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Abstract. 
A generalized Degasperis-Procesi equation with variable coefficients is investigated. The  stability of the strong solution for the equation is established under certain assumptions.



1. Introduction
The Degasperis-Procesi (DP) equationwas discovered by Degasperis and Procesi [1] in a search for integrable equations similar to the Camassa-Holm equation. Degasperis and Procesi [1] studied a family of third order dispersive nonlinear equationswhere . It is found in [1] that there are only three equations that satisfy asymptotic integrability conditions within this family. By rescaling and applying a Galilean transformation, the three equations are Korteweg-de Vries equation the Camassa-Holm equationand the Degasperis-Procesi equation (1). Degasperis et al. [2] proved the formal integrability of (1) and the existence of the nonsmooth solutions by constructing a Lax pair.
In recent years, (1) which plays a similar role in water wave theory as the Camassa-Holm equation has caused extensive concern of many scholars (see [1–11]). For example, Coclite and Karlsen [3] established the well-posedness of  weak solutions for (1). They proved uniqueness within a class of discontinuous solutions to (1) in [4]. Escher et al. [5] established the precise blow-up rate and proved the existence and uniqueness of global weak solutions to (1) in which the initial data satisfied appropriate conditions. Lai and Wu [7] investigated the local well-posedness of solutions to a generalization of both (1) and (4) in the Sobolev space  with . Lenells [8] classified all weak traveling wave solutions of the Degasperis-Procesi equation (1). Ai and Gui [9] proved global existence of solutions for the viscous Degasperis-Procesi equation and showed that the blow-up phenomena occurs in finite time. Fu et al. [11] studied the orbital stability of the peakons for the Degasperis-Procesi equation with a strong dispersive term on the line and proved that the shapes of these peakons were stable under small perturbations.
As we know, their coefficients play an important role to study the fundamental dynamical properties of the Degasperis-Procesi models. It prompts us to study the following generalized Degasperis-Procesi equation:where , , and function  is a polynomial of order . Letting , , , (5) reduces to the Degasperis-Procesi equation (1). We consider the Cauchy problem of (5) with an initial condition . Namely,Assume that (5) possesses a bounded strong solution in its maximum existence time interval  and  lies in . We use the approaches of Kružkov doubling the variables presented in [12] to prove the  stability of the solution for the variable coefficients equation (5). From our knowledge, it has not been acquired in the literature.
This paper is organized as follows. Section 2 gives several lemmas. The proof of local solution stability is presented in Section 3.
2. Preliminaries
Applying the operator  to (5), we obtain its equivalent formwhere .
Equations (5) and (6) are equivalent to the problemwhere  and . Notice that .
Remark. According to the statements presented in [7] or [12], we know that problem (8) has a unique local solution in the space  if we assume .
Assume that  and  are solutions of problem (8) in the domain  with initial functions  and , where  is the maximum existence time of solutions. For simplicity, we denote by  any positive constants. Now we give several lemmas.
Lemma 1.  Let  be the solution of problem (8) and . Then where positive constant  depends on  and .
 Proof. We have in which we have used  to complete the proof.
Lemma 2.  Assume that  and  are solutions of problem (8) in the domain , , and . Then where  depends on  and .
 Proof. Using the property of the operator , we getin which we apply the Tonelli Theorem to complete the proof.
Let , , for ;  and  is infinitely differential on . Set , where  is an arbitrary positive constant. It is found that  and
Let the function  be defined and locally integrable on . Set ; denote the approximation function of  asWe call  a Lebesgue point of the function  if At any Lebesgue point , we get Since the set of points which are not Lebesgue points of  has measure zero, we have  as  almost everywhere.
For any , we denote the band  by . Let  and where , .
We state the concept of a characteristic cone. Let , for any ; we define Let  represent the cone ,  and let  designate the cross section of the cone  by the plane .
Lemma 3 (see [12]).  Let the function  be bounded and measurable in cylinder . For any  and any , the function satisfies 
Lemma 4 (see [12]).  If  is bounded, the function  satisfies the Lipschitz condition in  and .
Lemma 5.  If  is the solution of problem (11) on , , it holds that where  is an arbitrary constant.
Proof. Suppose that  is a twice differential function. Multiplying the first equation of problem (8) by  and integrating over , we getUsing the method of integration by parts, we getNotice that So Then we haveSubstituting (23) and (26) into (22), we getLet  be an approximation of the function . When , . Setting , then , . Hence,combining with (27), we complete the proof.
3. Main Result
Set function , , outside the cylinder , where , , . Now we give the main result of this work.
Theorem 6.  Assume that  and  are two strong solutions of problem (8) with initial data (). Let  be the maximum existence time of  and . If  and , for any , it holds that where  is a positive constant depending on  and .
 Proof. Set , . Using the Kružkov device of doubling the variables in [12] and Lemma 5, we getSimilarly, we haveAdding (31) and (32), we obtainSet functionin which  and . Thus, we obtainWe will prove that the form  in (33) approaches zero as . In fact, the coefficients of  and  in  vanish for . Thus the integrals of  can be rewritten as the following concrete form:In the following computations, we omit the index  of function . Applying the Taylor formula, we have the relationsIt is seen that the identity . In a similar way, we obtainThe functions , , and  in (37) and (38) satisfy where  and  as . There are  for  or  and Hence, we getwhere  as .
We denote the integrand in (41) aswhere  and  satisfy the Lipschitz condition in . Applying the property of the function  and the method of integration by parts, we have Hence Using Lemma 3,  as . Therefore, we haveIt follows from (33) to (45) thatWe note that the first two terms of the integrand of (46) have the formwhere  satisfies the Lipschitz condition in all its variables. ThenNote that  outside the region . Applying the estimate  and Lemma 4, we getwhere  is a positive constant independent of . Using Lemma 3, we know  as .
For the term , we substitute , , , . Combining with the identity we obtainThus, we haveSimilarly, the integrand of the third term in (46) can be represented asThenIt holds that Using Lemma 3, it yields  as . Repeating the steps as before, we have From (46) to (56), we getWe setTake two numbers ,  and . In (57), we setin whichwhere  is a small positive constant and  outside the cone . When , we observe that . By the definition of the number , we have Applying (57)–(60), we getIn (62), sending  and using Lemma 2, we obtainwhere  is independent of .
Applying the properties of the function  for , we get ThenLet We observe that Letting , it derives that Therefore, we haveFrom (63)–(69), we obtain inequality Choosing , we get Applying the Gronwall inequality, we complete the proof of Theorem 6.
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