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A newmethod named quality-relevant kernel neighborhood preserving embedding (QKNPE) has been proposed. Quality variables
have been considered for the first time in kernel neighborhood preserving embedding (KNPE)method for monitoringmultimodal
process. In summary, the whole algorithm is a two-step process: first, to improve manifold structure and to deal with multimodal
nonlinearity problem, the neighborhood preserving embedding technique is introduced; and second to monitoring the complete
production process, the product quality variables are added in the objective function. Compared with the conventional monitoring
method, the proposed method has the following advantages: (1) the hidden manifold which related to the character of industrial
process has been embedded to a low dimensional space and the identifying information of the different mode of the monitored
system has been extracted; (2) the product quality as an important factor has been considered for the first time inmanifoldmethod.
In the experiment section, we applied this method to electrofused magnesia furnace (EFMF) process, which is a representative case
study. The experimental results show the effectiveness of the proposed method.

1. Introduction

Product quality monitoring has attracted a lot of attention
like process monitoring in nearly two decades. Scholars
and enterprises have made great efforts and obtained many
worthy achievements [1]. Data-based process monitoring is
an importantmeans in solving some such issue [2–4]. Typical
data-based process monitoring methods are used to deal
with the input variable space, such as principal component
analysis (KPCA) [5–7] or independent component analysis
(KICA) [8–10]. Partial least squares (PLS) [11–14] or kernel
partial least squares (KPLS) [15–18] can build the model of
input/process variables and output/quality variables; how-
ever, the effect is not ideal for multimodal process [19, 20].
Because root causes of potential quality problems are in
process variables [21], synthetically considering the whole
variables is a subject worthy of study.

Large-scale data can be obtained and stored from indus-
trial process, which contain process variables and quality
variables [22–24]. Storing and processing these received data

are a difficult problem; we need the mathematical trans-
formation and dimensionality reduction. Moreover, because
process variable is usually measured directly, it does not
cause big time delay generally. However, quality variable is
measured by many complex means, such as chemical test;
it will cause big time delay. Sample frequencies of process
variables and quality variables are usually not synchronized
[21]. This problem may increase the false alarm rate and
missed alarm rate in the monitoring of multimodal process
using the above traditional method.Manifold-basedmethod,
such as locally linear embedding [25–28], is a kind of method
which keeps relative relationship among the data points from
a high dimension space to a low dimension space. As a
manifold learning framework, it calculates the Euclidean
distance between every data point and its neighbors and then
keeps this relationship to a lower dimensional manifold in
the process of dimension reduction. Time serials of sample
will not affect the effectiveness of the previous mentioned
method.
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Figure 1: Data nonlinear relationship of EFMF.

However, for strong-nonlinearity problems, it may not be
used directly, because some data points may lay on nonman-
ifold surfaces. In this case, kernel technique was introduced
[20], which projects the raw data into a higher dimensional
linear space, that is, the feature space.Themanifold structure
of data is improved by this transformation. In addition, since
change of feed, adjustment of production plan, and switching
set value by human, industrial production processes have
multimodal characteristics [29, 30]. The traditional moni-
toring methods are not available for multimodal processes
monitoring as previously stated.The quality variables of each
mode and the product quality variables were unnoticed in the
existing manifold-based monitoring methods.

This paper proposed a new manifold-based monitoring
method used to detect fault in multimodal process, which
considered the quality variables for the first time. We can
decompose the process into two steps as follows: first, using
KNPE technique to improve manifold structure and to
deal with multimodal nonlinearity problem; second, adding
preprocessed quality variables in the objective function to
monitoring the complete production process. The proposed
method has the following advantages: Firstly, the hidden
manifold has been embedded in a low dimensional space
and the identifying information of the different mode has
been extracted. Secondly, the product quality has been
considered inmanifoldmethod for the first time. To verify the
effectiveness of the proposed method, EFMF is introduced in
this paper. EFMF process will be described in the experiment
section, which is a typical industrial object with characteristic
of multimode and nonlinearity [31, 32]. Through experimen-
tal examples, detection capability of the algorithm proposed
will be verified.

The main parts of this paper are organized as follows.
In Section 2, KNPE algorithm and statistic are illustrated. In
Section 3, we show how QKNPE works in process monitor-
ing. An important example of EFMF process is studied to
verify the effectiveness of the proposed method.

2. Kernel Neighborhood Preserving
Embedding Algorithm and Statistic

2.1. TheTheory of Kernel Neighborhood Preserving Embedding
Algorithm. Nonlinear characteristics of complex industrial
process limit the application of many linear processes moni-
toringmethod.The basic principle of kernel functionmethod
is as follows. We assume process data after standardization
as X
𝑚

= [x
1
, x
2
, . . . , x

𝑛
] ∈ R𝑚×𝑛, 𝑛 is sample size obtained

by sampling, and 𝑚 is dimension of measure variable. We
use a nonlinear mapping Φ(⋅) to map input data into a high
dimensional feature space and then process the data in high
dimensional feature space. We assume that the data points
in the neighborhood fit locally linearly in the feature space.
As shown in Figure 1, it can convert the computation of
nonlinear high dimensional feature space after inner product
operation into kernel function operation of the original data
space by kernel function K(X

𝑖
,X
𝑗
) = Φ

𝑇

(X
𝑖
)Φ(X
𝑗
). The

kernel function used commonly in process monitoring areas
is radial basis kernel function K(X

𝑖
,X
𝑗
) = exp(−‖X

𝑖
−

X
𝑗
‖

2

/𝑐), where 𝑐 = 𝑟𝑀𝜎

2, 𝑟 is parameter, 𝑀 is the
dimensions of the input data, and 𝜎

2 is variance [33].Φ(X) =

[Φ(x
1
),Φ(x

2
), . . . ,Φ(x

𝑛
)] ∈ RV is data of high dimensional

feature space. V is the dimensions of the high dimensional
feature space. The Euclidean distance between two points in
high dimensional feature space can be calculated according
to the following formula:
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And then, the following weightmatrix of KNPEW can be
calculated according to the following formula [34]:
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Solving (2),
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The global public information Φ(X
𝑔
) = [Φ(x

𝑔,1
), . . . ,

Φ(x
𝑔,𝑛

)] ∈ R𝑑 can be extracted by keeping local structure
of the input data. The cost error of global public subspace is
defined as
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where M = M𝑇 = (I − W)

𝑇

(I − W) and I
𝑛
is 𝑛 order unit

matrix.
Using the Lagrange multiplier method to deduce the

global public spaceΦ(X
𝑔
), the Lagrange function is
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Setting Lagrange function asΦ(X
𝑔
) and partial derivative

of 𝜆 as 0, we can obtain
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The minimal solutionΦ(X
𝑔
) satisfies this form:

MΦ (X
𝑔
) = 𝜆Φ (X

𝑔
) . (7)

So the global public space Φ(X
𝑔
) is the first 𝑑 minimum

eigenvalue feature vector ofM.

2.2. Calculations of 𝑇

2 and SPE Statistic for Kernel Neigh-
borhood Preserving Embedding. Themethod based on KNPE
process monitoring can reduce 𝑡, the false alarm rate and
missed alarm rate, and improve the accuracy by separating
the data space into global public space and the local special
subspace.

We project the matrix from the high dimension space to
low dimension space asΦ(X

𝑔
) = G𝑇Φ(X). According to (4),

we can obtain
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where G is mapping projection matrix from high dimension
space to low dimension space. The constraint condition for
the projection mapping matrix is G𝑇G = I

𝑑
. Lagrange

multiplier can be used to solve it as follows:
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SettingG = Φ(X)S, coefficientmatrix is S = [s
1
, . . . , s

𝑑
] ∈

R𝑛. Equation (9) can be transformed to
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Φ (X)MΦ𝑇 (X)Φ (X) S = 𝜆Φ (X) S
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(10)

Perform eigenvalue decomposition of matrix MK. And
then the projection mapping matrix S from high dimension
space to low dimension space can be gotten by reconstructing
eigenvector referring to the 𝑑 smallest eigenvalue.

Based on the subspace KNPE separation modeling pro-
cess is as follows:
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where Φ(X
𝑔
) is global public subspace, Φ(X

𝑙
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special subspace, Φ(X
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) ∈ RV, 𝑖 = 1, . . . , 𝐶, and 𝐶 is the

number of modes in the multiple mode process.
For the new sample data Φ(Xnew), the global public

subspace Hotelling 𝑇

2 statistics and SPE statistics of each
local special subspace are as follows:
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whereΛ = Φ(X
𝑔
)Φ
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(X
𝑔
)/𝑛−1 is covariancematrix of global

public subspace on the training set.

3. Quality-Relevant Kernel Neighborhood
Preserving Embedding Method

3.1. Theory of Quality-Relevant Kernel Neighborhood Preserv-
ing Embedding. KNPE method can deal with the nonlinear
problem better, but it did not consider the change of process
quality variables which industrial process is most concerned
with. That is one of the reasons why false alarm and missed
alarm happen frequently. The covariance information rep-
resents relationship of global public subspace and quality
variables. Inmultimodal subspace separation,wemake global
public spaceΦ(X

𝑔
) = [Φ(x

𝑔,1
), . . . ,Φ(x

𝑔,𝑑
)] ∈ R𝑛 to keep the

local structural information of high dimension space of input
data and at the same timemake the covariance information of
score matrix of output quality variable Y = [y

1
, . . . , y

𝑛
] ∈ R𝑚

after standardization largest. T = [t
1
, . . . , t

𝑑
] ∈ R𝑛 is score

matrix of input data variable Φ𝑇(X) of each mode, where
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(X)R and R = [r
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output variable. Namely, U = Y𝑇C. C = [c
1
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𝑑
] ∈ R𝑚 is

load matrix of Y𝑇. 𝑛 is the total length of various models.The
relationship of global public subspace and quality variable
information is fully extracted. The extraction of the global
public space will meet requirements of complex industrial
process and improve the accuracy of the multimode process
monitoring. The model using QKNPE method to extract the
global public subspace is as follows:
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Setting the partial derivative of Lagrange function for
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Neighborhood Preserving Embedding. According to (12), we
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where G = [G
1
,G
2
, . . . ,G

𝑑
] ∈ RV is mapping matrix from

high dimension space to low dimension space.The constraint
condition is G𝑇
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Figure 2: The monitoring flow of multimode processes based on QKNPE.

Let G
𝑖
= Φ(X)S

𝑖
and let S = [S

1
, . . . , S

𝑑
] ∈ R𝑛; (20) can
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The minimal solution of S
𝑖
meets the following form:

(2MK +
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𝜆
2

+
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𝜆
3
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𝑖
= 2𝜆S
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. (22)

So the feature decomposition formatrix (2MK+KK/𝜆
2
+

Y𝑇YK/𝜆
3
) is made. The eigenvector corresponding to the

𝑑 smallest eigenvalue is projection mapping matrix S
𝑖
from

high dimension space to low dimension space.
Thus, the following equation can be gotten:

Φ
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(23)

whereΦ(X
𝑙
) are each local special subspace andΦ(X

𝑙,𝑖
) ∈ RV,

𝑖 = 1, . . . , 𝐶.
The flow chart of the whole multimode process monitor-

ing method is shown in Figure 2.
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Table 1: The definition of different modes in EFMF.

Mode Raw material Whether to add
raw material

1 Magnesite block YES
2 Magnesite block NO
3 Mixture YES
4 Mixture NO
5 Magnesite powder YES
6 Magnesite powder NO

4. The Experimental Results

The EFMF is one type of the main equipment for the
production of magnesia, and it belongs to mine heat electric
arc furnace. Arc is heat source. It can well smelt magnesia
by concentrating heat. Overall equipment of fused magnesia
furnace generally includes transformer, circuit short net,
electrode lifting gear, electrode, and furnace. Furnace shell is
commonly rounded and slightly tapered. For the convenience
of easing shell molten lead, the ring is welded in a furnace
shell wall. The mobile car is equipped below furnace, so that
clinker after complete melting can be moved to fixed station
and cooled [20].

The EFMF produces high temperature to complete melt-
ing process by introducing large current. The temperature of
area near the electrode is high. The temperature of area far
away from the electrode is low. Once the temperature of the
area around electrode is too high, it is easy to cause security
incident. However, once the temperature of area far away
from the electrode is too low, lots of material will be wasted.
It will seriously affect the product yield and quality. It is
required to timely detect abnormal and failure in the process:
therefore, the process monitoring for working process of
fused magnesia furnace is very necessary and meaningful.

The difference of magnesite stone raw materials and
the difference of charging operation are corresponding to
change of characteristics of the magnesium furnace smelting
process and process data has strong nonlinear characteristic.
This paper selects the process data obtained through the
two conditions with and without charging smelting process
of the massive magnesite, mixed massive magnesite, and
powder magnesite of smelting process as the six different
operation modes to model. For simplifying process dividing
the model, this section assumes that each model is isometric.
The definition of different modes in EFMF is shown in
Table 1. We use process monitoring method based on the
proposed QKNPE subspace separation to monitor the work
process. To show good effectiveness of the proposed method,
LLE and KPLS are used for comparison. According to the
comparing results, we can verify the efficiency and accuracy
of the proposed QKNPE subspace separation method for
monitoring the multimodal process.

Firstly, we select sampling data from six modes of EFMF
for offline modeling, and all of these sampling data are

obtained under normal working condition. Each group of
data contains three phase current values and three key
variables. The modeling data set contains 1500 samples.
For validating the monitoring performance of the proposed
method for multimode process, we use 6 groups which
contain 1500 samples data with fault. Faults 1, 2, and 3
happen from 200th, 400th, and 700th samples, respectively.
The reason is excessive heating. Faults 4, 5, and 6, which are
caused by actuator stuck fault, start from 900th, 1200th, and
1400th samples, respectively.

Using multimodal process modeling and monitoring
methods based on LLE, KPLS, and QKNPE subspace sepa-
ration for fault 1 to fault 3, 𝑇2 and SPE statistics are shown
in the diagrams in Figures 3–5. According to the results,
it can be found that the local special subspace of LLE and
KPLS has high nonresponse rates and low accuracy compared
with QKNPE. Global public space monitoring of KPLS and
QKNPE and local special subspace monitoring have high
accuracy and low nonresponse rates, while QKNPE has lower
rate of false positives. For faults 4–6, 𝑇2 and SPE are shown
in Figures 6–8. We can find that the local special subspace
of LLE monitoring for faults 4–6 has high nonresponse rates
and low accuracy and the global public subspace monitoring,
global public space monitoring of KPLS and QKNPE, and
local special subspace monitoring have high accuracy and
low nonresponse rates, while QKNPE has lower rate of false
positives.

In fusedmagnesia furnace multimodal process, the mon-
itoring accuracy, the rate of false positives, and nonresponse
rates of six faults based on LLE, KPLS, and QKNPE subspace
separation method are shown in Table 2. The experimen-
tal results show the process monitoring method based on
QKNPE has very good monitoring effectiveness.

5. Conclusion

In this paper, the method based on QKNPE is proposed
and applied to multimodal process monitoring. This method
can solve the problem of nonlinear multimodal process
monitoring. KPLS method can solve the problems that
manifold method cannot directly be applied to nonlinear
multimodal process monitoring and KPLS changes did not
explain ability of quality variables. In monitoring fused
magnesia furnace smelting process, QKNPE method can use
subspace separation method and considering the advantages
of the relationship between input variable and output variable
quality, it can improve the monitoring accuracy, can reduce
false positives and omission, and can be effective to detect the
fault during the process of multimode.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



8 Mathematical Problems in Engineering

0 500 1000 1500
0

10

20

30

40

50

60

Samples
0 500 1000 1500

0

1

2

3

4

5

6

7

8

9

10

Samples

SP
E

T
2
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(b) Monitoring based on KPLS for fault 1
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(c) Monitoring based on QKNPE for fault 1

Figure 3: Monitoring results for fault 1.
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(b) Monitoring based on KPLS for fault 2
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Figure 4: Monitoring results for fault 2.



10 Mathematical Problems in Engineering

0 500 1000 1500
0

20

40

60

80

100

120

Samples
0 500 1000 1500

0

1

2

3

4

5

6

Samples

SP
E

T
2

(a) Monitoring based on LLE for fault 3
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(b) Monitoring based on KPLS for fault 3
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Figure 5: Monitoring results for fault 3.
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(a) Monitoring based on LLE for fault 4
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Figure 6: Monitoring results for fault 4.
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(a) Monitoring based on LLE for fault 5
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(b) Monitoring based on KPLS for fault 5
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(c) Monitoring based on QKNPE for fault 5

Figure 7: Monitoring results for fault 5.



Mathematical Problems in Engineering 13

0 500 1000 1500
0

5

10

15

20

25

30

35

40

45

50

Samples
0 500 1000 1500

0

0.5

1

1.5

2

2.5

3

3.5

Samples

SP
E

T
2

(a) Monitoring based on LLE for fault 6

0 500 1000 1500
0

50

100

150

200

250

300

350

400

Samples
0 500 1000 1500

0

5

10

15

Samples

SP
E

T
2

×10
7

(b) Monitoring based on KPLS for fault 6
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Figure 8: Monitoring results for fault 6.
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Table 2: The monitoring accuracy rate, false alarm rate, missing alarm rate based on LLE, KPLS and QKNPE methods.

Failure Method Statistics Accuracy Rate of false alarm Rate of missing report

1

LLE 𝑇

2 73.07 1.51 30.82
SPE 99.60 3.02 0

KPLS 𝑇

2 99.03 6.73 0
SPE 98.93 5.13 0

QKNPE 𝑇

2 99.93 0.50 0
SPE 99.53 3.52 0

2

LLE 𝑇

2 99.40 2.01 0.09
SPE 86.93 2.01 17.08

KPLS 𝑇

2 97.40 6.22 0
SPE 58.07 3.56 55.86

QKNPE 𝑇

2 99.80 0.75 0
SPE 99.07 3.26 0.09

3

LLE 𝑇

2 98.87 2.43 0
SPE 61.60 1.29 70.79

KPLS 𝑇

2 95.67 6.98 0
SPE 96.45 2.30 4.57

QKNPE 𝑇

2 99.60 0.86 0
SPE 98.73 2.72 0

4

LLE 𝑇

2 63.00 3.23 87.52
SPE 84.33 1.67 36.61

KPLS 𝑇

2 91.07 8.42 8.65
SPE 92.05 1.88 14.91

QKNPE 𝑇

2 96.27 0.89 7.99
SPE 95.07 2.34 8.82

5

LLE 𝑇

2 76.27 5.59 96.01
SPE 86.87 1.50 59.47

KPLS 𝑇

2 87.80 11.09 11.33
SPE 92.93 2.13 18.24

QKNPE 𝑇

2 96.87 1.25 10.63
SPE 95.60 2.42 12.29

6

LLE 𝑇

2 88.53 5.58 93.07
SPE 92.07 1.43 98.02

KPLS 𝑇

2 87.42 11.19 16.41
SPE 94.15 2.41 31.58

QKNPE 𝑇

2 97.60 1.43 25.84
SPE 96.20 2.64 19.80
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