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This paper presents a novel distributed control method that adapts the structures subjected to traveling loads. The adaptation is
realized by changes of the damping of the structure’s supports. The control objective is to provide smooth passage of vehicles and
to extend the safe life-time of the carrying structures. The results presented in the previous works of the author exhibited high
performance of supports with an open-loop switching damping policy. In this paper, the goal is to develop a state feedback strategy
that is significantly less sensitive to the system parameters and much simpler for practical implementation. Further efforts are put
into designing a distributed controller architecture, where only the local and the relevant neighboring states are used to compute
the control decisions. The proposed controller is validated experimentally. It exhibits high performance in a wide range of travel
speeds. The practicality of the proposed solution should attract the attention of practicing engineers.

1. Introduction

Problems of structures subjected to loads traveling with
high velocity are of special interest for practicing engineers.
Numerous analytic and numerical solutions are being applied
to solve the problems of transportation and robotic systems
with single or multipoint interactions, such as train-track,
vehicle-bridge, or effector-guideway.These problems concern
the high vibration levels of both the structures and the
traveling objects, due to continually increasing speeds and
load carrying capacity requirements. The construction of
new railway tracks or bridges with a sufficiently higher load
carrying capacity and ability to withstand dynamical stresses
and strains is usually limited by costs. On the other hand, a
static strengthening increases the structure’smass and is often
restricted for technological reasons. To face the undesired
vibration effects, a variety of control systems acting on both
the structures and the suspension of the traveling loads have
been proposed and put into practice.

A common objective in structural control is to enhance
the stability of the systems subjected to impulsive or periodic
excitation. The first group of control methods, referred to as
the active methods, is based on force actuators. An active

controlmethod to control the beam vibrations via linear force
actuators is presented, for example, in [1]. A similar control
problem, adapting a piezoelectric layer, was considered in
[2]. An actively controlled beam subjected to a harmonic
excitation was presented in [3]. An actively controlled string
system was considered in [4]. Interesting results on the
control of a cantilever beam by the use of electromagnetic
actuators can be found in [5]. In the active methods in
structural control we can also include the control of the
track’s shape. In [6], the authors developed an approach that
uses active smart sleepers that enable the track to shift up
and down. The objective was to minimize the deflection of
the track. In [7], the authors suggested an active control
method based on the linear quadratic regulator to suppress
the vibration of bridges.

A recent trend is to replace force actuators with semiac-
tivemagnetorheological dampers.These solutions are usually
less efficient. However, they attract engineers’ interest, due to
their significantly lower power consumption. They are also
safer in the case of a control system failure. Unlike active
systems, the semiactive ones based on controlled dampers
can be always switched to passive mode, providing system
stability. One of the first concepts of the semiactive control
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in mechanical systems was proposed by Karnopp, Crosby,
and Harwood. In [8], they presented the idea of stabilizing
of the oscillator with one degree of freedom moving upon
uneven ground. The algorithm developed by the authors,
“Skyhook,” is today one of the most widely used ones in
suspension control systems for vehicles.The idea was initially
designed to improve the comfort of passengers. Later, similar
control method was adopted to the oscillator moving upon
carrying structures. Extensive results were demonstrated
in [9, 10]. Controlled dampers are incorporated also for
seismic isolation. Interesting results can be found in [11, 12].
In [13], the authors proposed to control both the stiffness
and damping parameters. The control decision led to the
maximum dissipation of energy.

The use of semiactive supports for a structure subjected
to a moving load was first proposed in [14]. By means of
numerical simulations, the authors demonstrated that, for a
wide range of travel velocities, switching damping strategies
outperform standard passive solutions. The idea was later
extended in [15, 16], where by introducing a rigorous analysis
and optimization techniques the authors concluded that even
one switching action for each damper can provide very
smooth load passages. A metric corresponding to the total
deflection of the load trajectory from the desired straight
line was reduced by up to 50 percent. The drawbacks of
the proposed method lie in its complicated implementation
and high sensitivity to system uncertainties. As the authors
demonstrated, in order to provide a desired performance,
open-loop switched solutions need to be recomputed every
time we expect a different travel speed.

This paper proposes a novel control method to reduce the
vibration levels of carrying structures subjected to moving
loads. The method is dedicated to the applications to large
scale structures like bridges and overpasses subjected to
traveling trains as well as to robotic guideways subjected to
effectors performing technological processes, for example,
cutting, bonding, or painting. The control objective is to
provide a smooth passage of the traveling load and to extend
the safe life-time of the carrying structures. The proposed
control strategy is based on the optimal centralized open-
loop solutions presented in [15, 16], but due to a distributed
controller architecture and a state feedback control law, it is a
lot more practical and robust.

For the distributed controller, we will impose the fol-
lowing requirements: functional symmetry in the controller’s
structure, theminimumcomputational burden, and informa-
tion exchange. The symmetry will be achieved by splitting
the controller intomodules realizing the same computational
procedures. The modular type of architecture is convenient
for system assembly and maintenance. Each of the modules
will compute its control decision by using local state informa-
tion and the average state of the whole structure. The aver-
age state will be reconstructed by exchanging information
between the neighboring controllers. The final tuning of the
controller was done by solving a corresponding optimization
problem. Then, a series of experiments on a physical model
of a controlled guideway was performed. As will be demon-
strated, the proposed controlmethod provides a performance
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Figure 1: A span supported by set of controlled dampers and
subjected to a mass travelling at speed V(𝑡).

that is comparable with the optimal centralized solutions, and
it is robust to changes in the speed of the traveling load.

The rest of this paper is structured as follows. A math-
ematical model of a carrying structure supported with a set
of controlled dampers and subjected to a traveling load is
presented in Section 2. Section 3 introduces the distributed
controller architecture and defines the local control laws.
The distributed averaging problem is studied in Section 4. In
Section 5, an explicit procedure for the controller implemen-
tation is given. In Section 6, a method for finding an optimal
parameter of the controller is presented. Finally, the results
of experimental tests of the performance of the designed
controller will be presented in Section 7.

2. Investigated System

In this section, we will introduce a mathematical represen-
tation of a carrying structure supported by set of controlled
dampers, illustrated in Figure 1. This representation will be
used in the final tuning of the proposed controller (see
Section 6).

For themodel of the span, we will use the Euler-Bernoulli
beam equation, which is broadly applied to thin elastic bodies
subjected to small deflections. A beam of the total length 𝑙
is characterized by the bending stiffness 𝐸𝐼 and density per
unit length 𝜇. A set of controlled supports are located at the
positions 𝑎

𝑖
. For each of the supports, we assume a controlled

damping 𝑢
𝑖
and/or a fixed stiffness 𝑘

𝑖
. The beam is subjected

to a mass 𝑚 travelling at the time-varying velocity V = V(𝑡)
that is assumed to be given. Position of the mass is denoted
by 𝑥
𝑚
(𝑡) and computed by using

𝑥
𝑚 (𝑡) = ∫

𝑡

0

V (𝑡) 𝑑𝑡. (1)

Denoting the transverse deflection of the span by 𝑤(𝑥, 𝑡), the
system is governed by

𝐸𝐼
𝜕4𝑤 (𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑤 (𝑥, 𝑡)

𝜕𝑡2

= −

𝑚

∑
𝑖=1

(𝑘
𝑖
𝑤 (𝑎
𝑖
, 𝑡) + 𝑢

𝑖

𝜕𝑤 (𝑎
𝑖
, 𝑡)

𝜕𝑡
) 𝛿 (𝑥 − 𝑎

𝑖
)

− 𝑚(𝑔 +
𝜕
2
𝑤 (𝑥
𝑚 (𝑡) , 𝑡)

𝜕𝑡2
)𝛿 (𝑥 − 𝑥

𝑚 (𝑡)) .

(2)
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The endpoint supports impose the following boundary con-
ditions:

𝑤 (0, 𝑡) = 0,

𝑤 (𝑙, 𝑡) = 0,

(
𝜕2𝑤

𝜕𝑥2
)
|𝑥=0

= 0,

(
𝜕2𝑤

𝜕𝑥2
)
|𝑥=𝑙

= 0.

(3)

For the initial conditions, we assume

𝑤 (𝑥, 0) = 0,

�̇� (𝑥, 0) = 0.
(4)

The left-hand side of (2) consists of the standard terms of the
Euler-Bernoulli equation corresponding to the potential and
inertial forces of the beam. The first two terms of the right
hand side stand for the reactions of the controlled supports.
The last terms correspond to the excitation of the moving
load. For this excitation, we take into account both gravity
and the inertial force.The latter is often ignored for large scale
structures. For the systems where the masses of the span and
moving load are comparable (e.g., maglev trains, robotics),
the inertial force of the moving mass plays a key role in the
dynamics (see [17, 18]).

2.1. ODE Representation. For the sake of further studies we
will now represent (2) as a set of the ordinary differential
equations. Let us first introduce the orthogonal basis

𝜃
𝑗
(𝑥) = sin(

𝑗𝜋𝑥

𝑙
) , 𝑗 = 1, 2, . . . . (5)

It clearly fulfils the boundary conditions (3). For such a basis,
a solution of (2) can be represented as follows:

𝑤 (𝑥, 𝑡) =
2

𝑙

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥) . (6)

By inserting (6) into (2), we obtain

2𝐸𝐼

𝑙

𝜕4

𝜕𝑥4
(

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥)) +

2𝜇

𝑙

⋅
𝜕
2

𝜕𝑡2
(

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥)) = −

2

𝑙

𝑚

∑
𝑖=1

𝑘
𝑖

⋅

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑎
𝑖
) 𝛿 (𝑥 − 𝑎

𝑖
) −

2

𝑙

⋅

𝑚

∑
𝑖=1

𝑢
𝑖

𝜕

𝜕𝑡
(

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑎
𝑖
))𝛿 (𝑥 − 𝑎

𝑖
)

− 𝑚[

[

𝑔 +
𝜕2

𝜕𝑡2
(
2

𝑙

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥
𝑚 (𝑡)))

]

]

⋅ 𝛿 (𝑥 − 𝑥
𝑚 (𝑡)) .

(7)

Now each term of (7) is multiplied by

𝜃
𝑗 (𝑥) = sin(

𝑗𝜋𝑥

𝑙
) (8)

and then integrated with respect to 𝑥 over the interval [0, 𝑙].
This results in the following weak formulation:

2

𝑙

∞

∑

𝑗=1

[𝐸𝐼(
𝑗𝜋

𝑙
)

4

𝑉
𝑗
(𝑡) + 𝜇�̈�

𝑗
(𝑡)]∫

𝑙

0

𝜃
𝑗
(𝑥) 𝜃𝑗 (𝑥) 𝑑𝑥

= −
2

𝑙

𝑚

∑
𝑖=1

∞

∑

𝑗=1

𝑘
𝑖
𝑉
𝑗
(𝑡) ∫
𝑙

0

𝜃
𝑗
(𝑎
𝑖
) 𝜃
𝑗 (𝑥) 𝛿 (𝑥 − 𝑎𝑖) 𝑑𝑥

−
2

𝑙

𝑚

∑
𝑖=1

∞

∑

𝑗=1

𝑢
𝑖
�̇�
𝑗
(𝑡) ∫
𝑙

0

𝜃
𝑗
(𝑎
𝑖
) 𝜃
𝑗 (𝑥) 𝛿 (𝑥 − 𝑎𝑖) 𝑑𝑥

− 𝑚𝑔∫
𝑙

0

𝜃
𝑗 (𝑥) 𝛿 (𝑥 − 𝑥𝑚 (𝑡)) 𝑑𝑥 −

2𝑚

𝑙

⋅
𝜕2

𝜕𝑡2
(

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥
𝑚 (𝑡)))

⋅ ∫
𝑙

0

𝜃
𝑗 (𝑥) 𝛿 (𝑥 − 𝑥𝑚 (𝑡)) 𝑑𝑥.

(9)

Note that (9) must hold for every 𝑗 = 1, 2, . . .. Nowwe can use
the orthogonality condition for the 𝜃 functions; that is,

∫
𝑙

0

𝜃
𝑗
(𝑥) 𝜃𝑗 (𝑥) 𝑑𝑥 =

𝑙

2
𝛿
𝑗,𝑗
. (10)

Here, 𝛿
𝑗,𝑗

stands for the Kronecker delta. By using the sifting
property of the Dirac delta function, we can also give explicit
formulas for the terms:

∫
𝑙

0

𝜃
𝑗
(𝑎
𝑖
) 𝜃
𝑗 (𝑥) 𝛿 (𝑥 − 𝑎𝑖) 𝑑𝑥 = 𝜃𝑗 (𝑎𝑖) 𝜃𝑗 (𝑎𝑖) ,

∫
𝑙

0

𝜃
𝑗 (𝑥) 𝛿 (𝑥 − 𝑥𝑚 (𝑡)) = 𝜃𝑗 (𝑥𝑚 (𝑡)) .

(11)
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Thus, (9) can be written as follows:

𝜇

∞

∑

𝑗=1

�̈�
𝑗
(𝑡) 𝛿
𝑗,𝑗
+ 𝐸𝐼

∞

∑

𝑗=1

(
𝑗𝜋

𝑙
)

4

𝑉
𝑗
(𝑡) 𝛿
𝑗,𝑗

= −
2

𝑙

𝑚

∑
𝑖=1

∞

∑

𝑗=1

(𝑘
𝑖
𝑉
𝑗
(𝑡) + 𝑢𝑖�̇�𝑗 (𝑡)) 𝜃𝑗 (𝑎𝑖) 𝜃𝑗 (𝑎𝑖)

− 𝑚𝑔𝜃
𝑗
(𝑥
𝑚 (𝑡))

−
2𝑚

𝑙

𝜕
2

𝜕𝑡2
(

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥
𝑚 (𝑡))) 𝜃𝑗 (𝑥𝑚 (𝑡)) ,

𝑗 = 1, 2, . . . .

(12)

It still remains to compute the second time derivative of
∑
∞

𝑗=1
𝑉
𝑗
(𝑡)𝜃
𝑗
(𝑥
𝑚
(𝑡)). An explicit formula for this derivative is

given below:

𝜕2

𝜕𝑡2
(

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥
𝑚 (𝑡)))

=

∞

∑

𝑗=1

�̈�
𝑗
(𝑡) 𝜃
𝑗
(𝑥
𝑚 (𝑡))

+

∞

∑

𝑗=1

2𝑗𝜋

𝑙
�̇�
𝑗
(𝑡) 𝜙
𝑗
(𝑥
𝑚 (𝑡)) V (𝑡)

+

∞

∑

𝑗=1

𝑗𝜋

𝑙
𝑉
𝑗
(𝑡) 𝜙
𝑗
(𝑥
𝑚 (𝑡)) V̇ (𝑡)

−

∞

∑

𝑗=1

𝑗
2

𝜋2

𝑙2
𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥
𝑚 (𝑡)) (V (𝑡))

2
.

(13)

Here, we use the notation 𝜙
𝑗
(𝑥
𝑚
(𝑡)) = cos(𝑗𝜋𝑥

𝑚
(𝑡)/𝑙).

Regarding only these terms in (12)where theKronecker deltas
are not equal to zero, we can finally rewrite (2) as follows:

𝑤 (𝑥, 𝑡) =
2

𝑙

∞

∑

𝑗=1

𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥) ,

𝜇�̈�
𝑗 (𝑡) + 𝐸𝐼 (

𝑗𝜋

𝑙
)
4

𝑉
𝑗 (𝑡)

= −
2

𝑙

𝑚

∑
𝑖=1

∞

∑

𝑗=1

(𝑘
𝑖
𝑉
𝑗
(𝑡) + 𝑢𝑖�̇�𝑗 (𝑡)) 𝜃𝑗 (𝑎𝑖) 𝜃𝑗 (𝑎𝑖)

− 𝑚𝑔𝜃
𝑗
(𝑥
𝑚 (𝑡))

−
2𝑚

𝑙

∞

∑

𝑗=1

�̈�
𝑗
(𝑡) 𝜃
𝑗
(𝑥
𝑚 (𝑡)) 𝜃𝑗 (𝑥𝑚 (𝑡))

−
4𝑚

𝑙

∞

∑

𝑗=1

𝑗𝜋

𝑙
�̇�
𝑗
(𝑡) 𝜙
𝑗
(𝑥
𝑚 (𝑡)) 𝜃𝑗 (𝑥𝑚 (𝑡)) V (𝑡)

−
2𝑚

𝑙

∞

∑

𝑗=1

𝑗𝜋

𝑙
𝑉
𝑗
(𝑡) 𝜙
𝑗
(𝑥
𝑚 (𝑡)) 𝜃𝑗 (𝑥𝑚 (𝑡)) V̇ (𝑡)

+
2𝑚

𝑙

∞

∑

𝑗=1

𝑗
2

𝜋2

𝑙2
𝑉
𝑗
(𝑡) 𝜃
𝑗
(𝑥
𝑚 (𝑡)) 𝜃𝑗 (𝑥𝑚 (𝑡)) (V (𝑡))

2
,

𝑗 = 1, 2, . . . .

(14)

The initial condition is now given by

𝑉
𝑗 (0) = 0,

�̇�
𝑗 (0) = 0,

𝑗 = 1, 2, . . . .

(15)

2.2. State-Space Representation, Control Bounds. From (14)
we can observe that, at each time instant, the state of
the system is fully characterized by the sets {𝑉

𝑗
(𝑡)} and

{�̇�
𝑗
(𝑡)}. Throughout the rest of the paper, we will rely on an

approximated representation of (14) by taking 𝑗 from 1 to
𝑛 = 10. The assumed ten modes are sufficient to render the
dynamics of span while keeping the size of the system eligible
for efficient optimization.

By introducing the state vector 𝑦 ∈ R2𝑛 such that

𝑦 (𝑡)

= [𝑉
1 (𝑡) , �̇�1 (𝑡) , 𝑉2 (𝑡) , �̇�2 (𝑡) , . . . , 𝑉𝑛 (𝑡) , �̇�𝑛 (𝑡)]

𝑇

,

(16)

we can represent (14) by the following time-varying bilinear
system:

̇𝑦 = 𝐴 (𝑡) 𝑦 +

𝑚

∑
𝑖=1

𝑢
𝑖
𝐵
𝑖 (𝑡) 𝑦 + 𝐹 (𝑡) ,

𝑦 (0) = 0.

(17)

Here, the matrices 𝐴 and 𝐵 are mainly built upon the eigen-
functions 𝜙 and 𝜃, while the excitation vector 𝐹 collects the
terms related to the force of gravity (for detailed structures see
[19]). For the controls, we assume that each one is bounded
by two positive values corresponding to the minimum and
maximum admissible damping coefficients; that is,

𝑢 ∈ U = [𝑢min , 𝑢max ]
𝑚
⊂ R
𝑚

+
. (18)

3. Control Design

The goal of this section is to introduce a distributed state
feedback control law for system (17). First, let us characterize
the distributed controller architecture.

3.1. Distributed Controller Architecture. For each of the con-
trolled supports, we will now associate a local state as
illustrated in Figure 2. The control decision 𝑢

𝑖
, together with
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um

w1 w2 w3 wm

ui = ui(t) —local control decision
Si = (wi, ui)—local subsystem

u3u2u1

· · ·

· · ·

wi = { }w(ai, t), (ai, t) —local statew
.

Figure 2:A controlled beam represented as a set of local subsystems.

Central
computer

S1 S2 S3 Sm· · ·

u1
u2

u3
um

w1
w2

w3

wm

Figure 3: Centralized controller architecture. The whole system is
managed by a central computer.

the associated state𝑤
𝑖
= {𝑤(𝑎

𝑖
, 𝑡), �̇�(𝑎

𝑖
, 𝑡)}, will be referred to

as the subsystem and be denoted by 𝑆
𝑖
.

For such representation, a centralized controller architec-
ture can be visualized as shown in Figure 3. All accessible
states are first transferred to a central computing unit. Based
on the given information, the unit takes a decision that is
sent to all control devices. In a distributed architecture, we
assume that each of the local subsystems is managed by its
own computing unit, as depicted in Figure 4.That, practically,
means that every local computer is allowed to measure only
its local state and send a control signal to a corresponding
local control device. Note that, due to the coupled dynamics,
each of the local decisions affects the whole system. Thus,
a controller relying only on the local states may lead to
undesired states. To improve performance and to provide
robustness, a distributed controller allows local computers to
exchange some information. In our setting, we assume that
computers 1 to𝑚−1 send their state information to their right
neighbors, while computer𝑚 delivers the state to computer 1.
The assumed communication topology will be later used for
solving the distributed averaging problem.

The proposed distributed architecture is modular and has
functional symmetry; that is, each of the local controllers
can be seen as a module realizing the same procedure. This
type of architecture is convenient for system assembly and
maintenance, in particular for large scale structures. In the
case of failure, only the malfunctioning module needs to be
replaced. In addition, such a modular decentralization plays
an important role in safety. Suppose there is a malfunction
of the central computer. An incorrect signal is then sent
to the whole system. In a modular controller architecture,
this risk is reduced to local failures. For an executive com-
ponent of a proposed module, one can consider a rotary
magnetorheological damper equipped with an encoder (see
http://www.lord.com/).

Local

u1 u2 u3 umw1
w1 w2

w2 w3
w3

wm

wm

wm−1

computer
Local

computer
Local

computer
Local

computer

S1 S2 S3 Sm· · ·

· · ·

Figure 4:Distributed controller architecture.The system is operated
by a set of local computers allowed to exchange state information.

3.2. Distributed Control Law. Under the assumed distributed
architecture, wewill nowdesign a control law to be performed
by each of the local controllers. The first requirement is that
this control law is based on the accessible state information
and can be implemented in real-time. We also require that
the resulting closed-loop system is robust in the sense that it
is not sensitive to small changes of the system parameters, in
particular changes in the velocity of the moving load. This is
of special importance for structures subjected to vehicles for
which we can naturally expect various speeds. The common
control objective is to reduce the vibration levels of the
structure, as well as to provide a smooth straight line passage
for the traveling load.

The control law introduced in this work is heuristic.
However, it arises from the analysis on the system dynamics
as well as the optimal solutions studied in [15, 16, 19, 20]. The
idea of a straight line passage is based on the fundamental
principle of a two-sided lever. In Figure 5, we illustrate this
idea for a beam supported by two controlled dampers. During
the first stage of a passage, for the left damper we set
its maximum admissible damping value providing that the
deflection under a moving load maintains moderate levels.
At the same time, the damper on the right operates at its
minimum value enabling a beam to turn around its center
of gravity and to lever its right hand part. This temporal
increment of displacement of the right hand part results in
a nearly straight line load trajectory during the second stage
of the passage, when the operation modes of the dampers are
reversed.

Formally, the problem of an optimally straight line pas-
sage for system (17) can be written as follows:

find 𝑢∗ = argmin
𝑢∈U

𝐽 = ∫
𝑇

0

𝑦
𝑇
𝑄 (𝑡) 𝑦 𝑑𝑡

under ̇𝑦 = 𝐴 (𝑡) 𝑦 +

𝑚

∑
𝑖=1

𝑢
𝑖
𝐵
𝑖 (𝑡) 𝑦 + 𝐹 (𝑡) .

(19)

Here, the time horizon𝑇 is equal to the total time of a passage
and is computed by using

𝑙 = ∫
𝑇

0

V (𝑡) 𝑑𝑡. (20)

The matrix 𝑄(𝑡) is taken such that

𝑦
𝑇
𝑄 (𝑡) 𝑦 = (𝑤 (V𝑡, 𝑡))2 . (21)
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Figure 5: The idea of a straight line passage based on the principle of a two-sided lever.
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Figure 6: Diagonal structure of the optimal controls for straight line
passage of a moving load.

Thus, the objective function corresponds to the total deflec-
tion of the trajectory of a moving load.

A comprehensive study of a solution to problem (19)
was presented in [19]. The author demonstrated that, for a
wide range of systemparameters, the solutions exhibit similar
structures. This structure is represented by the diagonal
pattern depicted in Figure 6. Here, 𝜏

𝑖
stands for the time

instant in which a traveling load is passing the position 𝑎
𝑖
.

The practical meaning of this pattern is that each damper is
supposed to be switched to the maximum admissible value
just before the load approaches it, while the switch back to
the minimum value is supposed to be done right after that
passage. In this paper, we will design a state feedback control
law that mimics the optimal diagonal pattern, providing also
robustness to a wide range of travel speed.The key in deriving
this control law is the observation of how the state of a beam
corresponds to the horizontal position of a moving load.

Suppose that for the beam presented in Figure 2 we put
two observers.The first one focuses on the transverse velocity
of the point 𝑎

1
, that is, �̇�(𝑎

1
, 𝑡), while the other collects

the transverse velocities for all points 𝑎
𝑖
and computes the

average of the absolute values: (1/𝑚)∑𝑚
𝑖=1
|�̇�(𝑎
𝑖
, 𝑡)|. On the

left hand side of Figure 7, an approximate evolution of �̇�(𝑎
1
, 𝑡)

during the passage is depicted. We can observe that the
local transverse velocity reaches its highest negative values
when the moving load is in the neighborhood of the position
𝑎
1
. Then, it slowly changes sign and 𝑎

1
returns toward the

equilibrium. A similar behavior can be observed over a wide
range of passage speeds, with the tendency that a larger speed
magnifies the trajectory. (If the local observer is located at
the position 𝑎

𝑖
, then the trajectory is analogous except for

the convex part that is shifted to 𝜏
𝑖
.) The second observer

notices that the average (1/𝑚)∑𝑚
𝑖=1
|�̇�(𝑎
𝑖
, 𝑡)| rapidly increases

and remains at some level up to the end of the passage (see
the right-hand side of Figure 7). A similar result is also valid
for different passage velocities, with the tendency that larger
speeds magnify the trajectory. Our task now is to reconstruct

the desired control action, denoted by the dotted lines, with
the use of the measurements by both observers. The reader
can verify that this action can be approximately provided by
the following control law:

𝑢
𝑖 (𝑡) =

{{

{{

{

𝑢max , if �̇� (𝑎
𝑖
, 𝑡) ≤ −𝛼

1

𝑚

𝑚

∑
𝑖=1

�̇� (𝑎𝑖, 𝑡)
 ,

𝑢min , otherwise.
(22)

Here 𝛼 > 0. The control law states that we are supposed to set
the maximum control value only when the local transverse
velocity is below the bound given by the average absolute
value (more precisely, some portion of this average, where
the portion is determined by the constant parameter 𝛼).
The role of the average is to adapt the switching bound to
different passage speeds. From Figure 7 one can notice that
if we relied on some fixed switching bound, then the controls
may operate on the maximum values, either too shortly (for
slow passages) or too long (in case of fast travels).

The controller given by (22) is supposed to be imple-
mented with the information allowed by the distributed
architecture (Figure 4). While the local state is assumed to
be given, the average needs to be computed in a distributed
manner with the use of the circular information exchange
between the local computers. The problem of distributed
averaging will be studied in the next section. The method for
selecting the parameter 𝛼 will be presented in Section 6.

4. Distributed Averaging Problem

The controller given by (22) is supposed to be implemented
with the information allowed by the distributed architecture
(Figure 4). While the local state is assumed to be given, the
average needs to be computed in a distributed manner with
the use of the circular information exchange between the
local computers. Before we give an algorithm for distributed
averaging, let us first introduce a relevant background. We
will now consider a linear dynamical system

𝑧 (𝑘 + 1) = 𝐴𝑧 (𝑘) , 𝑘 = 0, 1, . . . ,

𝑧 (0) = 𝑧0, 𝑧 ∈ R
𝑛
.

(23)

The distributed averaging problem is formulated as follows.
Find the matrix 𝐴 such that the state of system (23)

converges to a common value that is equal to the average of
the initial state.

A system solving the distributed averaging problem is a
particular case of the consensus protocols. A comprehensive
theoretical framework for consensus problems can be found
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Figure 7: Evolution of the local transverse velocity �̇�(𝑎
1
, 𝑡) and the average of the absolute values of the local transverse velocities

(1/𝑚)∑
𝑚

𝑖=1
|�̇�(𝑎
𝑖
, 𝑡)| for two different moving load speeds V

1
< V
2
. Dotted lines mark the desired shape for control 𝑢

1
.

in [21]. Here, we will present only the fundamental results for
distributed averaging under linear dynamics.

Let 𝑐 be a real number. We say that system (23) solves
the consensus problem (or that system (23) is a consensus
protocol) if and only if there exists an asymptotically stable
equilibrium 𝑧

∗ satisfying

𝑧
∗
= 𝑐1, (24)

where 1 stands for the all-ones vector. A necessary and
sufficient condition for system (23) to be a consensus
protocol is that 𝐴 has 1 as a simple eigenvalue, with the
corresponding eigenvector having equal components, and all
other eigenvalues are located inside the unit circle. Of special
interest regarding these spectral properties is the family of
matrices called stochastic matrices, that is, square matrices
of nonnegative real numbers, with each row summing to 1. It
follows from the definition that for a stochastic 𝐴 we have

𝐴1 = 1. (25)

Therefore, a stochastic 𝐴 always has an eigenvalue of 1 with
the corresponding eigenvector 1. To verify that the other
eigenvalues of a stochastic𝐴 are inside the unit circle, one can
follow theGershgorin theorem [22]. To guarantee that system
(23) solves the consensus problem, it is required that𝐴has 1 as
a simple eigenvalue.This property can be verified by checking
the connectivity of the corresponding directed graph. (It is
required that the connectivity graph has a spanning tree.)

As stated in the distributed averaging problem, we look
for a structure of 𝐴 that provides that system (23) converges
to a common value, but in addition, this common value is the
average of the components of the initial state vector. To fulfill
the last requirement, we impose an additional condition on
𝐴:

𝐴
𝑇1 = 1, (26)

meaning that each column of 𝐴 sums to 1. A matrix with
nonnegative real entries for which (25) and (26) hold is called
doubly stochastic. It can be proven (see, e.g., [23]) that, for a
doubly stochastic matrix 𝐴,

lim
𝑘→∞

𝐴
𝑘
=
1

𝑛
11𝑇. (27)
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Figure 8: Evolution of the dynamics of the consensus protocol (29).
The common value is the average of the entries of the initial state.

Thus, system (23) with a doubly stochastic 𝐴 has an asymp-
totically stable equilibrium

𝑧
∗
=
∑
𝑛

𝑖=1
𝑧
𝑖 (0)

𝑛
1. (28)

An example of a system solving the average consensus
problem is

𝑧 (𝑘 + 1) =

[
[
[
[
[

[

0.5 0 0 0.5

0.5 0.5 0 0

0 0.5 0.5 0

0 0 0.5 0.5

]
]
]
]
]

]

𝑧 (𝑘) . (29)

The dynamics of protocol (29) is illustrated in Figure 8.

5. Implementation of the
Distributed Controller

Now we will focus on how to apply a consensus protocol for
our distributed controller. The assumption made here is that
we take the control decision given by (22) only once per time
needed to execute a consensus protocol. Current technology
enables executing 10 iterations of a consensus protocol for
several neighboring agents within less than 50 milliseconds
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(this time includes the required communication with the use
of Fast Ethernet).

The idea of the distributed computing of
(1/𝑚)∑

𝑚

𝑖=1
|�̇�(𝑎
𝑖
, 𝑡)| is as follows. At time 𝑡, each of the

local controllers measures its local transverse velocity
�̇�(𝑎
𝑖
, 𝑡). Then, each of the controllers makes the assignment

𝑧
𝑖

0
=
�̇� (𝑎𝑖, 𝑡)

 . (30)

This makes up the initial vector

𝑧
0
= [𝑧
1

0
, 𝑧
2

0
, . . . , 𝑧

𝑚

0
]
𝑇

. (31)

By using the circular communication channels depicted in
Figure 4 the controllers exchange the values of 𝑧 and perform
a consensus protocol:

𝑧 (𝑘 + 1) = 𝐴𝑧 (𝑘) , 𝑘 = 0, 1, . . . , 𝑧 (0) = 𝑧0. (32)

Here 𝐴
𝑚×𝑚

is doubly stochastic and structured as follows:

𝐴 =

[
[
[
[
[

[

1 − ℎ 0 0 ℎ

ℎ 1 − ℎ 0 0

0 d d 0

0 0 ℎ 1 − ℎ

]
]
]
]
]

]

, ℎ ∈ (0, 1) . (33)

After a certain number 𝑘
𝑡𝑚

of iterations, the protocol is
terminated and each of the controllers makes the assignment

1

𝑚

𝑚

∑
𝑖=1

�̇� (𝑎𝑖, 𝑡)
 = 𝑧
𝑖
(𝑘
𝑡𝑚
) . (34)

Note that the average recovered by (34) may slightly differ
for local controllers. To provide more accurate results, one
can consider an optimization problem to find the optimal
ℎ in (33) resulting in the best convergence rates for the
consensus protocol. This goes beyond the scope of this paper
and is reserved for future research. For the numerical and
experimental studies, we selected ℎ = 0.5.

From the perspective of a local controller 𝑖, at every
decision time 𝑡, the following procedure is supposed to be
executed.

Local Controller Procedure

Step 1. Initialize 𝑘 = 0.

Step 2. Measure �̇�(𝑎
𝑖
, 𝑡) and assign 𝑧𝑖(𝑘) = |�̇�(𝑎

𝑖
, 𝑡)|.

Step 3. Send 𝑧𝑖(𝑘) to controller 𝑖+1 (if 𝑖 = 𝑚, then send 𝑧𝑚(𝑘)
to controller 1).

Step 4. Read 𝑧𝑖−1(𝑘) (if 𝑖 = 1, then read 𝑧𝑚(𝑘)).

Step 5. Update: 𝑧𝑖(𝑘 + 1) = (1 − ℎ)𝑧𝑖(𝑘) + ℎ𝑧𝑖−1(𝑘) (if 𝑖 = 1,
then update 𝑧1(𝑘 + 1) = (1 − ℎ)𝑧1(𝑘) + ℎ𝑧𝑚(𝑘)).

Step 6. Update: 𝑘 = 𝑘 + 1.

Step 7. If 𝑘 ≤ 𝑘
𝑡𝑚
, then go to Step 3; else perform the control:

𝑢
𝑖 (𝑡) =

{

{

{

𝑢max , if �̇� (𝑎
𝑖
, 𝑡) ≤ −𝛼𝑧𝑖 (𝑘) ,

𝑢min , otherwise.
(35)

6. Selection of the Control Law Parameter (𝛼)

For the parameter 𝛼 (see the distributed control law (22)) we
are interested in the selection providing that our distributed
controllermimics the behavior of the optimal open-loop con-
troller generated by the solution of (19). In the formulation
of the corresponding optimization problem, we will use the
state-space representation introduced in Section 2.2.

Let 𝑦
𝑗
denote the 𝑗th component of the state vector

defined in (16). Now, according to (6) (with the first ten
modes taken into account) the transverse displacement and
velocity can be, respectively, approximated by

𝑤 (𝑥, 𝑡) =
2

𝑙

10

∑
𝑗=1

𝑦
2𝑗−1

sin(
𝑗𝜋𝑥

𝑙
) ,

�̇� (𝑥, 𝑡) =
2

𝑙

10

∑
𝑗=1

𝑦
2𝑗 (𝑡) sin(

𝑗𝜋𝑥

𝑙
) .

(36)

We consider again the matrix𝑄(𝑡) defined as in (21). We look
for 𝛼 that is the solution of the following problem:

find 𝛼∗ = argmin
𝛼>0

𝐽 = ∫
𝑇

0

𝑦
𝑇
𝑄 (𝑡) 𝑦 𝑑𝑡

subject to ̇𝑦 = 𝐴 (𝑡) 𝑦 +

𝑚

∑
𝑖=1

𝑢
𝑖
𝐵
𝑖 (𝑡) 𝑦 + 𝐹 (𝑡) ,

𝑢
𝑖
=

{{{

{{{

{

𝑢max , if
10

∑
𝑗=1

𝑦
2𝑗
sin(

𝑗𝜋𝑎
𝑖

𝑙
) ≤ −𝛼

1

𝑚

𝑚

∑
𝑖=1



10

∑
𝑗=1

𝑦
2𝑗
sin(

𝑗𝜋𝑎
𝑖

𝑙
)



,

𝑢min , otherwise.

(37)
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(a) (b)

Figure 9: Real view of the test stand (a) and the rotary controlled damper supporting the guideway (b).

Due to the switched structure of the constraints, problem (37)
was solved fully numerically. The gradient of the objective
function was approximated by the finite difference scheme,
and by using the second-order Runge-Kutta method the
dynamics was represented by set of equations. With such
representation the problem was solved with the use of
Ipopt, a software package for large scale optimization (see
https://projects.coin-or.org/Ipopt).

In the computations, all model parameters were taken
accordingly to the experimental stand described in the next
section. For the mass traveling at a speed of 1m/s, 2m/s, and
4m/s, the solution to (37) was 𝛼 = 0.694, 𝛼 = 0.761, and
𝛼 = 0.712, respectively. In the experiments, we will rely on
the average of these values; that is, 𝛼 = 0.722.

7. Experimental Validation

In this section, the designed controlmethodwill be examined
by means of the experimental results. We will be interested
in both the performance and the robustness of the closed-
loop system. For that purpose, we will evaluate four different
metrics corresponding to the state of the carrying structure
and the trajectory of the moving load. In terms of these
metrics, we will compare the closed-loop system with the
optimal centralized open-loop solutions. In addition, we will
provide a comparison to a passively damped system. To
examine the robustness, we will repeat the experiments with
different passage speeds.

7.1. The Test Stand. The supporting structure was made of an
aluminum truss frame. The carrying structure is represented
by a guideway supported with two springs to reduce the static
deflection. For the traveling load, we use a carriage driven
by an electric motor. For the controlled devices we use four
magnetorheological rotary dampers equipped with encoders.
The locations for the dampers are 𝑎

1
= 1/5𝑙, 𝑎

2
= 2/5𝑙,

𝑎
3
= 3/5𝑙, and 𝑎

4
= 4/5𝑙 (see Figure 9). During the passage,

Table 1: Parameters of the test stand.

Guideway length (𝑙) 4m
Guideway stiffness (𝐸𝐼) 801Nm2

Damping range (𝑢min–𝑢max) 100–1300Ns/m
Spring stiffness (𝑘

1
, 𝑘
2
) 1000N/m

Mass of carriage (𝑚) 0.7–10 kg
Maximum motor torque 21Nm
Maximum speed of carriage (V) 6m/s
Maximum acceleration of carriage 7m/s2

the carriage is first rapidly accelerated from zero to a given
speed. This speed is kept constant up to the last stage of the
passage (corresponding to approximately 4/5 of the length
of the guideway), when the motor starts its braking process.
For both the acceleration and the deceleration, we use the
maximum admissible values, to arrange that the carriage
travels at a constant speed for most of the time.

In order to design the parameters for the test stand,
several numerical simulations were first performed. Custom
software simulated the dynamic interactions between the
traveling carriage and the whole structure. Various com-
binations of the support rails and guideways were taken
into account. For the notable deflection of the beam, the
pivotally mounted guideway without the supporting rail was
selected. This resulted in the maximum transverse displace-
ment within the range of ±30mm for a mass of 5 kg traveling
at a speed of 4m/s.The carriage was attached to the guideway
with the use of a special type of conical rollers protected
from jamming in the case of traveling over large deflections.
The carriage was driven by a stepper motor via a toothed
belt girded over a gearbox. Our setup enables accelerating
a mass of 6 kg to the speed of 5m/s and stopping it within
the guideway’s length, which was 4m. The set of major
parameters for the test stand is given in Table 1.
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The control system operates as follows. The state (the
local transverse deflections) is first measured by the encoders
incorporated into the controlled dampers. The signals are
transferred to a PC equipped with an I/O data acquisition
card. A custom program (written in the MATLAB language)
then processes the signals to recover the absolute values of
the local transverse velocities. Next, a process of distributed
averaging is executed. Here, on a single PC, we simulated a
distributed architecture, where each of the local controllers,
represented by separate MATLAB functions communicating
under the assumed information topology, executes the Local
Controller Procedure given in Section 5. The procedure was
terminated after 𝑘

𝑡𝑚
= 10 cycles and the control decision

based on (22) was then sent to the dampers. The whole
process was triggered by the motor encoder (indicating the
start of the passage) and was repeated every 50 milliseconds
until the end of the passage. The repeating time was selected
according to the estimated time required for the distributed
averaging process to be carried out in a real modular
architecture. This time also corresponds to the response time
of the dampers.

7.2. Experimental Results. The experiments were performed
under the following parameters: mass of the carriage 𝑚 =

4 kg and passage speeds V = 1, V = 2, and V = 4m/s. The
performance of the controlmethodwill be examined in terms
of the following metrics:

𝐽
1
= ∫
𝑙

0

∫
𝑇

0

(𝑤 (𝑥, 𝑡))
2
𝑑𝑥 𝑑𝑡,

𝐽
2
= max
𝑥∈[0,𝑙],𝑡∈[0,𝑇]

|𝑤 (𝑥, 𝑡)| ,

𝐽
3
= ∫
𝑇

0

(𝑤 (V𝑡, 𝑡))2 𝑑𝑡,

𝐽
4
= max
𝑡∈[0,𝑇]

|𝑤 (V𝑡, 𝑡)| .

(38)

Here 𝐽
1
and 𝐽
2
stand for the total and the maximum beam

deflection, respectively. Similarly, 𝐽
3
and 𝐽

4
correspond to

the total and the maximum deflection on the trajectory
of the carriage. Despite the experiments having exhibited
good repetitiveness (a maximum difference of 4 percent for
the assumed metrics), each of the passages was repeated
five times, and the values of the metrics were averaged.
To reconstruct the trajectories 𝑤(𝑥, 𝑡) and 𝑤(V𝑡, 𝑡), we rely
on the first four terms of series (6) (four is the number
of local measurements 𝑤(𝑎

𝑖
, 𝑡) provided by the encoders

incorporated in the dampers).
For each of the passages, three damping strategies were

applied. The first one, referred to later as passive, was under
a constant damping, set to the maximum admissible value
𝑢max. The second strategy was based on the optimal open-
loop solutions (referred to as centralized). These solutions
were obtained by using the method of optimal switching
times, described in [19], under the assumption that each of the
controls can be switched at most twice. Finally, the proposed
distributed strategy was performed.
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Figure 10: Guideway deflection in space and time in the case of V =
4m/s under the designed distributed controller.
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Figure 11: Moving load trajectories in the case of V = 4m/s.

Typical dynamics of a carrying structure subjected to a
moving load is illustrated in Figure 10. In this example, the
passage at speed V = 4m/s was controlled by the distributed
strategy. As intuitively predicted, the maximum deflection
takes place approximately at 𝑥 ≈ 0.5𝑙, the midpoint of the
guideway, that is, at 𝑡 ≈ 0.5𝑇. Note that the carriage is
traveling on the diagonal stretched between the points (0, 0)
and (𝑙, 𝑇).

The moving load trajectories in the case of V = 4m/s
are compared in Figure 11. Under passive damping, the
maximum deflection exceeds 35mm. Under the optimal cen-
tralized control, this deflection is reduced by 34 percent. The
distributed method results in an improvement by 29 percent.
Both controlled trajectories exhibit analogous shapes, which
is due to their similar control functions; see Figures 12 and 13
for the centralized and distributed controls, respectively. We
can observe that only the first control differs in the number
of switches. The diagonal pattern of the optimal controls is
well reproduced by the distributed method, with slight shifts
of the switching times. An analogy in the control shapes was
also observed for the passages at speeds V = 1 and V = 2m/s.

A comparison of moving load trajectories in the case of
V = 2m/s is presented in Figure 14. Again, both controlled
strategies outperform passive damping. In terms of the max-
imum deflection, the improvement is now 28 and 25 percent
for the centralized and distributed method, respectively. For
the passages at speed V < 2m/s, we can observe a tendency
of a loss of efficiency for both control methods. This is due
to the fact that, for low travel velocities, the system operates
quasi-statically, and the effect of the two-sided lever (see
Figure 5) becomes negligible. The trajectories of the passive
and controlled systems at the speed V = 0.5m/s are almost
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Figure 12: Controls of the designed distributed system in the case
of V = 4m/s.
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Figure 13: Optimal centralized controls in the case of V = 4m/s.

Table 2: The values of the metric 𝐽
1
normalized to the passive case.

Passage speed [m/s] Passive damping Controlled damping
Centralized Distributed

1 1.000 0.460 0.501

2 1.000 0.351 0.389

4 1.000 0.228 0.265

identical. On the other hand, in the case of fast passages, we
can notice very high efficiency. The experimental stand does
not enable reaching V = 10m/s, but the numerical simulation
shows that at this speed, by using the distributed method, the
maximum deflection can be reduced by 45 percent.

The set of values for the metrics defined in (38) is pre-
sented in Tables 2–5. We can clearly observe the correlation
between all metrics. In particular, the maximum deflection
of the guideway 𝐽

2
is almost identical with the maximum

deflection on the trajectory of the traveling carriage 𝐽
4
. The

total deflections represented by 𝐽
1
and 𝐽
3
also coincide. Thus,

for the optimal selection of the parameter 𝛼, we can pretty
much rely on any one of the proposed metrics.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
t/tf

−25

−20

−15

−10

−5

0
5

w
(�
t,
t)

(m
m

)

Figure 14: Moving load trajectories in the case of V = 2m/s.

Table 3: The values of the metric 𝐽
2
normalized to the passive case.

Passage speed [m/s] Passive damping Controlled damping
Centralized Distributed

1 1.000 0.808 0.812

2 1.000 0.734 0.778

4 1.000 0.642 0.691

Table 4: The values of the metric 𝐽
3
normalized to the passive case.

Passage speed [m/s] Passive damping Controlled damping
Centralized Distributed

1 1.000 0.539 0.594

2 1.000 0.388 0.407

4 1.000 0.319 0.342

Table 5: The values of the metric 𝐽
4
normalized to the passive case.

Passage speed [m/s] Passive damping Controlled damping
Centralized Distributed

1 1.000 0.812 0.837

2 1.000 0.719 0.755

4 1.000 0.658 0.714

As was to be expected, both control methods outperform
the passive case, and the optimal centralized method exhibits
the best performance for all metrics at all traveling speeds.
In the comparison between the centralized and the proposed
distributed controller, we can see an average loss of perfor-
mance of 4 percent when applying the distributed method.
Taking into account that the control law is heuristic and
is realized through a very practical distributed architecture,
this result is fully satisfactory. Note that the performance
of both methods is comparable for passages at all speeds,
which supports the assertion of the robustness of the designed
controller.

8. Conclusion

In this paper, a distributed method to control the vibration
of structures subjected to traveling loads has been presented.
The method is based on the optimal approach proposed by
the author in [15, 16]. Thanks to a state feedback control
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law and a distributed architecture, the new controller is
robust and is easy to implement. The performance has been
tested experimentally for a wide range of travel speeds. The
efficiency of the new controller is comparable with that
obtained with the optimal strategies. The presented solution
is practical and is directed to a wide range of applications in
transportation and robotic technology. In future research, the
author will address the problem of obtaining a distributed
control design to suppress the vibration of structures repre-
sented by plates and membranes.
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