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The numerical manifold method (NMM) is characterized by its two cover systems, the mathematical cover and the physical cover.
In the standard NMM, the mathematical cover is required to cover the whole problem domain. In this study, however, around
each crack tip we specify a small domain on which the displacement is taken as the truncated Williams’ displacement series. And
accordingly all such small domains are not covered by the mathematical cover that only covers the rest of the problem domain.
Meanwhile, the mathematical cover is constructed by designating all supports of the scattered nodes arising in the moving least
squares interpolation as the mathematical patches. In this way, any physical patch contains no crack tip and can be approximated
by polynomials. As a result, no blending element issue exists as in the extended finite element method and NMM. In addition to
high precision, the proposed procedure is especially suitable for the situation where a crack tip is very close to other cracks, a case
difficult to treat by the interaction integral procedure that is commonly used in the extraction of the stress intensity factors of mixed
mode cracks.

1. Introduction

The extended finite element method (XFEM [1, 2]) was
first introduced by Belytschko and Black and Moës et al.
in 1999. The main idea of XFEM is to superpose enriched
terms to the classical finite element approximation. The
crack is represented independently of the mesh, allowing for
simulation of the crack propagation without remeshing. It
is known that the convergence rate of XFEM is influenced
by the transition layer between the singular enrichment area
and the rest of the domain. Some strategies for improving the
convergence rate of XFEM can be found in [3–5]. Another
effective approach to model crack problems is the numerical
manifold method (NMM [6–14]). Besides XFEM and NMM,
there are some other related methods, such as mesh-free
method [15–18], cracking particles method [19], extended
isogeometric analysis (XIGA [20]), and immersed particles
method [21].

Usually, neither XFEM nor NMM directly estimates the
stress intensity factors (SIFs). Instead, they utilize a postpro-
cessing procedure, called the interaction integral procedure
[2], to extract SIFs of a mixed mode crack. If the crack is
very close to another crack, however, the interaction integral
procedure cannot work very well because a local domain
containing the crack tip, selected for the calculation of the
𝐽 integral, might be cut by the neighboring crack unless the
local domain is selected very small. But if the local domain is
too small, the precision of the resulting SIFs is compromised
considerably.

To solve the above issue, some special techniques have
been developed to conduct the crack analysis, where the SIFs
are selected as the basic unknowns and can be solved directly.
Liu et al. [22] enriched the approximation surrounding the
crack tip with the truncated Williams’ series and force the
enriched DOFs to be equal. The enriched DOFs are actually
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the generalized SIFs.The numerical experiences indicate that
this approach does not always reach high precision since the
blending elements are still present.

Réthoré et al. [23] developed a hybrid analytical and
extended finite element method, abbreviated as HAX-FEM.
By HAX-FEM, the problem domain Ω is subdivided into
two overlapping subdomains Ω

𝑊
and Ω

𝑋
. Here, Ω

𝑊
is a

small domain around the crack tip and, for the simplicity in
presentation,Ω is assumed to contain only one crack tip. On
Ω
𝑊

the displacement is expressed by a truncated Williams’
series, while the displacement on Ω

𝑋
is approximated by the

conventional XFEM. Due to the presence of the overlapping
subdomain, the energy coupling procedurewas utilized in the
weak formulation so as not to commit the variational crime.
In order not to avoid the overlapping subdomain, another
artificial thing, Passieux et al. [24] proposed thatΩ

𝑊
andΩ

𝑋

do not overlap, and the displacement continuity across the
interface between Ω

𝑊
and Ω

𝑋
is enforced by the Lagrange

multiplier method, which will lead to an indefinite system
of linear equations. And the approximation to the Lagrange
multiplier is not so easy such that the LBB condition is
satisfied. To avoid the introduction of the Lagrangemultiplier,
recently Zhuang et al. [25] suggested that in Ω

𝑊
the stress is

taken as the basic field variable instead of the displacement,
where theweak formulation is derived from themixed energy
functional proposed by Long and Zhao [26]. This procedure
is able to achieve an accurate evaluation of SIFs, but the
displacement inΩ

𝑊
is hard to calculate accurately. The open

degree of cracks is important for the situations such as the
exploitation of shale gas by the hydraulic fracture technique.

In this study, the MLS-based NMM is used to evaluate
directly the SIFs of mixed mode cracks. The MLS-based
NMM enjoys the merits owned by the element-free Galerkin
(EFG [15])method and theNMM[6], which has been verified
in the analysis of free boundary value problems such as
the unconfined seepage analysis [27], and will be further
confirmed by the challenging examples on crack analysis in
the sequel.

2. Elastic Crack Tip Asymptotic Fields

The crack tip asymptotic fields, including displacement and
stress fields, of a plane crack in a linear elastic brittle material
with traction-free faces can be expressed in the so-called
Williams’ expansions [28]. If the crack lies on the negative
𝑥-axis and the polar coordinates centered at the crack tip
are designated 𝑟 and 𝜃 (counterclockwise from the positive
𝑥-axis), Williams’ series (truncated to 𝑁 terms) for the
displacement can be written as
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(1)

where 𝜇 = 𝐸/(2(1 + V)) is the shear modulus; the Kolosov
constant 𝜅 is equal to (3−V)/(1+V) for plane stress and 3−4V
for plane strain conditions; 𝐸 and V are Young’s modulus and
Poisson’s ratio.The terms containing𝐴

𝑛
and 𝐵

𝑛
are related to

the mode I and mode II parts of deformation, respectively.
Here is a brief review of some notable properties of this
expansion. The rigid body translation of the crack depends
on the coefficients𝐴

0
and𝐵

0
and the rigid body rotationwith

respect to the crack tip depends on 𝐵
2
. The second term in

the mode I expansion is often referred to as the elastic 𝑇-
stress component. The coefficients 𝐴

1
and 𝐵

1
are related to

the mode I and mode II stress intensity factors (SIFs) as

𝐴
1
=

𝐾I
√2𝜋

, 𝐵
1
= −

𝐾II
√2𝜋

. (2)

Traditionally, the SIFs are important for the determina-
tion of the initiation and propagation of cracks in brittle
materials. However, some recent studies show that higher-
order terms of the asymptotic field are of great relevance for
predicting the constraint of elastoplastic crack tip fields [29]
and for interpreting the size effect of quasi-brittle materials.
So evaluating the higher-order terms ofWilliams’ expansions,
called generalized stress intensity factors together with the
conventional SIFs, is also necessary.

3. Problem Formulation

Let us consider the elastic body with a traction-free crack
surface Γ

𝑐
shown in Figure 1 (reproduced from [24]). The

prescribed displacement u is imposed on Γ
𝑢
, while traction 𝑡

0

is acted on Γ
𝑡
.The domain is divided into two nonoverlapping

subdomains Ω
𝑋
and Ω

𝑊
with unknown displacements u

𝑋

and u
𝑊
, respectively. In domain Ω

𝑋
, the approximation of

displacementu
𝑋
is described by theMLS-basedNMM,which

will be discussed in the next section. In domain Ω
𝑊
, we

approximate the displacement by the truncated Williams’
series given by (1).

In [24], the displacement continuity across the interface
Γ
𝑊

is enforced by the Lagrange multiplier method. As the
number of crack tips increases, the number of Lagrange
multipliers will increase rapidly. So the penalty method is
adopted in this study. In fact, the results created by the two
methods are very small due to the numerical excellence of
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Figure 1: Decomposition of the domain into a standard domain and
an analytical patch.

NMM; see [30], for example. In this way, we construct the
conventional potential as follows:
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(3)

where 𝜀 is the infinitesimal strain tensor, D is elastic matrix,
Γ
𝑊

is the interface between Ω
𝑋
and Ω

𝑊
, 𝑘
𝑝
is the penalty

factor, and 𝜆 is the Lagrange multiplier associated with the
essential boundary condition. We assume that the boundary
conditions are held by Ω

𝑋
only since Ω

𝑊
is a quite small

domain around the crack tip. The equation can be extended
to multiple crack tips problem straightly.

3.1. Standard Subdomain. In domain Ω
𝑋
, MLS-based NMM

is used to approximate the displacement. The salient feature
of NMM is the introduction of two covers, namely, the
mathematical cover (MC) and the physical cover (PC). The
MC consists of mathematical patches (MP), each of which is
a rectangle or hexagon usually.TheMCs do not need tomatch
the boundary of the domain, as long as they cover the whole
domain.The construction of physical patches is accomplished
by cutting themathematical patches using discontinuity lines,
such as cracks and material boundaries. All the physical
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Figure 2: A crack cuts one mathematical patch into two physical
patches.

patches form the PC covering exactly the problem domain.
The main purpose to introduce two covers is to solve in
a unified way the continuum and discontinuum problems.
Moreover, the best approximation to the primal field variables
can be guaranteed because we can always use a uniformmesh
to construct the MC.

Here, we give a brief illustration on how NMM simulates
the discontinuity. First, we deploy over Ω

𝑋
some nodes.

Unlike EFG, all these nodes, called mathematical nodes,
can be allowed to be outside Ω

𝑋
, as long as their influ-

ence domains have intersection with Ω
𝑋
. All the influence

domains of these mathematical nodes constitute the MC
covering Ω

𝑋
. Let us cut the mathematical patch of node

𝑃 (denoted as quadrilateral ABCD) by a crack (the bold
line) into 2 patches: pentagon AEFCD and triangle EBF,
respectively, as shown in Figure 2. Both of the two patches
are physical patches of the PC in construction. We add a
new physical node, denoted by 𝑃

2
, and associate 𝑃

2
with

triangle EBF. At this moment, 𝑃
2
has the same coordinate as

𝑃. The degrees of freedom associated with the two physical
nodes𝑃 and𝑃

2
are separate, reproducing strong discontinuity

along the crack. So, in NMM, there is no need to introduce
the Heaviside enrichment function which is widely used in
XFEM. Details can be found in [9, 12].

For zero-order NMM, which is used in this paper, the
displacement interpolation can be expressed as

u
𝑋 (𝑥) = ∑

𝑖∈𝑁𝑃

𝑁
𝑖 (𝑥) 𝑢𝑖 (𝑥) = N

𝑋
U
𝑋
, (4)

where 𝑁
𝑃
is the set of all physical nodes, 𝑢

𝑖
is the degree

of freedom, and 𝑁
𝑖
(𝑥) is the corresponding shape function

with both associatedwith node-𝑖. Here, we use theMLS shape
function with linear basis and rectangular influence domain
instead of the FEM shape function. The MLS interpolation is
discussed in detail in [15, 31].

3.2. Analytical Patch. On domain Ω
𝑊
, the displacement is

described by the truncated Williams’ series (1) only. So no
mesh is needed theoretically. Rewrite (1) as

u
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where 𝑁 is the maximum order of the truncated Williams’
series; 𝑓

1
, 𝑓
2
, 𝑓
3
, and 𝑓

4
are extracted from (1). Since the

SIFs and higher-order terms are related to special 𝐴
𝑛
and 𝐵

𝑛

above, generalized stress intensity factors can be evaluated
directly.

3.3. Matching Interface. The third term on the right of (3)
stands for thematching of standard subdomain and analytical
patch. No more unknowns are introduced through penalty
method.

3.4. System of Equations. Though nomesh is needed forMLS
interpolation, a background mesh is essential for numerical
integration. In practice, a circle of radius 𝑅

𝑊
= ℎ𝑟
𝑊
centered

at the crack tip is defined first. Here, ℎ is the average element
size of the mesh and 𝑟

𝑊
is a dimensionless size controlling

the region of Ω
𝑊
. All the elements in or in intersection with

the circle constitute subdomainΩ
𝑊
, while the rest constitute

subdomainΩ
𝑋
. The outer boundary ofΩ

𝑊
, which equals the

inner boundary of Ω
𝑋
, is the common interface Γ

𝑊
.

Putting 𝛿𝜋(u
𝑋
, u
𝑊
) = 0 and replacing u

𝑋
(𝑥) and u

𝑊
(𝑥)

by (4) and (5), we have the equations system as follows:
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(7)

u is the degrees of freedom in domain Ω
𝑋
, a is the degrees

of freedom in domainΩ
𝑊
, and Λ is the Lagrange multipliers

associated with Γ
𝑢
.

To obtain B
𝑋
and B

𝑊
, we should utilize the compatibility

equation:

𝜀
𝑖𝑗
=
1

2
(
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+
𝜕𝑢
𝑗

𝜕𝑥
𝑖

) . (8)

Substituting (4) into (8) and comparing the result with
equation 𝜀

𝑋
(𝑥) = B

𝑋
U
𝑋
, matrix B

𝑋
is obtained. We can

derive B
𝑊
in a similar way.

The backgroundmesh is used for integrating thematrices
in (6). For the elements cut by no discontinuity, 4 × 4 Gauss’s
points are used. For the elements cut by cracks or boundaries
they are subdivided into a set of triangles and each triangle
integrated by 13-point Hammer integration. For the element
with a crack tip inside, a special technique [12] is used to
eliminate the singularity.

L

W

a

(a) (b)

Figure 3: Edge-cracked plate under remote tension: (a) geometry
and loading; (b) mesh and patch for 𝑟

𝑊
= 2.

4. Numerical Examples

Several examples are studied to show the efficiency of the
proposed method. The first one is an edge-cracked plate
under remote tension. The choice of truncated order and the
convergence are investigated. Secondly the centre-cracked
plate under uniaxial tension (CCPT) and pure shearing
(CCPS) are used to evaluate the generalized stress intensity
factors. At last a star crack is provided to show the excellent
performance of proposed method for complex cracks. In all
these examples, the rectangular weight function with double
node spacing is adopted.

4.1. Edge-Cracked Plate under Remote Tension. The edge-
cracked plate considered here is shown in Figure 3(a). To
compare with [24], the parameters are as follows: 𝐿 = 17mm,
𝑊 = 7mm, 𝑎 = 3.5mm, Poisson’s ratio V = 0.3, and Young’s
modulus 𝐸 = 200GPa. A state of plane stress condition is
assumed.

A uniform mesh of 49 × 119 elements is used. The mesh,
the patch (with 𝑟

𝑊
= 2), and the crack (the red line) are

plotted in Figure 3(b). The reference solution [24] of 𝐾I for
this problem is 𝐾I0 = 2.9637MPa√𝑚.

The normalized value of 𝐾I is plotted as a function of
the dimensionless size 𝑟

𝑊
in Figure 4 with different orders

𝑁 of truncated Williams’ expansion. A similar tendency is
observed as in [24]. The dependence on the dimensionless
size 𝑟
𝑊
vanishes when𝑁 is higher than 2. For the same𝑁, the

precision decreases as the size 𝑟
𝑊

increases, indicating that
the analytical patch only influences near the crack tip. Since
the influence domain of nodes in MLS is larger than that of
XFEM, 𝑟

𝑊
= 1 leads to a wrong solution. For general case,

𝑟
𝑊

= 2 or 𝑟
𝑊

= 3 is recommended and used in the following
examples.
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To consider the convergence of proposed method, the
relative error of 𝐾I is plotted as a function of the mesh size
ℎ in Figure 5 with different orders 𝑁 of truncated Williams’
series. The relative error of𝐾I is defined as

𝐾err =

𝐾I − 𝐾I0


𝐾I0
. (9)

The convergence rates of relative error of 𝐾I are around 2,
larger than the value 1.25 to 1.5 in [24]. By the convergence
rate we mean the average slope of log(𝐾err)/ log(ℎ). Again we
can see that when𝑁 is above 2, accurate SIFs can be obtained.
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Figure 6: The CCPT specimen: (a) geometry and loading; (b) 𝜎
𝑦
-

stress nephogram for 𝑟
𝑊
= 3.

For the range of penalty factor in 10
3
∼10
5
𝐸, almost the

same results are generated.

4.2. A Centre-Cracked Plate under Uniaxial Tension or Pure
Shearing. The centre-cracked plate under uniaxial tension
(CCPT) is selected to investigate the pure mode I crack
parameters (Figure 6(a)). In order to compare the results with
the reference, the following geometry and loading parameters
are used: 𝑊 = ℎ = 4, 𝜎 = 1, and crack length 𝑎 = 2. A
80×80mesh is used. In this case,𝑁 = 14 together with 𝑟

𝑊
= 3

are used to calculate the coefficients of Williams’ expansion.
The penalty factor is assumed to be 1000𝐸. Figure 6(b)
shows the 𝜎

𝑦
-stress nephogram, where the red lines represent

the common interface of Ω
𝑋

and Ω
𝑊
. Table 1 shows the

coefficients 𝐴
1
–𝐴
5
, 𝐵
1
, and 𝐵

3
–𝐵
5
for CCPT specimens in

comparison with the results provided by other researchers
[32, 33]. It seems that the results here are in good agreement
with the results of finite element overdeterministic (FEOD



6 Mathematical Problems in Engineering

Table 1: Coefficients 𝐴
1
–𝐴
5
, 𝐵
1
, and 𝐵

3
–𝐵
5
for CCPT specimens (𝑎/𝑊 = 0.25).

𝐴
1

𝐵
1

𝐴
2

𝐴
3

𝐵
3

𝐴
4

𝐵
4

𝐴
5

𝐵
5

Present 0.7674 −0.0002 −0.2761 0.1830 0.0001 0.0026 0.0001 −0.0235 −0.0003
FEOD 0.7679 0.0000 −0.2778 0.1866 0.0000 0.0030 −0.0001 −0.0275 −0.0000
HCE 0.7665 — −0.2779 0.1915 — −0.0018 — −0.0235 —
BCM 0.7680 — −0.2777 0.1866 — 0.0030 — −0.0279 —

𝜏

𝜏

2h 2a

2W

(a)
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Figure 7: The CCPS specimen: (a) geometry and loading; (b) 𝜏
𝑥𝑦
-stress nephogram for 𝑟

𝑊
= 3.

[21])method. Only𝐴
1
–𝐴
5
are given for hybrid crack element

(HCE) and boundary collocation method (BCM) in [32]. In
fact, the results of HCE in Table 1 are calculated by half-crack
model with only mode I considered. HCE considering half-
crack model with mixed mode leads to wrong results for the
coefficients of higher-order parameters.

Now consider the centre-cracked plate under pure shear-
ing (CCPS). It is a typical example of mode II. The geomet-
rical parameters of the CCPS (Figure 7(a)), the mesh, and
material properties are the same as CCPT. Here, a uniformly
distributed shear force 𝜏 = 1 is imposed. Figure 7(b) gives the
𝜏
𝑥𝑦
-stress nephogram and again the red lines represent the

interfaces. The coefficients 𝐴
1
–𝐴
5
, 𝐵
1
, and 𝐵

3
–𝐵
5
are shown

in Table 2. Good agreement is observed between the present
results and those of FEOD, HCE, and BCM. Again results of
HCE in Table 2 are calculated by half-crack model with only
mode II considered.

Both of these two examples illustrate that the present
method can predict the generalized stress intensity factors
precisely. No special treatment is needed throughout the
whole process.

4.3. A Star-Shaped Crack in a Square Plate. At last a star-
shaped crack is analyzed which is often viewed as a rep-
resentation of complex cracks. The star-shaped crack in a
square plate subjected to biaxial tension is shown in Figure 8.

The normalized stress intensity factors at tips 𝐴 and 𝐵 are
defined as

𝐹
𝐴

I =
𝐾
𝐴

I
𝜎√𝜋𝑎

, 𝐹
𝐵

I =
𝐾
𝐵

I
𝜎√𝜋𝑎

, 𝐹
𝐵

II =
𝐾
𝐵

II
𝜎√𝜋𝑎

. (10)

In this example, the plate dimension is fixed to be𝑊 = 5,
and material constants are Young’s modulus 𝐸 = 200000 and
Poisson’s ratio V = 0.3. The biaxial tension 𝜎 is taken to be
unity.The influence of the finiteness of plate on the SIFs is also
investigated. Since the mesh refinement with no limit is one
of the major advantages for MLS interpolation, hierarchical
meshes are used around every crack tip here.The mesh (with
4 layers of hierarchical meshes near the tip) and detailed view
with analytical patches are plotted in Figure 9 with 𝑎/𝑊 =

0.1. The cracks are moved with a small distance to avoid
special case caused by symmetry. Here 𝑁 = 5 and 𝑟

𝑊
= 3

are selected. The computed SIF results are summarized and
compared with three reference solutions, respectively, from
Cheung et al. [34], Daux et al. [35], andMa et al. [7] in Table 3.
From this table, good agreement can be easily seen. This
example also shows that the proposedmethod can implement
local refinement and handle complex crack straightly.

5. Conclusions

A hybrid analytical and numerical manifold method is pro-
posed to analyze crack problems. The analytical subdomain
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Table 2: Coefficients 𝐴
1
–𝐴
5
, 𝐵
1
, and 𝐵

3
–𝐵
5
for CCPS specimens (𝑎/𝑊 = 0.25).

𝐴
1

𝐵
1

𝐴
2

𝐴
3

𝐵
3

𝐴
4

𝐵
4

𝐴
5

𝐵
5

Present −0.0002 −0.7422 0.0000 0.0005 −0.1848 −0.0009 −0.0047 −0.0002 0.0264
FEOD 0.0010 −0.7403 −0.0011 0.0011 −0.1840 −0.0003 −0.0024 −0.0000 0.0234
HCE — −0.7414 — — −0.1835 — −0.0045 — 0.0270
BCM — −0.7422 — — −0.1841 — −0.0034 — 0.0242

W

W

WW

𝜎

𝜎𝜎

𝜎

a
A

B

60
∘

Figure 8: A star-shaped crack in a square plate under biaxial tension.

(a) (b)

Figure 9: Star-shaped crack and the hierarchical meshes: (a) global view; (b) local view with analytical patches.

near the crack tip is described by the truncated Williams’
expansions and the rest is modeled by the MLS-based NMM.
Then, the two parts are coupled by the penalty method. The
variational formulation and discrete equations are carefully
discussed. The introduction of the analytical patch is to
directly determine generalized stress intensity factors, while
the advantage ofMLS-basedNMMis the simplicity in dealing
with complex cracks and local refinement. The numerical

experiments show that the proposed method is a promising
approach for crack problems.
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Table 3: Normalized SIFs comparison for a star-shaped crack.

𝑎/𝑊
𝐹
𝐴

I 𝐹
𝐵

I 𝐹
𝐵

II
𝑇 * ** *** 𝑇 * ** *** 𝑇 * ** ***

0.1 0.7447 0.7408 0.7511 0.758 0.7463 0.7408 0.7690 0.767 −0.0003 0.0000 0.0001 0.000
0.2 0.7629 0.7570 0.7670 0.771 0.7649 0.757 0.7683 0.771 0.0005 0.0004 0.0005 0.000
0.3 0.7913 0.7846 0.7931 0.789 0.7961 0.7884 0.7983 0.798 0.0018 0.0022 0.0021 0.002
0.4 0.8319 0.8255 0.8287 0.821 0.8470 0.8365 0.8466 0.854 0.0074 0.0070 0.0080 0.007
0.5 0.8887 0.8815 0.8864 0.887 0.9229 0.9087 0.9255 0.924 0.0186 0.0168 0.0184 0.016
0.6 0.9712 0.9758 0.9673 0.971 1.0404 1.0182 1.0445 1.040 0.0355 0.0338 0.0364 0.036
0.7 1.1035 1.1142 1.0971 1.107 1.2334 1.1936 1.2367 1.234 0.0600 0.0529 0.0593 0.061
0.8 1.3398 — 1.3423 1.340 1.5631 — 1.5624 1.559 0.0847 — 0.0864 0.082
0.9 1.8801 — 1.9037 1.930 2.1968 — 2.1927 2.166 0.0870 — 0.0868 0.089
“—” means no corresponding solution.
*Cheung et al. (1992) [34]; **Daux et al. (2000) [35]; ***Ma et al. (2009) [7].
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