) (b)

Figure 3: Using TLS to scan trees on our campus.

Figure 4: The forestry PCD obtained by TLS.

where 𝐼fisheye is divided into many small subblocks 𝐵 with
size of 𝑚 ∗ 𝑚, 𝛼1, 𝛽1, 𝛼2, 𝛽2 are regulation factors, and 𝑆 rep-
resents saturation component of each subblock 𝐵. Through
adjustment of ave(𝑖, 𝑗) value, the optimal image segmentation
results of leaf element extraction from HP are achieved.
Consequently, we divide hemispherical photograph 𝐼fisheye
into 𝑛 concentric rings with the same width, as shown in
Figure 2, by red lines, where 𝑛 = 9. Each concentric ring
corresponds to the different solar zenith angle 𝜃.Then we can
calculate canopy gap fraction 𝑇(𝜃) of each solar zenith angle
using the following formula:

𝑇 (𝜃) =
sum (𝐵 (𝑖, 𝑗, 𝜃) == 0)

sum (𝐵 (𝑖, 𝑗, 𝜃) ∼= 111)
. (3)

2.2. Forestry Analysis Based on PCD

2.2.1. Data Collection by TLS. Weused Leica Scan StationC10
to scan the same woods and obtain their PCD for processing.
The specifications ofC10 are described inTable 1, andFigure 3
shows our experiment about tree data acquisition using Leica
C10 scanner.

The scanning PCD of woods are shown in Figure 4. In
order to calculate the effective leaf area index,we firstly design
feature extraction methods to extract leaf PCD from the
whole forestry PCD.

Table 1: The specifications of Leica Scan Station C10.

C10 technical details
Accuracy of single
measurement
[position/distance/angular
(horizontal/vertical)]

6mm/4mm/60𝜇rad/60𝜇rad
(12󸀠󸀠/12󸀠󸀠)

Range 300m @ 90%; 134m @ 18%
albedo (minimum range 0.1m)

Scan resolution

Spot size
From 0 to 50m: 4.5mm
(FWHH-based);
7mm (Gaussian-based)

Point spacing
Fully selectable horizontal and
vertical range; <1mmminimum
spacing

Laser plummet
Laser class: (IEC 60825-1)
Centering accuracy: 1.5mm
Laser dotted diameter: 2.5mm

Laser color Green, wavelength = 532 nm
visible

Environmental lighting Fully operational between bright
sunlight and complete darkness

2.2.2. PCD Features Extraction. Reliable feature extraction
from 3D point cloud data is an important problem in
many application domains, such as reverse engineering,
object recognition, industrial inspection, and autonomous
navigation. Many researchers have proposed many kinds of
algorithms to extract the geometric features from 3D point
cloud data [20, 25]. Tree’s PCDobtained by laser scanner have
properties of both color and space location, but under the
interference of external environment, such as illumination
change and leaf swaying in the wind, the existing features
of PCD, such as leaf, branch, and fruit, are inadequate to
identify different tree organs. Therefore, in this paper new
PCD features of topological structure and tangent space
information are designed for PCD classification.
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2.2.3. Topological Structure of PCD. We denote PCD set by
𝑃, 𝑃 ⊂ 𝑅

3, and 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)
𝑇 is the point that belonged

to set 𝑃. The 𝑘 nearest points of 𝑝𝑖 are denoted by 𝑝
󸀠
𝑗 =

(𝑥𝑗, 𝑦𝑗, 𝑧𝑗)
𝑇 with mean value 𝑢 = (1/𝑘)∑

𝑘

𝑗=1 𝑝𝑗, and the
covariance matrix of points 𝑝𝑖 and its neighbor is defined as
𝐶𝑝 = (1/𝑁)∑

𝑁

𝑗=1(𝑝𝑗 − 𝑢)(𝑝𝑗 − 𝑢)
𝑇. After taking eigenvalue

decomposition, such as 𝐶𝑝
𝑖

V𝑖 = 𝜆𝑖V𝑖, the eigenvalue 𝜆𝑖 =
{𝜆0,𝑖, 𝜆1,𝑖, 𝜆2,𝑖} and eigenvector V𝑖 = {V0,𝑖, V1,𝑖, V2,𝑖} of 𝐶𝑝 are
calculated, where the eigenvalue 𝜆𝑖 quantitatively shows the
data variance along the axis V𝑖 or the compactness of the point
distribution along the axis V𝑖, so the V0,𝑖 corresponding to the
smallest eigenvalue 𝜆0,𝑖 is the normal vector of 𝑝𝑖. Having
got the norm vector of each PCD, we can use the following
formula to calculate the covariancematrix𝑉𝑝

𝑖

of normvector:

𝑉𝑝
𝑖

=
1

𝑁

𝑁

∑

𝑗=1

(V0,𝑗 − V𝑖) (V0,𝑗 − V𝑖)
𝑇
, (4)

where V𝑖 = (1/𝑁)∑
𝑁

𝑗=1 V𝑗 is the average norm vector of
𝑝𝑖’s neighbors. Consequently, we perform singular value
decomposition on 𝑉𝑝

𝑖

to identify the principal components
of 𝑃’s spatial distribution. Specifically, we analyze the relative
magnitudes of the top three eigenvalues 𝑒𝑖 = {𝑒0,𝑖 𝑒1,𝑖 𝑒2,𝑖}

of 𝑉𝑝
𝑖

. We expect 𝑒0,𝑖 ≈ 𝑒1,𝑖 ≈ 𝑒2,𝑖 for isotropic spatial
distributions (corresponding to fruits), 𝑒0,𝑖 ≥ 𝑒1,𝑖 ≈ 𝑒2,𝑖

for predominantly linear distributions (branches), and 𝑒0,𝑖 ≈
𝑒1,𝑖 ≥ 𝑒2,𝑖 for roughly planar distributions (leaves). In brief,
the topological structure of PCD can be represented by 𝑒𝑖 =
{𝑒0,𝑖 𝑒1,𝑖 𝑒2,𝑖}.

2.2.4. Tangent Space Character of PCD. Next, we design algo-
rithm to calculate local tangent space character of PCD and
determine 𝑘 nearest neighbors 𝑝󸀠𝑗 of 𝑝𝑖, 𝑝

󸀠
𝑗 = {𝑝

󸀠
1, 𝑝
󸀠
2, . . . , 𝑝

󸀠
𝑘}.

We assume that a set of data points are sampled from a 𝑑-
dimensional affine subspace; that is,

𝑝
󸀠

𝑗 = c𝑖 +Q𝑖𝜃𝑗 + 𝜀𝑗 (1 ≤ 𝑗 ≤ 𝑘) , (5)

where 𝜀𝑗 ∈ 𝑅
3 represents noise vector, 𝜃𝑗 ∈ 𝑅

𝑑 is projection
coordinates about 𝑝󸀠𝑗 on the local tangent space, and Θ𝑖 =
[𝜃1, 𝜃2, . . . , 𝜃𝑘]. 𝑑 ≤ 3. c𝑖 ∈ 𝑅

3 is the origin coordinates of
the tangent space and Q𝑖 ∈ 𝑅

3×𝑑 is a matrix which forms
an orthonormal basis of the affine subspace. The problem
of linear manifold learning amounts to seek c𝑖,Q𝑖, 𝜃𝑗 to
minimize the reconstruction error 𝐸; that is,

min
c
𝑖
,Q
𝑖
,𝜃
𝑗

𝑘

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑝𝑗 − c𝑖 −Q𝑖𝜃𝑗

󵄩󵄩󵄩󵄩󵄩

2

2
= min

c
𝑖
,Q
𝑖
,Θ

󵄩󵄩󵄩󵄩𝑃 − c𝑖 −QΘ󵄩󵄩󵄩󵄩
2

2
. (6)

The matrix of 𝑝𝑖 neighborhood is denoted by 𝑋𝑖 =

[𝑝
󸀠
1, 𝑝
󸀠
2, . . . , 𝑝

󸀠
𝑘], and we extract local information by calculat-

ing the eigenvectors and eigenvalue of the correlation matrix
(𝑋𝑖 − 𝑝

󸀠

𝑖𝑒
𝑇
)
𝑇
(𝑋𝑖 − 𝑝

󸀠

𝑖𝑒
𝑇
). Here 𝑝󸀠𝑖 = (1/𝑘)∑

𝑘

𝑗=1 𝑝𝑗, and 𝑒 is a
𝑘-dimensional column vector of all ones; that is,

𝑋𝑖 (I −
1

𝑘
11𝑇)𝑋𝑇𝑖 = U𝑖Λ𝑖U

𝑇

𝑖 , (7)

where U𝑖 = [𝑢
1
𝑖 , 𝑢
2
𝑖 , . . . , 𝑢

𝑘
𝑖 ] is orthogonal matrix, and the

diagonal elements of the diagonal matrix Λ𝑖 are monotone
decreasing, so the local tangent space information for the
sample point 𝑝𝑖 is calculated:

c𝑖 =
1

𝑘
X𝑖1,

Q𝑖 = [u1𝑖 , u
2

𝑖 , . . . , u
𝑑

𝑖 ] ,

Θ𝑖 = Q𝑇𝑖 X𝑖 (I −
1

𝑘
11𝑇) .

(8)

From the above derivation, we can calculate the column
vector 𝑢𝑚𝑖 which is corresponding to the smallest diagonal
element of Λ𝑖, and 𝑢

𝑚
𝑖 is also the normal vectors of local

tangent space on 𝑝𝑖.
After the above analysis, a series of features about

each point 𝑝𝑖 are obtained, described as 𝐹𝑝
𝑖

= {V0,𝑖, 𝑒0,𝑖, 𝑒1,𝑖,
𝑒2,𝑖, 𝑢
𝑚
𝑖 }, where V0,𝑖 = (V󸀠𝑖,𝑥, V

󸀠
𝑖,𝑦, V
󸀠
𝑖,𝑧) is the normal vector of

𝑝𝑖, 𝑒0,𝑖, 𝑒1,𝑖, 𝑒2,𝑖 represent the distribution of V0,𝑖, and 𝑢
𝑚
𝑖 are

normal vectors of local tangent space on 𝑝𝑖.

2.3. PCD Classification Using GMM and EM Algorithm.
The scanning PCD data belong to the two semantic classes
(branch and leaf). In this section, we combine Gaussian mix-
ture model (GMM) classifier and expectation maximization
(EM) algorithm to classify forestry PCD.

GMM is a weighted sum of 𝐴 component Gaussian
densities as given by (9),

𝑝 (𝐹𝑝 | 𝜆) =

𝐴

∑

𝑖=1

𝜔𝑖𝑔 (𝐹𝑝 | 𝜇𝑖, 𝜎𝑖) , (9)

where 𝐹𝑝 is a continuously valued data vector of PCD (i.e.,
measurement or features), 𝜔𝑖, 𝑖 = 1, . . . , 𝐴, are the mixture
weights, and 𝑔(𝐹𝑝 | 𝜇𝑖, 𝜎𝑖), 𝑖 = 1, . . . , 𝐴, are the component
Gaussian densities. PCD can be divided into two categories,
which are branch and leaf, respectively, so 𝐴 = 2. Each
component density is a formofGaussian function, withmean
vector 𝜇𝑖 and covariance matrix 𝜎𝑖, and 𝜔𝑖 is the weight
coefficient of each class.The expansion formula of𝑔 is defined
as follows:

𝑔 (𝐹𝑝 | 𝜇𝑖, 𝜎𝑖) =
1

(2𝜋𝜎𝑖)
1/2

⋅ exp {−1
2
(𝐹𝑝 − 𝜇𝑖)

󸀠
𝜎
−1

𝑖 (𝐹𝑝 − 𝜇𝑖)} .

(10)

The mixture weights satisfy the constraint that ∑𝑀𝑖=1 𝜔𝑖 =
1. The complete Gaussian mixture model is parameterized
by the mean vectors, covariance matrices, and mixture
weights from all component densities. These parameters are
collectively represented by the notation, 𝜆 = {𝜔𝑖, 𝜇𝑖, 𝜎𝑖}, 𝑖 =

1, . . . , 𝐴.Then the expectationmaximization (EM) algorithm
is proposed to maximize the likelihood 𝑝(𝐹𝑝 | 𝜆) of the data
𝐹𝑝 drawn from an unknown distribution. In each iterative
process of the algorithm, two steps of EMare executed. Firstly,
estimate the distribution of the hidden variable according
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to the current value of the parameters; secondly, modify the
parameters in order to maximize the joint distribution of the
data and the hidden variable. Specific formula is expressed as
follows:

𝜆
∗
= argmax

𝜆

𝑁
󸀠

∏

𝑗=1

𝐴

∑

𝑘=1

𝜔𝑘𝑔 (𝐹𝑝 | 𝜆) , (11)

where 𝑁
󸀠 represents total number of the calculated PCD.

The output of the GMM and EM generates an independent
classification for each of the 3D PCD based solely upon
PCD’s feature vectors and confirmed in our experiments;
such classification can be quite effective and the different
plant organs are distinguished; thus, the whole PCD can be
divided into two types: branches 𝑃branch and leaves 𝑃leaf.

2.4. Spherical Projection of Classified PCD. In this section,
we convert the segmented woods PCD from Cartesian
coordinate system to spherical coordinate system with a
radius of one, which projects the PCD onto the surface of a
hemisphere. The aim of the stereographic projection was to
project all points from the surface of the upper hemisphere
(3D space) into the projection plane that is a 2D space. For
example, the PCD 𝑃leaf(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) projected onto the spherical
surface would be 𝑃

󸀠
leaf(𝑟𝑖, 𝜑𝑖, 𝜃𝑖), where 𝜑 is azimuth, and

𝜃 is zenith angle. The projection process is computed and
converted using

𝑟𝑖 =
√𝑥
2
𝑖
+ 𝑦
2
𝑖
+ 𝑧
2
𝑖
,

𝜑𝑖 = arctan(
𝑦𝑖

𝑥𝑖

) ,

𝜃𝑖 = arccos(
𝑧𝑖

𝑟𝑖

) .

(12)

After the projection transform, each point 𝑃󸀠leaf(𝑟𝑖, 𝜑𝑖, 𝜃𝑖)
is projected onto the 𝑋-𝑌 plane and the hemispherical
photograph 𝐼󸀠fisheye transformed from PCD is obtained. In the
following section, we use forestry models to calculate canopy
indicators.

3. Canopy Indicator Retrieval

3.1. Gap Fraction and Clumping Index Calculation. Accord-
ing to formula (1) in Section 2.1, the gap fraction𝑇(𝜃) of 𝐼fisheye
and 𝐼󸀠fisheye under different viewing zenith angle is calculated:

𝑇 (𝜃) =
sum (𝐵 (𝑖, 𝑗, 𝜃) == 0)

sum (𝐵 (𝑖, 𝑗, 𝜃) ∼= 111)
,

𝐵 ∈ 𝐼fisheye or 𝐼
󸀠

fisheye.

(13)

Many optical instruments measure canopy gap fraction
based on radiation transmission through the canopy. Assum-
ing random spatial distribution of leaf, the effective LA1
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Figure 5: Leaf inclination angle calculation based on PCD.

can be calculated from the gap fraction by adopting Miller’s
theorem [26] summarized in the following equation:

LAI = 2∫

𝜋/2

0

ln( 1

𝑇 (𝜃)
) cos 𝜃 sin 𝜃 𝑑𝜃. (14)

Discrete integral form of formula (14) is shown as follows:

LAI = 2

𝑛

∑

𝑖=1

ln( 1

𝑇 (𝜃𝑖)
) cos 𝜃𝑖 sin 𝜃𝑖Δ𝜃, (15)

where 𝑛 represented the number of rings which divided the
HP into small sections according to the zenith angle and is
mentioned in Section 2.1. Consequently, the clumping index
Ω can be defined by logarithmic mean value of the gap
fraction, and specific formula is expressed as follows:

Ω (𝜃) =

ln (𝑇 (𝜃, 𝜑))

ln (𝑇 (𝜃, 𝜑))
. (16)

3.2. Leaf Inclination Angle Calculation Based on PCD. The
branch and leaf PCD, denoted by 𝑃branch and 𝑃leaf, are
classified by the method of Section 2. In addition, the normal
vector V0,𝑖 = (V󸀠𝑖,𝑥, V

󸀠
𝑖,𝑦, V
󸀠
𝑖,𝑧) of each leaf point 𝑝𝑖 ∈ 𝑃leaf is

obtained, so the leaf inclination angle 𝛼𝑖 can be described as
the included angle between V0,𝑖 and

󳨀⇀
𝑍 = (0, 0, 1) axis, which

is defined by formula (17) and shown in Figure 5:

𝛼𝑖

= arccos(
(V󸀠𝑖,𝑥 ⋅ 0 + V󸀠𝑖,𝑦 ⋅ 0 + V󸀠𝑖,𝑧 ⋅ 1)

(√(V󸀠
𝑖,𝑥
)
2
+ (V󸀠
𝑖,𝑦
)
2
+ (V󸀠
𝑖,𝑧
)
2
∗ √02 + 02 + 12)

).

(17)
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The average leaf inclination angle 𝛼 can be found by comput-
ing the following equation:

𝛼 =
∑
|𝑃leaf|
𝑖=1

𝛼𝑖
󵄨󵄨󵄨󵄨𝑃leaf

󵄨󵄨󵄨󵄨

, (18)

where |𝑃leaf| is the number of points in the cloud.

3.3. LAI Calculation Based on Ellipsoid Model. Leaf oriented
distribution is a critical component for estimating LAI from
optical measurements. The LAI estimation process is usually
computed based on the following equation which derived
from Beer-Lambert law:

LAI = − ln𝑇 (𝜃) cos (𝜃)
𝐺 (𝜃, 𝛼)

, (19)

where 𝛼 represent average leaf inclination angle, where 𝑇(𝜃)
is the gap fraction defined as the probability of abeam
transmitted through the canopy with an incident angle 𝜃.

The following ellipsoidal distribution function [27] is
chosen for 𝐺(𝜃, 𝛼) in this study for its simplicity and reason-
able generality.𝐺(𝜃, 𝛼) is the extinction coefficient, defined as
the mean projection of unit foliage area on the plane normal
to the direction of the beam and specified as formula (20):

𝐺 (𝜃, 𝛼) =

(𝑥
2
+ tan2𝜃)

1/2
cos 𝜃

𝑥 + (sin−1𝜀1) /𝜀1
, 𝑥 ≤ 1,

𝐺 (𝜃, 𝛼) =

(𝑥
2
+ tan2𝜃)

1/2
cos 𝜃

𝑥 + (1/2𝜀2𝑥) ln [(1 + 𝜀2) / (1 − 𝜀2)]
, 𝑥 > 1,

(20)

where 𝜀1 = (1 − 𝑥
2
)
1/2 and 𝜀2 = (1 − 𝑥

−2
)
1/2. The value of 𝑥 is

related to the vertical 𝑎 and horizontal 𝑏 axes of the ellipsoid
by 𝑥 = 𝑏/𝑎. When 𝑥 = 1 the distribution is spherical (ran-
dom) and 𝐺(𝜃, 𝛼) = | sin 𝜃|. As 𝑥 increases or decreases from
1, the area distribution becomes planophile or erectophile,
respectively [28]. In addition, we used ellipsoidal leaf angle
distribution [29] to describe the relationship between the leaf
orientation and the zenith angle of the radiation. 𝑥 can be
estimated by average leaf orientation:

𝑥 = −3 + (
𝛼

9.65
)

−0.6061

. (21)

If a set of 𝛼 values are assumed to be 𝛼 = {5
∘
, 15
∘
, 25
∘
,

35
∘
, . . .}, we can draw the diagram illustrating the 𝐺(𝜃, 𝛼)

values versus the variation of 𝜃 as shown in Figure 6.
Observed 𝐺(𝜃, 𝛼) appear to be a relatively stable value of 0.5
when 𝜃 ≈ 57

∘, so the LAI can be calculated by the following
formula as 𝜃 is equal to 57.5∘:

LAI =
− ln𝑇 (57.5∘) cos (57.5∘)

𝐺 (57.5
∘
)

. (22)

As mentioned earlier, the average leaf inclination angle 𝛼
can be obtained by (18). Meanwhile, 𝑥 value can be calculated
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Figure 6: Extinction coefficient versus average leaf inclination angle
and beam incident angle.

by using (21), and it follows that the ellipsoidal distribution of
leaf angles can be represented as follows:

𝑃 (𝛼) =
2𝑥
3 sin𝛼

𝜎 (cos2𝛼 + 𝑥2sin2𝛼)2
, (23)

where 𝛼 is the leaf inclination angle and

𝜎 = 𝑥 +

arcsin (√1 − 𝑥2)

√1 − 𝑥2
, 𝑥 < 1,

𝜎 = 𝑥 +

ln (1 + √1 − 𝑥−2) / (1 − √1 − 𝑥−2)

2𝑥√1 − 𝑥−2
, 𝑥 ≥ 1,

𝑥 = −3 + (
𝛼

9.65
)

−0.6061

.

(24)

Using (23), we can calculate PCD angles distribution of
different tree organs, which can be compared with our
method of PCD features extraction. The similar results have
been obtained as shown in Figures 8(c) and 8(h).

3.4. LAI Retrieval by Iterative InversionMethod. By substitut-
ing (20) and (21) into (19), we can get

𝑇sim (𝜃) = 𝑒
𝜏
,

𝜏 =
LAI√𝑥2 + tan2𝜃

𝑥 + (sin−1√1 − 𝑥2/√1 − 𝑥2)

,

𝑥 = −3 + (
𝛼

9.65
)

−0.6061

.

(25)

Supposing the initial values of LAI, 𝛼 and 𝜃 are known,
and the simulative gap fraction 𝑇sim(𝜃) can be obtained by
(25). Meanwhile, we have got canopy gap fraction 𝑇(𝜃) of
each solar zenith angle 𝜃 using formula (3). Consequently, we
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adjust the value of LAI and 𝛼 to satisfy the minimization of
(26) and thus the appropriate quantity of LAI and 𝛼 that can
be obtained as the ideal results of the forestry indicators:

(LÂI, 𝛼̂) = argmin
𝐴,𝛼

∑

𝜃

(𝑇 (𝜃) − 𝑇sim (𝜃))
2
. (26)

3.5. LAI Estimation Based on the Clumping Index. Another
expression form of formula (19) can be written as

LAIt ⋅ Ω = LAI = − ln𝑇 (𝜃) cos (𝜃)
𝐺 (𝜃, 𝛼)

, (27)

where LAIt is the true leaf area index and Ω is the clumping
index [30]. Specific formula is as follows:

LAIt = LAI
Ω

, (28)

Ω (𝜃) =

ln (𝑇 (𝜃, 𝜑))

ln (𝑇 (𝜃, 𝜑))
. (29)

Through calculating the logarithmic mean of gap frac-
tion, we can get clumping index Ω and true leaf area index
LAIt.

4. Experimental Results

4.1. Experimental Setup. There is a dense forest behind
Nanjing Forestry University, and we randomly chose stand
sample plots in this forestry as the experimental subject.
Then, the experiment was set up at this sample plot with
some tree species such as Pterocarya stenoptera C. DC, Sect.
Leucoides Spach, and Sophora japonica Linn.We, respectively,
used three devices such as TLS, fisheye camera, and LAI-
2200 plant canopy analyzer [31] to scan the same trees
at fixed position and fixed angle of 90 degrees, just as
shown in Figure 7(a). Forestry field measurements were
performed sequentially for the many plots to capture the
canopy structural dynamics. All instruments were newly
procured and factory calibrated. All optical measurements
were conducted near sunset or under overcast conditions
because the parameter sensitivity and the retrieval errors
increase under direct illuminations. Meanwhile, we adopted
our methods to compute leaf area index, mean tilt angle,
canopy gap fraction, and so forth from obtained data and
compared all the results.

4.2. Experiment Using Fisher Eye Camera. We took hemi-
spherical photographs of the forestry canopy by fisheye lens
and Canon 5d (Mark III) camera and used our algorithm to
process the image in order to calculate the relevant forestry
indexes. The specific details are as follows.

In Figure 7, (b) is the hemispherical photograph taken
by our devices. After our image processing algorithm, the
result is shown in (c) that branch and background pixels
are removed. The gap fraction versus different zenith angle,
illustrated by red lines in (d), is calculated from 12 different
hemispherical photographs of the same forestry canopy.

Meanwhile, we also used LAI-2200 to measure the gap
fraction at 5 zenith angles such as 7∘, 23∘, 38∘, 53∘, and 68

∘,
which basically coincided with the results of HP and is shown
by blue lines. If we change the number of concentric rings of
the HP, the value of variable 𝑛 changes from 9 to 288, and the
corresponding gap fraction results of the same HP are shown
in (e).

4.3. Experiment Using TLS. This trial used TLS to capture
PCD of forest stand and adopted classification and projection
algorithm as originally proposed by us to calculate canopy
indexes. In addition, we adopted LAI-2200 to calculate
parameters of the same forest stand and compared the results
of various sampling plots obtained by these devices. The
specific details are illustrated in Figure 8.

Figure 8(a) shows the scanned PCD of the same forest
plot. (b) shows the classification result of our algorithm
that divides the PCD into two class: leaf and branch. (c) is
leaf angle distribution diagram, in which yellow and green
histograms, respectively, represent leaf and branch angle
distribution of dense PCD, and blue and red histograms,
respectively, represent leaf and branch angle distribution of
sparse PCD. The inclination angle of leaf PCD presents uni-
formdistribution, but branch point shows vertical properties,
so the number of branch points in cloud gradually increased
as the angle approaches 90 degrees. The forestry PCD after
classification is projected onto the hemisphere coordinates
(Figure 8(d)) and hemisphere plane (Figure 8(e)). By using
image segmentation method to process Figure 8(e), we can
get the corresponding gap fraction values versus the variable
of zenith angle, which is shown in (f). Comparison diagram
(g) depicts calculated gap fraction versus different zenith
angel with three methods: hemispherical photography, ter-
restrial laser scanning, and LAI-2200 plant canopy analyzer.
While zenith angle varies at the range from 30 to 90 degrees
(labeled by green dotted lines and most relevant to LAI
estimation), we can find that the gap fraction obtained by
these three methods got the same results. The calculation
results of formula (23) are displayed by (h), which depicts
inclination angle distribution of branch and leaf PCD, and
the shapes of these curves are similar to the histogram
distribution in (c). By substituting (3) and (20) into (19), (i)
illustrates the result of LAI values obtained from PCD. In all
six PCD types, a range of high, medium, and low densities
was recorded, which reflects the variation of LAI estimation
using our methods. When the zenith angle varies within the
range from 40 to 70 degrees, the LAI value estimated by
terrestrial laser scanning method tended to be similar to the
result of hemispherical photography method and LAI-2200
device, as labeled by red dotted lines and red pentagram in
(i), respectively. In order to reflect the statistical testing of
our work, we adopted sampling strategy that allows us to
gain information about a site without looking at every plot
in the forestry. Sampling involves taking measurements on
some small plots that are representative of the larger study
area and using the data to represent the entire study area.
By locating quadrats using random or stratified sampling,
we simultaneously chose other plots in the forestry and used
the threemethods to obtain each quadrat’s index. Comparing
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Figure 7: Calculation of canopy gap fraction from hemispherical photographs.

with LAI retrieved from different optical methods, we drew
Figure 8(j) to show a very good relationship among the LAI
values estimated using HP and PCD methods (𝑅2 = 0.7052,
RMSE = 0.1323). A good relationship between the LAI-2200
5-ring and PCD (𝑅2 = 0.5742, RMSE = 0.1590) can also be
observed in Figure 8(k).

4.4. Experimental Result Analysis. Using our three methods,
hemispherical photography, LAI-2200 plant canopy analyzer,
and terrestrial laser scanning, the experimental results are
obtained and summarized in Tables 2–5. In Tables 2 and 5, the
total parameters of the same forest stand are estimated from
HP and PCD projection image, combining with theoretical
approaches mentioned above, such as Miller’s method (equa-
tion (14)), Iterative inversion method (equation (26)), LAI
calculation according to single zenith angle (equation (22)),
and canopy clumping index calculation by (29). In addition,
we examine the effect of our results on the calculation
accuracy with LAI-2200 plant canopy analyzer (Table 4).

Judging by these tables and Figures 8(j) and 8(k), it can be
found that the three methods get similar results of measuring
forestry stand, as labeled by digits in bold. Conversely, we
also find that each method has its own disadvantages. Firstly,
the hemispherical photography based gap fraction estimation
method will be affected by the light environment in the
forest stands and camera exposure index. For example, cloudy
skies are ideal light conditions for digital hemispherical
photograph to differentiate foliage elements from the sky
background and branch elements of hemispherical pho-
tographs. Considering the effectiveness of LAI-2200 device,
one of the traditional underlying assumptions has been that
foliage absorbs all the radiation in the blue waveband seen by
the sensor (320–490 nm). This is usually a good assumption
under diffuse light conditions such as uniform overcast, just
before sunrise, or just after sunset. In direct sunlight, however,
reflectance of foliage causes a much greater overestimation
of the gap fraction and underestimation of leaf area index,
so the mechanism for correcting measurements for the radi-
ation reflected and transmitted by the foliage is necessarily
dependent when the scattering errors are the highest. In
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Figure 8: Continued.
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Figure 8: Canopy parameter calculation based on the laser PCD.

short, results measured by LAI-2200 still have deviation and
depend on artificial correction, whereas, the TLS-based gap
fraction estimation method using laser can work in both
cloudy and sunny light conditions. The measurement errors
of TLS are affected by the density of the sampling points and
size of laser beam spot, as well as the accuracy of classification
algorithm for leaf and branch PCD recognition. Secondly,
combining with salient feature extraction from PCD, the
PCD can be applied not only to estimate the gap fraction
by spherical projection method but also to estimate leaf
inclination angle from normal vector calculation of PCD. In
addition, terrestrial laser scanning method can estimate the
LAI from a 3D perspective and permanently record the 3D
structural information of forest canopy.Thirdly, the abundant
information implicitly contained within the PCD generated
using TLS could provide more information about the canopy
structure besides LAI. This includes timber volume, leaf
area density, leaf morphology, carbon content, and canopy

volume. The additional information will enhance our ability
to monitor forest tree structure from a 3D perspective
dynamically, which could provide useful data for the long-
term ecological studies.

5. Conclusions and Future Work

In order to nondestructively estimate the forestry indicators
of heterogeneous canopies, we used three methods, hemi-
spherical photography, LAI-2200 plant canopy analyzer, and
terrestrial laser scanning, to acquire high dimensional data
of forestry stand from different perspectives. In addition,
combining with forestry empirical models, we design geo-
metrical projection methods, PCD classification, and image
segmentation algorithm to estimate parameters of forestry
stand. Our results have shown that the TLS could be used
to estimate LAI for heterogeneous forests at forest plot level
without the restriction of the light environment. Meanwhile,
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Table 2: LAI calculation based on hemispherical photography.

Data Gap fraction of 57∘ degrees LAI Canopy clumping index
Miller’s method Iterative inversion method Equation (22) of singe angle

HP 1 0.2132 1.4893 1.7204 1.6606 0.9338
HP 2 0.1802 1.4924 1.7261 1.8416 0.9375
HP 3 0.1746 1.4813 1.7067 1.8755 0.9406
HP 4 0.1990 1.4860 1.6993 1.7346 0.9304
HP 5 0.1954 1.4828 1.7158 1.7544 0.9277
HP 6 0.1970 1.4822 1.7099 1.7460 0.9269
HP 7 0.1696 1.4493 1.6663 1.9070 0.9412
HP 8 0.1647 1.4716 1.6976 1.9382 0.9354
HP 9 0.1699 1.4623 1.6744 1.9047 0.9374
HP 10 0.1694 1.4829 1.6998 1.9079 0.9319
HP 11 0.1741 1.4876 1.7117 1.8786 0.9295
HP 12 0.1699 1.4696 1.6992 1.9046 0.9343

Table 3: Average leaf inclination angle calculation based on PCD.

Experimental data Average inclination
angle of branch PCD

Average inclination
angle of leaf PCD

Medium-density PCD1 59.5360 degrees 54.5971 degrees
High-density PCD1 58.2641 degrees 54.2190 degrees
Low-density PCD1 67.9814 degrees 53.4913 degrees
Medium-density PCD 2 58.4761 degrees 54.1445 degrees
Low-density PCD 2 58.7912 degrees 54.1732 degrees
High-density PCD 2 69.5972 degrees 53.8981 degrees
Average inclination angle 62.1077 degrees 54.0872 degrees

Table 4: Parameters obtained by LAI-2200.

Case Mean leaf inclination angle Diffusion noninterception LAI and standard deviation
1 49.536 degrees 0.184 1.938 ± 0.22
2 52.732 degrees 0.233 2.105 ± 0.14
3 51.130 degrees 0.211 1.921 ± 0.19
4 52.178 degrees 0.194 2.224 ± 0.20
5 50.791 degrees 0.207 1.883 ± 0.17
6 49.870 degrees 0.193 2.001 ± 0.12

Table 5: LAI calculation based on PCD.

PCD data Gap fraction of 57
degrees

LAI Canopy
clumping indexMiller’s method Iterative inversion method Equation (22) of singe angle

Low-density PCD1 0.3460 1.2169 1.2887 1.1661 0.9778
Medium-density PCD1 0.1393 2.2692 2.4095 2.2092 0.9296
High-density PCD1 0.1283 2.4099 2.6309 2.3559 0.9138
Low-density PCD2 0.3438 1.2224 1.3383 1.1662 0.9761
Medium-density PCD2 0.1894 1.9356 2.1179 1.8581 0.9557
High-density PCD2 0.1184 2.4654 2.6572 2.3485 0.9328
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we are able to demonstrate relationships between HP, LAI-
2200, and TLS for canopy index estimation. The relationship
also suggests that TLS could serve as a calibration tool
for HP-based and airborne LiDAR-based LAI estimation.
In the future work, we will adopt LiDAR, high spectral
radiometer and tracing radiation canopy architecture ana-
lyzer, and TLS to comprehensively obtain forestry stand
data with forestry-related calculation model proposed to
estimate forestry parameters. As further development of these
tools and methods for extracting biophysical and ecological
parameters from TLS data sets, long-term forest ecosystem
monitoring will benefit from repeatable techniques assuring
data for sustainable forest management practices.
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