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Most memetic algorithms (MAs) for graph partitioning reduce the cut size of partitions using iterative improvement. But this local
process considers one vertex at a time and fails to move clusters between subsets when the movement of any single vertex increases
cut size, even though moving the whole cluster would reduce it. A new heuristic identifies clusters from the population of locally
optimized random partitions that must anyway be created to seed the MA, and as the MA runs it makes beneficial cluster moves.
Results on standard benchmark graphs show significant reductions in cut size, in some cases improving on the best result in the
literature.

1. Introduction

Consider an unweighted undirected graph 𝐺 = (𝑉, 𝐸), where
𝑉 is a set of 𝑛 vertices, and 𝐸 is the set of edges that connect
them. A 𝑘-way partition {𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑘
} of the graph 𝐺 is a

partitioning of the vertex set 𝑉 into 𝑘 disjoint subsets. A
partition is said to be balanced if the difference in size between
the largest and the smallest subset is at most 1, that is, for all
1 ≤ 𝑖, 𝑗 ≤ 𝑘, ||𝑃

𝑖
| − |𝑃
𝑗
|| ≤ 1. The cut size of a partition is

defined to be the number of edges connecting vertices in
different subsets of the partition.The 𝑘-way graph partitioning
problem is the problem of finding a balanced 𝑘-way partition
with the minimum cut size. If 𝑘 = 2, it can be called
bipartitioning and if 𝑘 > 2, multiway partitioning. These
problems arise in applications such as sparsematrix factoriza-
tion, network partitioning, layout and floor planning, circuit
placement, social network analysis, and software-defined
networking [1, 2].

For general graphs, partitioning is known to be NP-hard
[3]. Bui and Jones [4] have shown that even finding good
approximate solutions is also NP-hard.

Therefore, many heuristic methods have been proposed:
some of them work well, but they cannot of course guarantee
optimality. The simplest heuristic is iterative improvement
partitioning (IIP) [5, 6], exemplified by the Kernighan-
Lin (KL) [7] and the Fiduccia-Mattheyses (FM) algorithms
[8], but these algorithms only produce solutions which are
approximations to local optima; however, this limitation can
be overcome by hybridizing them with metaheuristics, such
as simulated annealing [9], genetic algorithms (GAs) [10],
tabu search [11, 12], or ant colony optimization [13]. Recently,
a number of techniques based on GAs have achieved notable
results for 𝑘 = 2 [14–19] and 𝑘 > 2 [20–26]. Kim et al. [27]
have surveyed this work.

The use of IIP for local optimization of partitioning pro-
duced by a GA becomes less effective as the graph becomes
larger.Wewill show that this is because IIP often fails tomove
densely interconnected subgraphs, called clusters, between
partitions, and hence fails to find partitions with small cut
sizes.

The goal of the work reported in this paper is to over-
come the barriers to effective search which are presented
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by clusters, by modifying the GA so that it contributes to
move clusters appropriately.We present a memetic algorithm
(MA), which is a GA combined with local optimization,
in which a heuristic finds clusters in some of the positions
in each generation, by examining population of individuals,
each of which represents a position, rather than trying to
identify them directly from a single graph. It moves some
of these clusters. This heuristic supplements the well-known
ability of MAs to provide attractive initial points for local
optimization. Experimental results show that this approach
can substantially improve the performance of an MA. The
contributions of this work are summarized as follows.

(i) We provide a detailed explanation of the difficulty
of moving clusters in graph partitioning and provide
experimental results quantifying the impact of clus-
ters on the search for partitions with a small cut size.

(ii) We present a heuristic for detecting and moving
clusters, which is based on a new, population-based,
measure of the distance between vertices called genic
distance.

(iii) We show that this heuristic substantially improves the
ability of an MA to find good partitions.

The remainder of this paper is organized as follows. In
Section 2 we briefly introduce IIP algorithms and the test
graphs used in our experiments. In Section 3 we investigate
the difficulty of moving clusters in graph partitioning. In
Section 4we describe our new cluster-handling heuristic, and
an MA that uses this heuristic is described in Section 5. In
Section 6 we present experimental results, and draw conclu-
sions in Section 7.

2. Preliminaries

2.1. Iterative Improvement Algorithms in Bipartitioning. Itera-
tive improvement partitioning starts with a randompartition.
This is refined in a series of passes. At the start of each pass,
all the vertices are free to move between subsets. IIP selects
vertices and moves them, but each vertex is only moved once
during a pass. At the end of the pass, the best partition found
during the pass is identified and used as the input to the next
pass. Passes continue until there is no further improvement.

There are a number of IIP algorithms, of which KL [7]
is often considered to be the first reasonable heuristic for
bipartitioning. In KL, the movement of vertices during a pass
is restricted to the swapping of a pair of vertices between
subsets.

Let {𝐴, 𝐵} be a partition of 𝑉 into two subsets 𝐴 and 𝐵.
We define the gain 𝑔V associated with a vertex V to be the
reduction in cut size obtained bymoving V to the other subset.
By extension, the gain 𝑔(𝑎, 𝑏) obtained by swapping vertices
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 can be expressed as follows:

𝑔 (𝑎, 𝑏) = 𝑔
𝑎
+ 𝑔
𝑏
− 2𝛿 (𝑎, 𝑏) , (1)

where

𝛿 (𝑎, 𝑏) = {
1, if (𝑎, 𝑏) ∈ 𝐸,
0, otherwise.

(2)

KL selects the pair (𝑎, 𝑏) with the highest value of 𝑔(𝑎, 𝑏)
and effects the exchange. The vertices 𝑎 and 𝑏 are not
considered again during the current pass. A sequence of pairs
(𝑎
1
, 𝑏
1
), (𝑎
2
, 𝑏
2
), . . . , (𝑎

𝑛/2−1
, 𝑏
𝑛/2−1

) are selected in this way.
The algorithm chooses 𝑙 that maximizes ∑𝑙

𝑖=1
𝑔(𝑎
𝑖
, 𝑏
𝑖
) and

exchanges {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑙
} and {𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑙
}. KL performs

further passes until no improvement is possible.
FM is another widely used IIP algorithm, which is similar

to KL, except that it only moves one vertex at a time. This
makes FM faster than KL, with little loss in partition quality.
Several variants of KL and FM exist [15, 28, 29].

2.2. Local Optimization Algorithms for Multiway Partitioning.
There are three main schemes for multiway partitioning,
which are developments of the recursive, pair-wise, and direct
approaches [21] to bipartitioning.The recursive KL algorithm
bisects the graph recursively until there are 𝑘 subsets. The
pair-wise KL [7] starts with an arbitrary 𝑘-way partition. It
picks two subsets at a time from the 𝑘 subsets and performs
bipartitioning to reduce the cut size between those pairs. San-
chis [30] extended the FMalgorithm tomultiway partitioning
and showed that the direct method performed better than
recursion. The extended algorithm considers moving each
vertex from its current subset to every other subset. To
perform local optimization in the proposedMA formultiway
partitioning, we use a variant of this algorithm, called EFM
(extended FM) [21]. The time complexity of EFM is 𝑂(𝑘|𝐸|).

2.3. Local Search in Memetic Algorithms. It is already clear
that combining a GA with local optimization algorithms
is an effective approach to the graph partitioning problem
[15]. Some authors have explored fast but weak local opti-
mization algorithms. For example [31, 32], 2-opt was used
to relocate border vertices, which are those with edges that
connect to vertices in other subsets. Bui and Moon [10]
obtained better results with KL by allowing only a single pass,
while restricting the number of vertices to be swapped.
Conversely, other authors have reported notable improve-
ments by enhancing local optimization algorithms. For bipar-
titioning, Kim and Moon [15] suggested a new KL-based
local optimization algorithm, formulated using a new type
of gain, called lock gain, which only takes into account the
edges that connect a vertex to the vertices that have already
been moved. Combined with a GA, this algorithm obtained
impressive results on most benchmark graphs. For multi-
way partitioning, the combination of MAs with specialized
local optimization algorithms showed good results [20, 21].
Steenbeek et al. [18] proposed what they called a cluster
enhancement heuristic, which they combined with an MA,
and reported successful results. Their MA uses a vertex
swap heuristic to identify clusters. The MA only handles the
moving of clusters between subsets.

2.4. Test Graphs. We tested our MA on Johnson’s benchmark
graphs [9], which have been widely used in other studies [10,
11, 14–17, 20, 21, 23, 33–36]. They are composed of 8 random
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Figure 1: An example of cluster moving, in which the cut size of a
partition is reduced by 4.

graphs G𝑛.𝑑 and 8 random geometric graphs U𝑛.𝑑. The two
different classes of graphs are briefly described below.

(i) G𝑛.𝑑: a random graph on 𝑛 vertices, with an indepen-
dent probability 𝑝 that any two vertices are connected
by an edge. The probability 𝑝 is biased so that the
expected vertex degree, 𝑝(𝑛 − 1), is 𝑑.

(ii) U𝑛.𝑑: a random geometric graph on 𝑛 vertices that lie
in the unit square and whose coordinates are chosen
uniformly from the unit interval. Every pair of ver-
tices separated by a distance of 𝑡 or less is connected
by an edge. The expected degree of a vertex is 𝑛𝜋𝑡2.

3. Difficulty of Moving Clusters

Suppose that the cluster shown in Figure 1(a) is involved in
a bipartitioning problem. The four vertices in this cluster are
fully interconnected, and they all belong to the same subset.
Moving this cluster to the other subset, across the dotted
line in Figure 1(b) will reduce the cut size of the partition by
4. However, there is no motivation to move any single vertex,
because they all have negative gain: the gains of V

1
, V
2
, V
3
, and

V
4
are −1, −4, −2, and −1, respectively.This example illustrates

how IIP algorithms may miss a significant reduction in
cut size that could be achieved by moving several vertices
together.

The baleful effect of clusters on local search algorithms
trying to solve the graph partitioning problemmotivated this
study. Kim [37, 38] indicated that graph partitioning is hard
primarily due to the difficulty of moving clusters. Dutt and
Deng [39, 40] have also observed that an IIP method applied
to circuit partitioning can fail because of the difficulty of
dealing with clusters that straddle subsets.

3.1. Experimental Support. We designed experiments to
quantify the effect of clusters on IIP algorithms, represented
by the KL algorithm. Using the cluster detection method to
be described in Section 4.1, we find clusters in the graph and
select one randomly. We then take a locally optimum bipar-
tition 𝑠 obtained by KL and move the selected cluster to the
other subset, creating a perturbed partition 𝑡cluster. Applying
KL to 𝑡cluster, we obtain a new local optimum 𝑢cluster.

Table 1: Probability that KL fails to return vertices moved from one
subset of a partition to the other, when the vertices are in cluster
(𝑃cluster) or chosen at random (𝑃random), over 1,000 runs.

Graph 𝑃cluster (%) 𝑃random (%) Average number of vertices
moved (𝑞)

G500.2.5 16.90 2.50 6.41

G500.05 5.70 1.30 5.50

G500.10 1.90 0.30 5.05

G500.20 0.50 0.10 4.78

G1000.2.5 12.80 1.90 5.89

G1000.05 2.90 0.80 5.61

G1000.10 0.60 0.20 4.67

G1000.20 0.30 0.00 4.91

U500.05 39.10 1.00 7.41

U500.10 26.20 0.50 12.05

U500.20 8.60 0.20 14.10

U500.40 10.40 0.40 49.36

U1000.05 37.90 0.80 7.81

U1000.10 28.50 0.60 12.47

U1000.20 11.60 0.10 22.19

U1000.40 9.10 0.40 35.88

Assuming that 𝑞, the number of vertices in the clusters, is
small, 𝑢cluster can be expected to match 𝑠 if KL is successful
in moving the cluster back. However, if KL fails to return
the perturbed cluster to its original subset, the cut size of the
partition may increase. Repeating this experiment, we derive
𝑃cluster, as an approximation of the probability that the cut size
of 𝑢cluster is larger than that of 𝑠.

For comparison, we perturbed 𝑞 vertices randomly
selected within a locally optimized partition, bymoving them
to the other subset. We call this partition 𝑡random. We apply
the KL algorithm to 𝑡random and then obtain a new locally
optimum partition 𝑢random. Repeating this experiment, we
derive 𝑃random, as an approximation of the probability that the
cut size of 𝑢random is larger than that of 𝑠.

Table 1 shows the values of 𝑃cluster and 𝑃random for 16
benchmark graphs. We see that 𝑃cluster is always larger than
𝑃random, as we would expect. We notice that the gap between
𝑃cluster and 𝑃random is larger on the geometric graphs (U𝑛.𝑑)
than on the random graphs (G𝑛.𝑑).

4. Cluster-Handling Heuristic

Cluster analysis is a well-known problem for which plenty of
algorithms exist, many of which require a lot of computation.
The insight that motivates our heuristic is that the application
of a local optimization process, such as IIP, to a randomly par-
titioned graph creates a modified partition in which clusters
tend to be wholly allocated to one subset or another (and are
then difficult to move, as we have already observed). A single
partition of this sort is of little help in identifying clusters,
because the clusters are not separated at all within each
subset; but if we create many random partitions and optimize
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Table 2: Truth table for Fact 1.

𝑝 𝑞 𝑝 → 𝑞 𝐼(𝑝) 𝐼(𝑞)

True True True 1 1

True False False 1 0

False True True 0 1

False False True 0 0

them, we can reasonably infer that vertices that find them-
selves in the same subset in most of these partitions belong to
the same cluster. We can make this inference in a structured
way using the “genic distance” metric that we will introduce.
This approach to cluster analysis may seem indirect, but it is
efficient in the context of an evolutionary approach to graph
partitioning, because the set of partitions required for finding
clusters using genic distance is also the population which we
must create to be evolved by our MA.

One way of dealing with clusters is to devise a local opti-
mization heuristic that can identify clusters [18, 19, 38]. How-
ever, this prevents us from building on previous studies of IIP
algorithms.

Our approach is to add an additional heuristic to our
MA, which finds and moves clusters. The heuristic identifies
clusters in the population of partitions which have already
been optimized locally. It selects clusters with higher gains
andmoves them. IIP local optimization is then applied again.

4.1. Cluster Detection. Let 𝐼(⋅) be an indicator function, that is,
𝐼(true) = 1 and 𝐼(false) = 0. Then, we can trivially establish
the following.

Fact 1. If 𝑝 → 𝑞 is true, then 𝐼(𝑝) ≤ 𝐼(𝑞).

Proof. From Table 2.

Fact 2. 𝐼(𝑝 ∨ 𝑞) ≤ 𝐼(𝑝) + 𝐼(𝑞).

Proof. From Table 3.

We now define a metric called genic distance, which mea-
sure the extent to which two vertices connected by an edge
can be considered to belong to the same cluster. We denote
the genic distance of an edge {V

𝑖
, V
𝑗
} within a population

{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑚
} of locally optimized partitions as 𝑑

𝑔
(V
𝑖
, V
𝑗
),

which can be expressed as follows:

𝑑
𝑔
(V
𝑖
, V
𝑗
) :=

𝑚

∑

𝑙=1

𝐼 (𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑗
)) , (3)

where 𝑔
𝑖
and 𝑔

𝑗
are the genes corresponding to V

𝑖
and V

𝑗
,

respectively. The value of gene 𝑔
𝑖
(i.e., the partition number

that vertex V
𝑖
belongs to) in the 𝑙th individual is 𝑝

𝑙
(𝑔
𝑖
). For

convenience, we assume that each vertex has an edge that
connects it to itself, so that {V, V} ∈ 𝐸 for each vertex V. Then,
the following proposition holds.

Proposition 1. For each population, 𝑑
𝑔
becomes a pseudomet-

ric on 𝑉.

Table 3: Truth table for Fact 2.

𝑝 𝑞 𝐼(𝑝) 𝐼(𝑞) 𝑝 ∨ 𝑞 𝐼(𝑝 ∨ 𝑞) 𝐼(𝑝) + 𝐼(𝑞)
True True 1 1 True 1 2

True False 1 0 True 1 1

False True 0 1 True 1 1

False False 0 0 False 0 0

Proof. Since 𝐼(⋅) ≥ 0, 𝑑
𝑔
(V
𝑖
, V
𝑗
) = ∑

𝑚

𝑙=1
𝐼(𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑗
)) ≥ 0

for each {V
𝑖
, V
𝑗
} ∈ 𝐸. It is enough to show the following three

conditions.

(i) 𝑑
𝑔
(V
𝑖
, V
𝑖
) = 0:

𝑑
𝑔
(V
𝑖
, V
𝑖
) =

𝑚

∑

𝑙=1

𝐼 (𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑖
))

=

𝑚

∑

𝑙=1

𝐼 (false)

= 0.

(4)

(ii) Symmetry. Let {V
𝑖
, V
𝑗
} be in 𝐸:

𝑑
𝑔
(V
𝑖
, V
𝑗
) =

𝑚

∑

𝑙=1

𝐼 (𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑗
))

=

𝑚

∑

𝑙=1

𝐼 (𝑝
𝑙
(𝑔
𝑗
) ̸= 𝑝
𝑙
(𝑔
𝑖
))

= 𝑑
𝑔
(V
𝑗
, V
𝑖
) .

(5)

(iii) Triangle Inequality. Consider each group of three
edges {V

𝑖
, V
𝑗
}, {V
𝑖
, V
𝑘
}, {V
𝑘
, V
𝑗
} ∈ 𝐸. If 𝑝

𝑙
(𝑔
𝑖
) = 𝑝

𝑙
(𝑔
𝑘
)

and𝑝
𝑙
(𝑔
𝑘
) = 𝑝
𝑙
(𝑔
𝑗
), then𝑝

𝑙
(𝑔
𝑖
) = 𝑝
𝑙
(𝑔
𝑗
) for each 𝑙. By

contraposition, if 𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑗
), then 𝑝

𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑘
)

or 𝑝
𝑙
(𝑔
𝑘
) ̸= 𝑝
𝑙
(𝑔
𝑗
).

For each 𝑙,

𝐼 (𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑗
))

≤ 𝐼 (𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑘
) ∨ 𝑝
𝑙
(𝑔
𝑘
) ̸= 𝑝
𝑙
(𝑔
𝑗
)) (∵ Fact 1)

≤ 𝐼 (𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑘
)) + 𝐼 (𝑝

𝑙
(𝑔
𝑘
) ̸= 𝑝
𝑙
(𝑔
𝑗
)) (∵ Fact 2) .

(6)

By summing the above inequalities for all 𝑙,

𝑚

∑

𝑙=1

𝐼 (𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑗
))

≤

𝑚

∑

𝑙=1

(𝐼 (𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑘
)) + 𝐼 (𝑝

𝑙
(𝑔
𝑘
) ̸= 𝑝
𝑙
(𝑔
𝑗
)))

=

𝑚

∑

𝑙=1

𝐼 (𝑝
𝑙
(𝑔
𝑖
) ̸= 𝑝
𝑙
(𝑔
𝑘
)) +

𝑚

∑

𝑙=1

𝐼 (𝑝
𝑙
(𝑔
𝑘
) ̸= 𝑝
𝑙
(𝑔
𝑗
)) .

(7)
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Therefore we have

𝑑
𝑔
(V
𝑖
, V
𝑗
) ≤ 𝑑
𝑔
(V
𝑖
, V
𝑘
) + 𝑑
𝑔
(V
𝑘
, V
𝑗
) . (8)

That is, 𝑑
𝑔
satisfies the triangle inequality.

Proposition 1 suggests that the measure 𝑑
𝑔
is reasonable.

A pseudometric space is a generalization of a metric space, in
which points need not be distinguishable; thus it is possible
that 𝑑

𝑔
(V
𝑖
, V
𝑗
) = 0 for some edge {V

𝑖
, V
𝑗
}, with distinct vertices

V
𝑖
̸= V
𝑗
.

Our heuristic detects clusters by collecting a number of
local optima and computes genic distances for all the edges in
each graph.This takes𝑂(𝑚|𝐸|) time, but this cost is negligible
since this computation is a preprocess performed before the
MA runs. The heuristic temporarily eliminates edges with
genic distances that are greater than a threshold value 𝜃. We
set 𝜃 to be the smallest value that satisfies

󵄨󵄨󵄨󵄨󵄨
{𝑒 ∈ 𝐸 : 𝑑

𝑔
(𝑒) ≤ 𝜃}

󵄨󵄨󵄨󵄨󵄨
≤ 0.1 |𝑉| . (9)

Each remaining connected component containingmore than
three vertices is considered to be a cluster.

Figure 2 shows how our heuristic detects clusters. Fig-
ure 2(a) shows an example graph with 11 vertices and 15
edges. Four individuals, corresponding to locally optimized
partitions, from the population are shown in Figure 2(b).
In Figure 2(c), each edge is labeled with its genic distance.
If the threshold value of genic distance is 1, then the
edges with larger genic distances, indicated by dotted line,
are eliminated. Then four connected components remain:
{V
3
, V
7
, V
8
, V
9
}, {V
2
, V
4
, V
6
, V
11
}, {V
1
, V
5
}, and {V

10
}. The last two

of these connected components are considered too small to
be clusters. Thus clusters {V

3
, V
7
, V
8
, V
9
} and {V

2
, V
4
, V
6
, V
11
},

shaded in Figure 2(c), remain as candidates for moving.

4.2. Cluster-Moving Scheme. Our heuristic improves the
offspring of each generation after crossover by moving the
clusters that were detected using the technique described in
the previous subsection. To select the clusters to be moved
and their target subsets, we introduce ameasure called cluster
gain, such that cg(𝑥, 𝑎) is the reduction in the cut size of the
partition when all the vertices in cluster 𝑥 are moved to the
subset 𝑎. For example, moving the cluster in Figure 1(a) to the
other subset in the partition is associated with a cluster gain
of 2.

This cluster-moving scheme, described in Algorithm 1,
is applied to each individual generated by crossover, which
is a partition that may be unbalanced. However, cut size
and cluster gain are well defined on unbalanced partitions.
Our scheme does not consider moving every cluster in every
partition, because we found that making all clusters movable
causes the premature convergence of the MA. Thus, our
heuristic selects𝑁 clusters at random as candidates for mov-
ing. In our experiments, we set𝑁 to 5.We compute the cluster
gain that results from moving each candidate cluster to each
of the other 𝑘 − 1 subsets. The candidate cluster 𝑥 and
destination subset 𝑎with the highest cluster gain are selected.
Assume that cg(𝑥, 𝑎) is positive, all the vertices in cluster 𝑥
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Figure 2: An example of cluster detection.

are moved to subset 𝑎, and cluster 𝑥 is removed from the
set of candidate clusters. This process is repeated until no
candidates remain, or no move yields a positive cluster gain.
No attempt is made to balance the partition during cluster-
moving; this is performed later.

5. Memetic Search Framework

CMPA (cluster-moving memetic partitioning algorithm) is a
memetic algorithm that we have designed for graph parti-
tioning. In this MA, an individual is a 𝑘-way partition. Each
gene in an individual corresponds to a vertex and has a value
between 0 and 𝑘 − 1, which indicates the subset to which the
vertex belongs; that is, the 𝑖th gene 𝑔

𝑖
= 𝑗 ⇔ V

𝑖
∈ 𝑃
𝑗+1

. It is
a steady-state MA, meaning that there is only one offspring
from population in each generation. Crossover is followed by
a cluster-moving step and then local optimization.

Algorithm 2 shows the processes that make up CMPA,
which we now describe in detail.

(i) Initialization. When the MA starts, 𝑚 individuals
(i.e., partitions) are created at random. Then each
individual is improved by local optimization. We set
𝑚 to be 30 for bipartitioning and 50 for multiway
partitioning (with 𝑘 = 8 or 𝑘 = 32).
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Select clusters: 𝑆 ← 𝑁 clusters selected at random;
do {

Calculate cg(𝑥, 𝑎) for all 𝑥 ∈ 𝑆, 1 ≤ 𝑎 ≤ 𝑘;
cg∗ ← max

𝑥,𝑎
cg(𝑥, 𝑎);

(𝑥, 𝑎) ← argmax
𝑥,𝑎

cg(𝑥, 𝑎);

if cg∗ > 0 then {

Move cluster 𝑥 to partition 𝑎;
𝑆 ← 𝑆 \ {𝑥};

}

} until (𝑆 = 0 or cg∗ ≤ 0)

Algorithm 1: Our cluster-moving scheme.

Create initial population of fixed size;
Apply local optimization to each member of population;
Calculate genic distance from population;
Find clusters and store their information;
do {

Select 𝑝𝑎𝑟𝑒𝑛𝑡
1
and 𝑝𝑎𝑟𝑒𝑛𝑡

2
from population;

Normalization(𝑝𝑎𝑟𝑒𝑛𝑡
1
, 𝑝𝑎𝑟𝑒𝑛𝑡

2
);

offspring ← Crossover(𝑝𝑎𝑟𝑒𝑛𝑡
1
, 𝑝𝑎𝑟𝑒𝑛𝑡

2
);

Cluster-moving(offspring);
Local-optimization(offspring);
Replace(population, offspring);

} until (stopping condition);
return the best solution;

Algorithm 2: The process in CMPA.

(ii) Selection. We used the roulette-wheel-based propor-
tional selection. The probability that the best individ-
ual is chosen was set to four times the probability
that the worst is chosen. The fitness value 𝑓

𝑖
of the

𝑖th individual is expressed as (𝑐
𝑤
− 𝑐
𝑖
) + (𝑐
𝑤
− 𝑐
𝑏
)/3,

where 𝑐
𝑏
, 𝑐
𝑤
, and 𝑐

𝑖
are the cut sizes of the partitions

corresponding to the best, the worst, and the 𝑖th
individual, respectively.

(iii) Normalization. Laszewski [31] first used normaliza-
tion to improve the performance of GA and its vari-
ants have been suggested in [23, 26, 41, 42].The parent
individuals are normalized before crossover following
Laszewski [31, 33]. The subset of one parent which
shares the largest number of vertices with subsets
of the other parent is selected, and that subset is
numbered 0. This process is repeated, incrementing
the index, until all subsets are numbered.

(iv) Crossover and Cluster Moving. We used a standard
five-point crossover. After crossover, the cluster-han-
dling heuristic described in Section 4.2 is applied to
the individual. At this point, individuals usually cor-
respond to unbalanced partitions.We select a random
location in the individual and adjust the values of
the genes, which are the subsets to which the corre-
sponding vertices belong, to the right of this location
(in a typical circular string) until the partition is

balanced. This is effectively a mutation effect, and no
further mutation was introduced.

(v) Local Optimization. KL [7] was used for the bisection
problems and EFM (extended FM) [21] was used for
multiway partitioning (𝑘 = 8 or 𝑘 = 32).

(vi) Replacement. We used a replacement scheme due to
Bui and Moon [10]. If an offspring is better than its
closer parent, the MA replaces that parent. If it is bet-
ter than its other parent, then that parent is replaced.
Otherwise it replaces the worst individual in the
population.

(vii) Stopping Condition. This is based on consecutive fail-
ures to replace an individual’s parents. Termination is
triggered by consecutive failures: 30 in bipartitioning
and 50 in multiway partitioning.

6. Experimental Results

We conducted experiments on 2-way, 8-way, and 32-way par-
titioning. Table 4 shows the performance of MA combined
with KL (denoted KL-MA) and CMPA on bipartitioning.
Table 5 shows the performance of the genetic extended FM
algorithm (GEFM) [21], one of themost effective approaches,
and CMPA on 8-way partitioning, and Table 6 gives the
results for 32-way partitioning. CMPAuses a cluster-handling
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Table 4: Comparison of KL-MA and CMPA on bipartitioning.

Graph Best known1 KL-MA CMPA
Best2 Ave2 CPU3 (Gen4) Best2 Ave2 CPU3 (Gen4)

G500.2.5 49 49 51.34 0.32 (595) 49 51.22 0.34 (558)
G500.05 218 218 218.65 0.59 (700) 218 218.45 0.64 (682)
G500.10 626 626 627.55 1.02 (681) 626 627.46 1.10 (672)
G500.20 1744 1744 1745.83 1.93 (694) 1744 1745.62 2.09 (687)
G1000.2.5 93 93 97.26 0.96 (745) 93 97.08 1.04 (722)
G1000.05 445 445 451.50 2.07 (884) 445 450.92 2.22 (860)
G1000.10 1362 1362 1366.68 4.07 (969) 1362 1366.18 4.45 (977)
G1000.20 3382 3382 3385.61 7.42 (971) 3382 3385.26 8.13 (987)
U500.05 2 2 4.96 0.55 (793) 2 3.94 0.66 (803)
U500.10 26 26 26.31 0.45 (459) 26 26.04 0.57 (465)
U500.20 178 178 178.06 0.42 (300) 178 178.00 0.53 (271)
U500.40 412 412 412.00 0.34 (190) 412 412.00 0.37 (102)
U1000.05 1 1 11.67 1.71 (1077) 1 8.81 2.12 (1068)
U1000.10 39 39 46.27 1.51 (645) 39 44.15 1.95 (653)
U1000.20 222 222 222.19 1.13 (347) 222 222.07 1.51 (327)
U1000.40 737 737 737.00 1.20 (243) 737 737.00 1.77 (205)
1Best result from the literature.
2Best and average results from 1,000 runs.
3CPU seconds on a Pentium IV 2.8GHz.
4Average number of generations over 1,000 runs.

Table 5: Comparison of GEFM and CMPA on 8-way partitioning.

Graph GEFM [21] CMPA
Best1 Ave1 CPU2 (Gen3) Best1 Ave1 CPU2 (Gen3)

G500.2.5 111 115.21 42.03 (2090) 111 114.51 40.25 (2091)
G500.05 465 468.16 85.65 (2314) 465 467.63 72.96 (2239)
G500.10 1254 1259.53 144.54 (2347) 1254 1258.47 135.04 (2297)
G500.20 3348 3354.80 293.18 (2437) 3348 3353.71 285.09 (2317)
G1000.2.5 212 216.30 146.76 (3043) 211 216.57 148.42 (3023)
G1000.05 930 938.11 247.20 (3148) 931 939.26 234.67 (3069)
G1000.10 2714 2726.33 408.96 (3146) 2711 2725.52 416.98 (3083)
G1000.20 6525 6536.55 791.29 (3303) 6520 6538.35 781.67 (3141)
U500.05 16 18.80 70.87 (2629) 16 17.22 55.89 (2137)
U500.10 143 145.12 98.75 (2277) 143 144.26 90.50 (1984)
U500.20 612 614.57 121.22 (1690) 611 612.93 97.53 (1483)
U500.40 1867 1872.60 157.94 (1396) 1867 1871.73 129.62 (1204)
U1000.05 21 33.66 180.35 (3638) 20 28.53 209.53 (3172)
U1000.10 176 183.70 243.08 (3105) 176 182.30 257.02 (2857)
U1000.20 812 814.05 231.08 (1824) 812 813.00 232.93 (1756)
U1000.40 2562 2563.05 249.46 (1353) 2562 2562.85 273.51 (1238)
1Best and average results from 100 runs.
2CPU seconds on a Pentium IV 2.8GHz.
3Average number of generations over 100 runs.

heuristic but KL-MA andGEFM do not.We performed 1,000
runs for bipartitioning and 100 runs for 8-way and 32-way
partitioning. All the programs were written in the C language
and compiled using GNU’s gcc compiler. It was run on a
Pentium IV 2.8GHz computer with Linux. In the tables, the
bold-faced numbers indicate the lower of the average cut sizes

obtained by the two algorithms. CMPA outperformed KL-
MA and GEFM on most graphs, with comparable running
times.

CMPA underperformed on some random graphs, which
may be due to the weak cluster structures in these graphs.
CMPA’s average performance was better on all the geometric
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Table 6: Comparison of GEFM and CMPA on 32-way partitioning.

Graph Best known1 GEFM [21] CMPA
Best2 Ave2 CPU3 (Gen4) Best2 Ave2 CPU3 (Gen4)

G500.2.5 177 177 181.69 78.98 (1491) 177 180.82 74.30 (1382)
G500.05 623 624 630.47 162.26 (2197) 623 629.92 159.18 (2035)
G500.10 1573 1574 1581.94 300.83 (2364) 1572∗ 1579.72 355.73 (2332)
G500.20 4034 4037 4045.06 681.53 (2565) 4035 4042.81 673.19 (2479)
G1000.2.5 312 313 320.99 335.79 (2798) 313 320.25 356.44 (2648)
G1000.05 1217 1208 1218.72 698.67 (3133) 1205∗ 1216.89 738.06 (3203)
G1000.10 3360 3353∗ 3367.31 1171.48 (3294) 3355 3366.08 1323.59 (3267)
G1000.20 7818 7817 7829.81 2012.78 (3475) 7815∗ 7830.48 2363.69 (3342)
U500.05 109 112 116.39 138.29 (1640) 109 113.18 121.15 (1595)
U500.10 523 531 537.75 225.52 (1512) 526 531.84 166.26 (1222)
U500.20 1825 1831 1841.39 285.07 (1344) 1823∗ 1831.88 299.47 (1197)
U500.40 5328 5364 5380.01 561.74 (1381) 5348 5369.83 523.15 (1331)
U1000.05 117 118 126.02 451.03 (3137) 115∗ 123.49 464.35 (2967)
U1000.10 577 576 583.26 599.01 (2599) 571∗ 578.16 743.50 (2603)
U1000.20 2367 2375 2396.33 798.77 (1963) 2373 2388.93 930.43 (1848)
U1000.40 7329 7399 7417.49 1421.78 (1634) 7382 7407.18 1493.10 (1573)
1Best known values [20–22, 24, 33].
2Best and average results from 100 runs. Asterisked numbers are new best values.
3CPU seconds on a Pentium IV 2.8GHz.
4Average number of generations from 100 runs.

graphs. This suggests that effective cluster handling is more
important on the geometric graphs, as we suggested in
Section 3.1.

The local optimization algorithm ismuchmore expensive
than the cluster-handling heuristic; thus, CMPA does not
take much longer to run than KL-MA or GEFM. On average,
CMPA required 14.14%more time than KL-MA for the bipar-
titioning problems, and 2.02% more than GEFM in 32-way
partitioning. CMPA ran 5.52% faster in 8-way partitioning.

7. Concluding Remarks

We devised a cluster-moving heuristic and combined it with
a memetic algorithm (MA) for graph partitioning. Experi-
ments on 2-way, 8-way, and 32-way partitioning showed that
this heuristic significantly improved the performance of the
MA, especially on the 32-way partitioning.

The method of moving clusters that we have introduced
addresses a significant weakness in standard IIP algorithms.
The idea of adding an operation to complement a local
optimization algorithm might be used to address other
deficiencies in MAs.

Our method of cluster detection is based on a measure
that we call genic distance, which is designed to reflect the
extent to which two vertices connected by an edge belong
to the same cluster. Instead of computing genic distances
once in an initialization phase, anMA could recompute these
distances as it progresses: this might improve the accuracy
of cluster detection, at some cost in time. We believe that
genic distance might also be useful in solving other problems
involving clusters, such as the maximum clique problem.

Table 7: Real-world benchmark graphs.

Graph Number of vertices Number of edges
nasa4704 4704 50026
bcspwr09 1723 2394
bcsstk13 2003 40940
DEBR12 4096 8189

Appendix

Results on Real-World Graphs

We also tested on four real-world benchmark graphs used
in [11, 15, 43]. The sizes of the graphs are given in Table 7.
We conducted experiments on 2-way and 8-way partitioning.
We performed 100 runs for bipartitioning and 50 runs for
8-way partitioning. It was run on an Intel Core i7 3.6GHz
computer with Linux. Table 8 compares CMPA with KL-MA
on bipartitioning, and Table 9 compares CMPA with GEFM
on 8-way partitioning. In the tables, the bold-faced numbers
indicate the lower of the average cut sizes obtained by the two
algorithms. Similarly to the results in Section 6,CMPAoverall
performed better than the others, with comparable running
times.
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Apreliminary version of this paper appeared inProceedings of
the Genetic and Evolutionary Computation Conference, 2007
(p. 1520).
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Table 8: Comparison of KL-MA and CMPA on bipartitioning.

Graph Best known1 KL-MA CMPA
Best2 Ave2 CPU3 (Gen4) Best2 Ave2 CPU3 (Gen4)

nasa4704 1292 1292 1292.00 4.15 (407) 1292 1292.00 3.82 (347)
bcspwr09 9 9 11.31 0.61 (1010) 9 10.60 0.81 (1003)
bcsstk13 2355 2355 2355.00 1.17 (330) 2355 2355.00 1.46 (282)
DEBR12 548 548 548.44 9.91 (765) 548 548.20 10.32 (794)
1Best result from the literature.
2Best and average results from 100 runs.
3CPU seconds on Intel Core i7 3.6GHz.
4Average number of generations over 100 runs.

Table 9: Comparison of GEFM and CMPA on 8-way partitioning.

Graph GEFM [21] CMPA
Best1 Ave1 CPU2 (Gen3) Best1 Ave1 CPU2 (Gen3)

nasa4704 3898 3903.66 575.69 (2235) 3896 3902.66 591.51 (2255)
bcspwr09 53 57.08 78.80 (2947) 54 57.74 85.16 (2925)
bcsstk13 8911 8939.10 281.19 (1427) 8919 8936.14 301.54 (1476)
DEBR12 1248 1260.16 315.97 (3969) 1248 1259.90 353.83 (4002)
1Best and average results from 50 runs.
2CPU seconds on Intel Core i7 3.6GHz.
3Average number of generations over 50 runs.
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