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A vision-based driver assistance system using fuzzy rules to determine whether warnings are necessary is presented. This system
is comprised of four cameras, one of which focuses on the driver for estimating the driver’s viewing angle, another focuses on the
road ahead for the detection of road condition ahead, and the last two cameras are on both sides of the vehicle, facing backward,
for the purpose of determining whether neighboring lanes are occupied by vehicles hidden in the blind-spots. The system uses
fuzzy-rules for the analysis of interactions between the driver’s gaze, whether there are vehicles ahead, and in the neighboring lanes
to determine whether the current driving condition should be of concern to the driver and issues one of three levels of warnings,
from safe to dangerous.

1. Introduction

As the number of traffic accident rises each year, so does
the need for a sophisticated driver assistance system become
more apparent. This paper proposes a vision-based driver
assistant system which would issue alerts when the vehicle
in unsafe situations. There were other studies into smart
driver assistants [1–5], but most of them do not know how
to deal with the correlation between the driver’s attention
and the vehicle’s environment. For example, Trivedi et al. [4]
and his team proposed the LiLo system which would utilize
multiple types of cameras for tracking driver’s intents and
car movements, but no detail was provided on how and if
they were to interact. Our proposed driver’s safety system
simultaneously evaluates the car’s motions as well as the
driver’s visual focus in order to avoid accidents caused by
momentary lapses of attention.

The information from the forward-facing camera is used
to locate and classify the lane boundaries, which are then
used to determine the deviation of the vehicle from the lane
center as well as the distance to a vehicle ahead. The data
from the backward-facing cameras are used to determine
direction of the driver’s gaze and to determine the existence
of vehicles in the neighboring lanes.These pieces of extracted

information are then fed to the fuzzy analysis modules to
determine whether to warn the driver. The camera setup for
our system is shown in Figure 1.

The analysis portion of our driver safety system is com-
posed of three fuzzy-rules-based modules, and a crisp-rules-
based module each of which would assess its inputs and
issue its own evaluation of the driver safety level, and the
most severe warning amongst them would be then issued
by the system. The safety level is divided into three tiers:
“safe,” “risky,” and “dangerous.” The analysis modules are
fuzzy rules-based driving safety analyses in the presence
of obstacles, fuzzy-rules-based driving safety analysis in
obstacle-less driving situations, the fuzzy rules-based driving
safety analysis for the blind-spots, and a crisp-rule based
analysis module that determines whether the car’s movement
is legal; an obstacle is defined as a vehicle in front.

The organization of this paper is as follows: the driver
safety system’s overview will be presented in Section 2, how
each piece of information is extracted will be discussed in
Section 3, how the information is analyzed will be presented
in Section 4, a lab simulation of the entire system using
the parameters from real-world driving situations will be
presented in Section 5, the results of our experiments and
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Figure 1: Positions of the cameras for our driver safety system.

comparison of the methods we used in our system with other
methods will be presented in Section 6, and conclusions
follow in the final section.

2. System Description

Useful pieces of information are extracted from raw data
from both the forward-facing and backward-facing cameras.
These pieces of information include the locations and types
of lane boundaries, the deviation of the vehicle from the
center of the lane, and the deviation of alignment between
the driver’s line-of-sight and the center of the driving lane,
whether a vehicle exists ahead and whether vehicles exist in
the neighboring lanes. In the case where a vehicle ahead is
detected, information such as deviation of driver’s line-of-
sight from the obstacle and the distance to the obstacle will
also be calculated or estimated. Each piece of data is fuzzified
before being sent to be analyzed in the analysis modules.

The system flow chart is shown in Figure 2. It shows
that instead using the distance-to-vehicle as an input value
directly into the analysis modules; it was first divided by the
safety distance so as to express it as a percentage of the safety
distance or a normalized distance value.The safety distance is
theminimumbraking distance between twomoving vehicles.
Because the safety distance is dependent mostly on the speed
of the vehicle, so we use the general rule of thumb of one
vehicle length per every 8 km/h to determine the minimum
safety distance.

As shown in Figure 2, from right to left, the fuzzy-rules-
based safety analysis for obstacle-less drivingmodule takes as
input: the driver’s sight deviation from lane center, vehicle’s
deviation from lane center, and speed. The fuzzy-rules-based
safety analysis in the presence of obstacle(s) takes as input:
the deviation of the driver’s sight from obstacle, vehicle’s
deviation from lane center, and the normalized distance to
obstacle. The legal-maneuver module uses the types of lane
boundaries and the vehicle deviation as input. Lastly, the
fuzzy-rules-based analysis for blind-spot detection takes as
input: the presence or absence of vehicle in blind-spots, the
driver’s gaze angle, and the vehicle’s deviation from lane
center. The following section will discuss how these raw data
turn into useful information for the analysis modules.

3. Information Extraction

3.1. Driver’s Viewing Angle. As illustrated by the flow chart
in Figure 3, the driver’s viewing angle extraction stage uses
as its input the driver’s image; it then detects the driver’s
face by using the Haar-like feature-based Adaboost classifier
mentioned in [6]. Once the driver’s face is detected, it is
continuously tracked using a particle-filtering-based tracker
[7]. The particle-filter tracking method was chosen because
its robustness in the presence of occlusions is well known
and has shown to have better performance [8] in head
tracking applications than the traditional Kalman filtering.
However, tracking face alone is insufficient in determining
the driver’s facial orientation, the position of the driver’s eyes
relative to the position of the nose also helps to determine
the face’s orientation. For determining the eyes’ location,
another Haar-feature like Adaboost classifier was trained to
locate the eyes within the facial region being tracked, and
the position of the pupils within their sockets is used to
determine the glancing angle which is used to adjust the
driver’s facial orientation to yield the final line-of-sight angle.
The flow chart of the particle-filtering-based tracking process
is illustrated in Figure 4.

In our system, we used the color histograms as the basis
for our particle filter tracker for tracking driver’s head. From
the camera image, the pixels enclosing the driver’s head form
the reference window and its color histogram is computed.
The target windows are formed by the possible locations
where the driver’s headwould be next.The intersection values
of the color histograms of the reference window with the
target windows are calculated and used to weigh the samples,
by giving the target windows with larger intersection values
the larger weight. Following the steps illustrated in Figure 4
until a result can be estimated.The next stage after tracking is
the determination of the driver’s line-of-sight.

The driver’s line-of-sight is defined as the facial-
orientation angle adjusted by the angle of the pupils off the
centers the eye sockets. In order to determine the facial
orientation, the positions of the eyes and the nose are to be
used. But while the locations of the face and eyes can be
found using Haar-features-based Adaboosted classifiers, the
location of the nose would have to be estimated.This process
of estimation is done by putting the locations of the eyes
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Figure 2: System flowchart for the driver assistant.
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Figure 3: Flowchart for driver’s line-of-sight analysis.

within an anthropometric facemodel [9, 10], and the location
of the nose can be verified by the location of the nostrils.
Because the camera is positioned directly in front of the face
of the driver, the geometry form by the eyes and the nose
is an equilateral triangle when the driver is facing forward,
as shown in Figure 5. If the driver’s head turns away from
facing front, the triangle would no longer be equilateral, and
the change can be used to calculate the facial orientation.

In Figure 5, the ratio of the lengths of the line segments
“𝑎” and “𝑏” is used to estimate the turning angle of the head.
For example, if the length of line segment “𝑎” is greater than
that of line segment “𝑏,” then it can be assumed that the
driver’s head is turning toward his right side.The relationship
between these line segments and the facial orientation can be
estimated using the relationship shown in Table 1. The pupil’s
location within its eye is used to adjust focus angle from −𝜋/4
to +𝜋/4 radians, as illustrated in Figure 6.

3.2. Lane Boundaries and Types. Images from the front
facing-camera are used for detecting road conditions; which
include the lane boundaries andwhether they are crossable or
not. However, in order to detect parallel lines and ascertain
their types, an inverse perspective transform would need to
be applied first to the images. Once the inverse perspective
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Figure 4: Flowchart for the particle filter.

Table 1: Conversion between the proportion 𝑎/𝑏 and corresponding
angles.

𝑎/𝑏 ≈1 ≈1.6 ≈2.5 ≈5 ≈7
angle 0 𝜋/16 𝜋/8 3𝜋/16 𝜋/4

transforms have applied, the color information is removed
from the images, then a line-detector like Hough transform is
applied to the images that should yield parallel line segments,
and lines that are not long enough to be lane boundaries are
then eliminated. Once the boundaries lines are detected, the
center of the driving lane is calculated. An example is shown
in Figure 7(c), where the blue line shown is the calculated
lane center, which is in the middle of the boundaries lines.
However, this method is known to fail in the case where the
lanemarkings became faded or overlaid with artifacts created
by, for example, tire tread. Because of this, false alerts can
be issued in the current implementation. Future research will
seek to deal with these problems

Based on the local traffic laws in Taiwan, lane boundaries
can be one of three types: double solid (DS), single solid (SS),
and single dashed (SD). The line segments detected would
need to be assigned into one of these three classes using the
distance separating the line segments. The lane boundary
formed by double solid lines is a traffic divider, which is
an uncrossable boundary; any deviation toward it will be
penalized by the legal-maneuver analysis module our system,
which will be discussed in a later section. The lane boundary
formed by a single solid line is a lane divider, separating
traffic moving in the same direction; deviations toward it are
penalized, though not as heavily as the double solid line. The
lane divider formed by a dashed line is also a lane divider, but
there is no penalty associated with crossing it.

3.3. Front Vehicle Detection. The vehicle detection modules
decide whether a vehicle exists and estimate the distance to

it, which is then normalized by the safety distance. Initially,
we decided on the Haar-feature like Adaboosted classifier as
described in [6]. We test several features as training input
to the Adaboosted classifier for detecting vehicles and found
that a good trade-off feature: the horizontal edge information.
Figure 8 shows the process of extracting edge information
from an input image, then keeping only the horizontal edges.
As it can be seen, the basic outline of the vehicle is entirely
visible throughout this process. So for an acceptable tradeoff
between detection speed and accuracy, we chose to use
the horizontal edge information. However, instead of the
standardAdaboost algorithm,which assigns the same cost for
misclassification of samples from different classes, the Cost-
Sensitive (CS) Adaboost algorithm is selected instead for this
application [11]. The CS Adaboost algorithm assigns different
costs to samples fromdifferent classes, and the updateweights
of misclassified positive samples will be assigned greater
cost than the misclassified negative samples. We trained our
classifier with 267 positive samples and 1074 negative sample
of vehicle images under various weather conditions, which
were sufficient for the initial test. Once a vehicle is detected,
the distance to it would need to be calculated or estimated.

Again, when deriving the distance-to-vehicle value, the
tradeoff between speed and accuracy must again be consid-
ered. And considering that an accident may occur in a split
second, we decided that a rough estimate based on the size
of the detection box surrounding a detected vehicle is good
enough. Figure 9 shows a real-world example of making such
an estimate.

3.4. Blind-Spot Vehicle Detection. The blind-spot region next
to the driving vehicle can be defined as triangular in shape
(approximately a right triangle) with the length of the oppo-
site side at 15 meters across and 6 meters across the adjacent
side, as illustrated in Figure 10. The blind-spot detector
cameras have narrow field-of-view, in order to focus only on
objects located within the blind-spot regions. Figure 11 shows
a sequence of images of a vehicle passing through the blind-
spot region.

For the purpose of vehicle detection within the defined
region during the day, three methods are implemented
in parallel then a union operation is performed on their
results. The first method is the sequential image subtraction
using the hue-only colorband, this method works the best
against a relatively uniform background, as when driving
on a highway. The hue-only subband is selected because
it is desirable that the subtraction operation is luminance-
independent. However, a basic subtraction operation can
result in a noisy image, so the resultant image is first denoised
and thresholded before the largest connected component is
extracted. Figure 12 shows the hue-based difference images
of the sequence in Figure 11 with the largest connected
component marked. In order to ascertain that the object is a
car passing through the blind-spot area, the size of the largest
connected component must exceed a preset threshold.

The second method utilized the standard Hough circle
transform to detect the tires of the vehicle in the lower half of
the images. In order to ascertain that the vehicle is within the
blindspot region, the diameter of the detected circle(s) must
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meet aminimum size. Figure 13 shows successful detection of
the front tire of the passing vehicle shown in Figure 11.

The third day-time method is to use the Haar-like
Adaboost classifier trained using the edge information. Size
and location of the detection box are used to determine
whether the detected vehicle is within the blind-spot region.
The results of these three methods are combined using a

union operator in order to ascertain that a vehicle is definitely
within the blind-spot region.

For purpose of vehicle detection at night, the vehicle
headlights are used as hint. First the contrast of each image
is enhanced and then thresholded before connected regions
in white in the lower half of the image are extracted. The size
of the connected regions must meet a preset threshold to be
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Figure 10: The definition of blind-spot regions.

determined as the headlights from a vehicle in the blind-spot
region. Figure 14 shows a sequence of a passing vehicle at
night, and Figure 15 shows the successful detection results.

4. Data Analysis

The idea of automatic fuzzy rules extraction [12, 13] is to
distribute the entire input space into overlapping intervals,
then, according to some grouping methods, output the fuzzy
rules for classifying these values and then finally defuzzify the
results to obtain a crisp output value. Figure 16 shows a fuzzy
interference system for extracting fuzzy rules. The minimum
of each interval’s maximum values is taken to form a basis for

generating the fuzzy rules, then they are defuzzified, which
results in a crisp output value,𝑦.The trapezoidalmembership
function is chosen as the membership function for our fuzzy
interference system.

The equation in (1) describing the center-of-gravity
method was chosen as the defuzzification method, where 𝑚
is the mean within each interval, 𝜎 is the standard deviation,
and 𝑑 is the degree of membership. The output, 𝑦, is a crisp-
valued indicator for the one of the three danger levels and is
evenly distributed between 0 and 1:

𝑦 =

∑
𝑛

𝑖=1
𝑚
𝑖
𝜎
𝑖
𝑑
𝑖
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𝑖
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𝑘
(𝑥)

=

{
{
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{

1, where 𝜇 < 𝑥 ≤ 𝑈,
1 −max (0,min (1, 𝑟 (𝜇 − 𝑥))) , where 𝑥 ≤ 𝜇,
1 −max (0,min (1, 𝑟 (𝑥 − 𝑈))) , where 𝑥 > 𝑈.

(2)

The same fuzzy-inference structure is used for analysis
under obstacle-less conditions as well as conditions in which
obstacles exist. We will present each separately.

4.1. Obstacle-Less Driving. Three pieces of information are
used as input features in this fuzzy-rule based safety analysis
for obstacle-less driving module. These features include the
amount of the vehicle’s deviation from lane center, 𝐿Dev, the
speed of the vehicle, and the deviation of driver’s line-of-sight
from the lane center in angles. The definition of 𝐿Dev can be
seen in Figure 17 and (3):

𝐿Dev =
(VehicleCenter − 𝐿Center)

WidthLane
(3)

The fuzzy-rules-based analysis system fuzzified each
piece of these input information into three levels, “low,”
“medium,” and “high,” and output a warning based on the
interactions of these variables. For example, if the driver’s
focus matches the vehicle’s movement at a safe speed, as the
scenario illustrated in Figure 18; then, the fuzzy inference
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Figure 11: Sequence of a vehicle passing through the blind-spot region.

Figure 12: Results of hue-band image subtraction of the sequence in Figure 11.

Figure 13: The successful detection of a front tire using Hough circle transform.
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Figure 14: Sequence of a vehicle passing through the blind-spot region at night.

Figure 15: Successful detection of headlights of the vehicle in Figure 14.
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Figure 16: Diagram of the fuzzy inference system.

system would issue a “safe” level of danger, and no action
would be taken to alert the driver. However, if the driver’s
focus mismatches the vehicle’s movement for longer than a
short duration, for example, for about 6 video frames, then
even at a relatively safe speed the fuzzy inference system
would issue a “risky” warning to the driver to refocus fromhis
current distraction, as illustrated by the scenario in Figure 19.

4.2. Driving with Obstacles Present. The input information
for the fuzzy-rules-based analysis for driving in the presence

of obstacles include 𝐿Dev as defined by (3), the distance to
the obstacle express as a percentage of the safe distance,
and deviation of the driver’s line-of-sight from the obstacle
expressed in angles. Each of these pieces of information is
first fuzzified before being analyzed by the fuzzy-rules-based
analysis system which then output a warning based on their
interactions. For example, in Figure 20, 𝐿Dev was low and the
distance-to-vehicle was about 150% of the safety distance, but
the driver’s focus is largely out of alignment with the obstacle,
so ultimately the module issued a “risky” warning. Table 2
shows some of the interactions of these variables and their
output.

4.3. Blind-Spot Detection. The blind-spot detection fuzzy-
rules analysis module takes as input: include 𝐿Dev, whether a
vehicle exists in one of the blind-spot regions and the driver’s
gaze angle.The inputs are also fuzzified before being used for
analysis. Table 3 shows some of the input and output for this
fuzzy-rules analysis module. The value for whether a vehicle
exists in one of the blind-spots is either 0 or 1, for false or
true, respectively. The output for when no vehicle is detected
is always “safe.”

4.4. Legal Maneuver Analysis. The legal-maneuver analysis
module is a crisp rule based analysis module. It takes as its
input the lane boundary types and the 𝐿Dev value. Its rules
are simple: it checks the 𝐿Dev value for the direction the
vehicle is moving against whether the nearest boundary is
crossable. If 𝐿Dev value is low, the vehicle is not obviously
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Figure 18: Scenario where driver’s focus matches vehicle movement.

moving toward either boundary; then, a “safe” is its output.
If 𝐿Dev value is relatively high, then either a “safe,” “warning,”
or “danger” will be issued, depending on whether the bound-
ary type is “single-dashed,” “single-solid,” or “double-solid,”
respectively.

5. Simulations

The parameters from several real-world driving situations
were used as input to our system to test the system’s perfor-
mance. One of the simulations is presented in Figure 21. In
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(a) Driver’s face image and correct detection of driver’s angle-of-view

(b) Road image and successful detection of lane boundaries and lane center

Figure 19: Scenario where driver’s focus mismatches vehicle maneuver.

this simulation, the road ahead is empty of cars, the right side
is a solid boundary, and the left lane is a crossable boundary
with no vehicle in the neighboring lane, and the driver has
intent to shift to the left lane.

Figure 22 shows the data flow data for the scenario in
Figure 21.

Because no vehicle was in front of the car, the flow chart
above shows that two of the routines were crossed out due
to insufficient input data, so there was not sufficient number
of inputs into the fuzzy-rules analysis in the presence of
obstacles module, which automatically defaults its output
to “safe” regardless of the other input values, as designed.
The fuzzy-rules analysis in the absence of obstacles analyzed
the driver’s intent to move into the next lane with the car’s
deviation from the lane center and found the move to be
“safe.” The legal-maneuver analysis modules found the left
lane boundary is crossable when the vehicle deviated toward
the left, so it also output a “safe” signal. Finally, the fuzzy-rules
analysis for blind-spot detection accepted that no vehicle
existed in either blind-spot region, so it also output a “safe”
signal, so the resultant system warning was “safe.”

The results of other simulations were as expected and
verified that system performs like the flowchart in Figure 2. In
the next section, we will compare the performance of certain

Table 2: Some of the input and output of fuzzy-rules when vehicle
is present.

𝐿Dev (%)
(− left, + right)

Normalized
distance

Focus
deviation Output

4 2.13 5 Safe
−5 2.32 9 Safe
−7 3 3 Safe
8 2.01 10 Safe
13 0.97 17 Warning
32 0.13 52 Danger

parts of our system with others methods and present the
results.

6. Experimental Results

In this section, experiments were performed to test each
of the nonanalysis modules within our system worked as
expected before comparisons were made to compatible algo-
rithms. We have verified through simulation that our system
performs as expected following the flow chart in Figure 2.
Then, we can compare the performances of some of the more
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Figure 20: A scenario where driver’s focus misaligned with the vehicle ahead.

Table 3: Some of the input and output for the blind-spot fuzzy-rules analysis module.

Vehicle at right blind-spot Vehicle at left blind-spot 𝐿Dev (− left, + right) (%) Gaze angle Output
0 0 −5 −11 Safe
0 1 −19 −4 Warning
0 1 10 15 Safe
1 0 8 12 Warning
1 0 −20 −5 Safe
1 1 −32 −22 Danger

Figure 21: One of the driving scenarios: changing lane with no
vehicle in blind-spots.

important modules within our systemwith other comparable
methods.

The tests include the performance of the particle-filter
based face tracker against the performance of a trained
Haar-like feature Adaboosted classifier; the performance our
trained cost-sensitive Adaboosted classifier will be compared
to a standard Adaboosted classifier; and the performance
for the fuzzy-rules-based analysis module for obstacle-less
driving against a trained artificial neural network. Total of
three comparisons were made.

Two video sequences were used for testing the perfor-
mance of the face trackers. The first sequence, “A,” contains
372 frames of the driver’s face in various degrees of moving,
tilting, and turning. The second sequence, “B,” contains 476
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Figure 22: The flow chart for the driving scenario in Figure 21.

Table 4: Performance comparisons of head trackers in terms of
number of correct frames (out of total number of frames).

Film sequence Adaboosted
classifier

Adaboosted classifier
+ particle filter

A 213 (372) 365 (372)
B 439 (476) 467 (476)

frames of the driver’s face yawning, partially occluded by
small objects, mouth moving, and eyes closed temporarily.
Table 4 shows the comparisons of the performances of both
systems using these two video sequences. The number in
quote is the total number of frames, and the unquoted
numbers indicate howmany frames each tracker has correctly
detected the human face. It is obvious that the particle
filter tracker outperformed the Adaboosted classifier in both
sequences; with a maximum difference of 98.1% accuracy
against 57.3% accuracy for sequence A. It is also obvious
that the performance of the particle filter method is more
consistent and thus robust across both video sequences;
performing at better than 98%, while the performances of
Adaboosted classifier alone varied from 57% to 92%.

In the second test, the performance of a trained CS
Adaboost classifier of vehicles is compared to a regular
Adaboost classifier trained using the same positive and

Table 5: Performance Comparisons of CS Adaboost versus regular
Adaboost.

Vehicle recognition
Adaboost 90.15%
CS Adaboost 94.16%

Table 6: Ann training rules for deviation versus speed.

Danger level Deviation
Small Medium Large

Speed
Fast Medium High High
Normal Low Medium High
Slow Low Low Medium

negative training samples. Table 5 shows the recognition
rate (existence of vehicle correctly detected). As shown, CS
Adaboost is clearly a better performer than regular Adaboost
by up to 4%.

The performance of the fuzzy rules-based safety analyzer
is compared to a feed-forward artificial neural network with
two hidden layers. The training rules for the artificial neural
network are shown in Tables 6 and 7. The car speeds are
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Table 7: Ann training rules for Angle between driver’s line-of-sight and car’s direction of travel versus Speed.

Danger level Angle between driver line-of-sight and car’s direction of travel
Small Medium Large

Speed
Fast Medium High High
Normal Low Medium High
Slow Low Low Medium

Table 8: Some of the rules determined ANN versus the rules of the automatic extracted fuzzy rules, bold lines where the two differ.

(a)

ANN Rules
Speed (km/h) Angle between line-of-sight and driving direction (degrees) Deviation from lane center. (%) Danger level
40.5 24.5 35 Medium
77.7 47.1 25 High
50.5 44.9 54 Medium
25.9 32.8 30 Low
72.3 4.13 7 Medium

(b)

Fuzzy rules
Speed (km/h) Angle between line-of-sight and driving direction (degrees) Deviation from lane center. (%) Danger level
40.5 24.5 35 Low
77.7 47.1 25 High
50.5 44.9 54 Medium
25.9 32.8 30 Low
72.3 4.13 7 Low

Table 9: Comparison of results of safety analysis between ANN and
fuzzy rules, out of 343 total cases.

Safe analysis method Accurate False alarm/fail Accuracy
ANN (9 hidden
nodes) 312 31 90.9%

ANN (12 hidden
nodes) 314 29 91.4%

Automatic fuzzy rules
extraction 321 22 94.5%

Table 10: Results of blind-spot vehicle detector used on a video
sequence.

Total
frames

Frames with
vehicle

Correctly
detected
vehicle

False
alarms/
failures

Sensitivity

184 158 151 24 92.31%
80 26 25 52 96.15%

divided into: fast, normal, and slow. The angle between the
driver’s line-of-sight and the car’s traveling direction are in
degrees, either to the left, or to the right. However, for Table 7,
we simply summarized this information into small, medium,
and large, since the direction of turning is not applicable for
this table.

The experiments for ANNwere set up using two different
settings for the number of nodes in the hidden layer, and they
are 9 and 12. The resultant output rules determined by the
automatic fuzzy rules extractor and the trained ANN’s using
rules above are slightly different. A side-by-side comparison
of some of the rules is shown above in Table 8.The differences
in the rules, in bold, shows that the same input values
for both ANN and automatic fuzzy-rules extractor have
different output. Generally, those that caused the ANN to
issue medium alarm are determined by the fuzzy rules as low
level of danger.

A total of 343 test samples with varying driving param-
eters were used to test both the neural network and the
automatic fuzzy rules extraction module. Table 9 shows the
results of both systems: the ANN classifier issued more
false alarms or even completely fails to detect an emergency
situation, at least, in 29 out of the 343 cases, compared to only
22 miscalls by the fuzzy rules module.

To test the blind-spot vehicle detector, two video
sequences were used. The first sequence has 184 frames
containing a vehicle in 158 of them with a relatively uniform
background, the other has 80 frames containing a vehicle in
26 of frame with more complex background, are used to test
the blind-spot vehicle detector. Table 10 shows the results of
the detection, which show that the blind-spot vehicle detector
does not as well as can be expected; it yielded too many false
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alarms, for vehicle driving with a complex background, and
the detector has room for improvement in the future.

7. Conclusions

We have presented a vision-based driver-assistance system
that uses fuzzy-rules based system to correlate and analyze
the interactions between driver’s view, the vehicle’s move-
ments, and the vehicle’s surrounding. In order to ascertain the
system works as a whole, we first tested each data extraction
module to work as expected, these include the driver’s view-
ing angle detection, the location of lane boundaries and their
cross-abilities, the estimation for lane center and the amount
the traveling vehicle deviates from it, and the detection of
vehicle ahead and in the blind-spots. The data extracted
were mostly satisfactory under normal conditions and can
be used in the analysis modules for outputting requisite
warnings based on the inputs, in order to help the driver avoid
accidents. After we verified each data extraction module, we
performed lab simulations to test the performance of the
entire systemusing several real-world driving conditions, and
the results of the simulations confirmed that our system can
perform as expected.

We have also shown, by experimental results, that key
parts of our system including the face tracker, fuzzy rules-
based safety level analysis for obstacle-less driving, and the
car detection modules have each performed better than
comparable Adaboosted classifier, an ANN with 12 hidden
nodes, and a regular Adaboosted classifier trained on the
same set of samples, respectively. In summary, this paper
presented a fuzzy-rules-based driver-assistance system that
analyzes the interactions between the driver, the vehicle, and
its surrounding and issues timely alerts that would keep
the driver from entering into dangerous traffic situations.
In addition, the blind-spot related modules would alert
the driver when the vehicle deviates toward a neighboring
already occupied by a vehicle. Lastly, it is also by design that
this system is composed of loosely integrated modules, so it
will be able to accommodate inclusion of additional modules
in the future without problems.
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